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Fixed point results via altering distance functions
in relational fuzzy metric spaces with application

Ayush Bartwal∗, R.C. Dimri, Shivam Rawat

Abstract. Some fixed point theorems are developed in fuzzy metric
spaces using an altering distance function under binary relationship.
We ensure the existence and uniqueness of the solution to ordinary dif-
ferential equation using our results. We also give a non-trivial example
to illustrate our primary result. Our results strengthen and extend the
Theorem 3.1 of Shen et al. (Applied Mathematics Letters, 25 (2012),
138-141).

1. Introduction and preliminaries

In 1960, Schweizer and Sklar [22] introduced the notion of continuous
triangular norm as:

Definition 1 ([22]). A binary operation ∗ : [0, 1]×[0, 1]→ [0, 1] is said to be
a continuous triangular norm (t-norm) if ∗ satisfies the following conditions:

(i) ρ ∗ σ = σ ∗ ρ and ρ ∗ (σ ∗ ς) = (ρ ∗ σ) ∗ ς, for all ρ, σ, ς ∈ [0, 1];
(ii) ∗ is continuous;
(iii) 1 ∗ ρ = ρ, for all ρ ∈ [0, 1];
(iv) ρ ∗ σ ≤ ς ∗ τ , whenever ρ ≤ ς and σ ≤ τ , for all ρ, σ, ς, τ ∈ [0, 1].

Example 1. ρ ∗ σ = ρσ and ρ ∗ σ = min{ρ, σ} are two basic examples of
continuous t-norm, named as product t-norm and minimum t-norm respec-
tively.

If u1, u2, . . . , un ∈ [0, 1], then ∗ni=1ui = u1∗u2∗· · ·∗un. For every u ∈ [0, 1],
the sequence {∗ni=1ui}∞n=1 is defined by ∗1u = u and ∗n+1u = (∗nu) ∗ u, for
all n ≥ 1. If the sequence {∗ni=1ui}∞n=1 is equicontinuous at u = 1 then the
t-norm ∗ is said to be of H-type (see [10]).
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Proposition 1 ([9]). Let {αn}n∈N ∈ [0, 1] be a sequence which converges to
1 and t-norm ∗ is of H-type. Then

lim
n→∞

∗∞i=nαi = ∗∞i=1αi+1 = 1.

In 1975, Kramosil and Michalek [14] introduced the notion of fuzzy metric
spaces using the theory of fuzzy sets, which generalizes the metric spaces.
Later on, George and Veeramani [4] presented slight modification on the
definition of fuzzy metric spaces initiated by the respective authors by ob-
taining Hausdorff topology on the same setting. The following definition of
fuzzy metric spaces is due to Kramosil and Michalek [14].

Definition 2. An ordered triple (X,M, ∗) is called a fuzzy metric space if
X is a non-empty set, M is a fuzzy set on X2 × (0,∞) and ∗ is a continuous
t-norm satisfying the following conditions for all µ, ν, ξ ∈ X and t, s > 0:

(1) M(µ, ν, 0) = 0;
(2) M(µ, ν, t) = 1 if and only if µ = ν;
(3) M(µ, ν, t) = M(ν, µ, t);
(4) M(µ, ξ, t+ s) ≥ M(µ, ν, t) ∗M(ν, ξ, s);
(5) M(µ, ν, .) : (0,∞) −→ (0, 1] is left continuous.

Definition 3. An ordered triple (X,M, ∗) is called a fuzzy metric space (in
George and Veeramani sense), if in the above Definition conditon (1) and
(5) are replaced respectively, with (1’) and (5’) below:

(1’) M(µ, ν, t) > 0;
(5’) M(µ, ν, .) : (0,∞) −→ (0, 1] is left continuous.

If condition (4) is replaced by condition
(4’) M(µ, ξ, t) ≥ M(µ, ν, t) ∗M(ν, ξ, t);

then (X,M, ∗) is called a strong fuzzy metric space [7].

Example 2. Let X = R and M(µ, ν, t) =

[
exp

(
|µ− ν|
t

)]−1
. Define con-

tinuous t-norm as ρ ∗σ = ρσ for all µ, ν ∈ X and t ∈ (0,∞). Then M(µ, ν, t)
is a fuzzy metric space.

Definition 4 ([4]). (i) Let (X,M, ∗) be a fuzzy metric space. A sequence
{µn} is said to converge to µ in X if and only if lim

n→∞
M(µn, µ, t) = 1 for

all t > 0, i.e. for each r ∈ (0, 1) and t > 0, there exists n0 ∈ N such that
M(µn, µ, t) > 1− r, for all n ≥ n0.

(ii) A sequence {µn} in a fuzzy metric space (X,M, ∗) is a M-Cauchy
sequence if and only if for each ε > 0, t > 0 there exists n0 ∈ N such that
M(µn, µm, t) > 1 − ε for all n,m > n0. On other hand, {µn} is called a
Cauchy sequence if lim

n→∞
M(µn, µn+m, t) = 1, for all m ∈ N and t > 0.

(iii) A fuzzy metric space (X,M, ∗) is complete if every Cauchy sequence
in X is convergent to some µ ∈ X.
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Many interesting results have been proved by eminent mathematicians,
leading to extensive theories on fuzzy metric setting (see, for instance,
[5–35]). In 1912, Shen et al. [23] established an important fixed point result
using the concept of altering distance function in fuzzy metric spaces. How-
ever, the idea of an altering distance was earlier established and utilized by
Khan et al. [12] in the setting of metric spaces.

Nowadays, several authors are adopting the concept of binary relation
for generalizing, weakening the existing fixed point results or obtaining new
results in the metrical fixed point theory. The notion of continuity and com-
pleteness are also weakened with the help of binary relation and developed
several interesting results in the setting of relational metric spaces (see, for
instance, [1–3,17,21,30]).

In this article, R̊, N and R denotes a nonempty binary relation, the set of
all natural numbers and the set of all real numbers respectively.

Definition 5 ([15]). A subset of X×X (X be a nonempty set) is said to be
a binary relation denoted as R̊, if (µ, ν) ∈ R̊ then µ is related to ν under R̊.

Definition 6 ([1]). Let X be a non empty set equipped with a binary relation
R̊ and if either (µ, ν) ∈ R̊ or (ν, µ) ∈ R̊ then µ and ν are said to be R̊-
comparative, denoted as [µ, ν] ∈ R̊.
Definition 7 ([15]). Let X be a nonempty set equipped with a binary rela-
tion R̊.

1. The inverse relation R̊−1 of R̊ is defined as follows.

R̊−1 = {(µ, ν) ∈ X× X : (ν, µ) ∈ R̊}.
2. The symmetric closure R̊s of R̊ is defined as R̊ ∪ R̊−1 (indeed, R̊s is

the smallest symmetric relation on X containing R̊).

Definition 8 ([1]). Let X be a nonempty set equipped with a binary relation
R̊. A sequence {µn}n∈N∪{0} is said to be R̊-preserving if (µn, µn+1) ∈ R̊, for
all n ∈ N ∪ {0}.
Definition 9 ([1]). Let X be a nonempty set equipped with a binary relation
R̊ and G a self-mapping on X. R̊ is said to be G-closed if for any µ, ν ∈
X, (µ, ν) ∈ R̊ =⇒ (Gx,Gy) ∈ R̊.

Proposition 2 ([1]). Let R̊ be a binary relation on a nonempty set X and
G a self mapping on X. If R̊ is G-closed, then R̊s is also G-closed.

Proposition 3 ([1]). Let R̊ be a binary relation on a nonempty set X and
G a self mapping on X. If R̊ is G-closed, then R̊ is also Gn-Closed (Gn is
nth iterates of G) for all n ∈ N ∪ {0}.
Definition 10 ([2]). Let X be a nonempty set equipped with a binary re-
lation R̊. If for each pair µ, ν ∈ E ⊆ X, there exist a path from µ to ν in R̊
then E is said to be R̊−connected.
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Definition 11 ([18]). Let X be a nonempty set equipped with a binary
relation R̊. If for each pair µ, ν ∈ E ⊆ X, there exists ξ ∈ X such that
(µ, ξ) ∈ R̊ and (ξ, ν) ∈ R̊ then E is said to be R̊−directed.

Definition 12 ([2]). Let X be a nonempty set equipped with a binary rela-
tion R and G a self-mapping on X. If for any µ, ν, ξ ∈ X, (Gx,Gz), (Gz,Gy) ∈
R̊ =⇒ (Gx,Gy) ∈ R̊ then the binary relation R̊ is said to be G-transitive.

Inspired by Turinici (see, [26,27]), the notion of transitivity was localized
by Alam and Imdad [2] as:

Definition 13. Let X be a nonempty set and R̊ a binary relation on X. Then
R̊ is called locally transitive if for each (effectively) R̊-preserving sequence
{µn} ⊂ X (with range F := {{µn} : n ∈ N ∪ {0}}), the binary relation R̊|F
is transitive (throughout the paper, R̊|F denotes the restriction of R̊ to F).

Definition 14 ([2]). Let X be a nonempty set and R̊ be a binary relation
on X. Then R̊ is called locally G-transitive(where G is a self-mapping on
X) if for each (effectively) R̊-preserving sequence {µn} ⊂ G(X) (with range
F := {{µn} : n ∈ N ∪ {0}}), the binary relation R̊|F is transitive.

Remark 1. The notions of G-transitivity and local transitivity are inde-
pendent to each other and relatively weaker than the notion of transitivity.
In order to make them compatible the notion of locally G-transitivity was
introduced and this notion is weaker than the above notions.

Definition 15 ([13]). Let X be a nonempty set equipped with a binary
relation R̊. For µ, ν ∈ X, a path of length m (m ∈ N) in R from µ to ν is a
finite sequence {ζ0, ζ1, ζ2, . . . , ζk} ⊂ X satisfying the following conditions:

(i) ζ0 = µ and ζk = ν,
(ii) (ζi, ζi+1) ∈ R̊, for each i (0 ≤ i ≤ m− 1).

Notice that the path of length m contains m + 1 elements of X, although
they are not neccessarily distinct.

Given a self-mapping G and a binary relation R̊ on a nonempty set X, we
use the notion X(G, R̊) := {µ ∈ X : (µ,Gµ) ∈ R̊}.

Definition 16 ([23]). A function χ : [0, 1]→ [0, 1] is said to be an altering
distance function if the following properties hold:

(i) χ is left continuous and strictly decreasing function,
(ii) χ(t) = 0 if and only if t = 1.

It is clear that lim
t→1−

χ(t) = χ(1) = 0.

Our objective in this paper, is to present relation-theoretic variant of
the fixed point theorem due to Shen et al. [23] in the framework of fuzzy
metric and strong fuzzy metric spaces. In obtaining the relational variant of
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the mentioned fixed point results, we introduce the relation theoretic fuzzy
analogues of some standard metric notions and utilize the same to prove our
fixed point results. As an application of our results, we present the existence
and uniqueness of the solution of ordinary differential equation. Moreover,
we also furnish an example to support our main results.

2. Main results

Definition 17. Let (X,M, ∗) be a fuzzy metric space endowed with a binary
relation R̊. A mapping G : X → X is called R̊-continuous at a point µ ∈ X
if, for any R̊-preserving sequence µn in X such that lim

n→∞
M(µn, µ, t) = 1, we

have lim
n→∞

M(Gµn,Gµ, t) = 1, for t > 0. Moreover, G is called R̊-continuous

if it is R̊-continuous at every point of X.

In the fuzzy metric spaces, every continuous mapping is R̊-continuous for
any binary relation R̊. Particularly, under the universal relation the notion
of R̊-continuity coincides with usual continuity.

Definition 18. Let (X,M, ∗) be a fuzzy metric space endowed with a binary
relation R̊. The space (X,M, ∗) is called R̊-Complete if every R̊-preserving
Cauchy sequence in X converges to some µ ∈ X.

Clearly, for any binary relation R̊, every complete fuzzy metric space
is R̊-complete. Particularly, under the universal relation the notion of R̊-
completeness coincides with the usual completeness.

Remark 2. In example 3 of this paper, we see that G is R̊-continuous but
not continuous and the space (X,M, ∗) is R̊-complete but not complete fuzzy
metric space.

Definition 19. Let (X,M, ∗) be a fuzzy metric space endowed with a binary
relation R̊. The space (X,M, ∗) is called to be R̊-sequentially compact, if for
every R̊-preserving sequence {µn} in X such that lim

n→∞
M(µn+1, µn, t) = 1,

for t > 0, there exists a convergent subsequence {µnk}k∈N of {µn}, which
converges to µ ∈ X with [µnk , µ] ∈ R̊ for all k ∈ N ∪ {0}.

Definition 20. Let (X,M, ∗) be a fuzzy metric space endowed with a bi-
nary relation R̊. We say that (X,M, R̊) is regular, if for any R̊-preserving
sequence {µn} in X such that lim

n→∞
M(µn, µ, t) = 1, for t > 0, there exists a

subsequence {µnk}k∈N of {µn} with [µnk , x] ∈ R̊, for all k ∈ N ∪ {0}.

Proposition 4. Let (X,M, ∗) be a fuzzy metric space endowed with a binary
relation R̊. Let G be a self-mapping on X and η be a function from (0,∞) into
(0, 1) and χ be an altering distance function, then the following contractive
conditions are equivalent:
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(i) χ(M(Gµ,Gν, t)) ≤ η(t).χ(M(µ, ν, t)), for all µ, ν ∈ X, µ 6= ν, t > 0,
with (µ, ν) ∈ R̊;

(ii) χ(M(Gµ,Gν, t)) ≤ η(t).χ(M(µ, ν, t)), for all µ, ν ∈ X, µ 6= ν, t > 0,

with [µ, ν] ∈ R̊.

Proof. Proof of (ii) implies (i) is trivial. Now suppose (i) holds, using the
definition of fuzzy metric spaces, (µ, ν) ∈ R̊, we have

χ(M(Gν,Gµ, t)) = χ(M(Gµ,Gν, t)) ≤ η(t).χ(M(µ, ν, t)) = η(t).χ(M(ν, µ, t)),

for all µ, ν ∈ X, µ 6= ν, t > 0, with (ν, µ) ∈ R̊.
Hence, the above inequality shows that (i) implies (ii). �

Theorem 1. Let (X,M, ∗) be a fuzzy metric space endowed with a binary
relation R̊. Let G be a self-mapping on X. Suppose that the following condi-
tions hold:

(i) X(G, R̊) is nonempty,
(ii) R̊ is G-closed,
(iii) there exists η : (0,∞) → (0, 1) and an altering distance function χ

such that

χ(M(Gµ,Gν, t)) ≤ η(t).χ(M(µ, ν, t)),

for all µ, ν ∈ X, µ 6= ν, t > 0, with (µ, ν) ∈ R̊,
(iv) (X,M, ∗) is R̊-sequentially compact.

Or
(v) (a) (X,M, ∗) is a complete strong fuzzy metric space and ∗ is a t-

norm of H-type,
(b) (X,M, R̊) is regular.

Then G has a fixed point.

Proof. Let µ0 ∈ X(G, R̊) be an arbitrary element. We can define a sequence
{µn} by Picard iteration, i.e., µn+1 = Gµn, for all n ∈ N ∪ {0}. Using
condition (ii), as (µ0, Bµ0) ∈ R̊, we get

(Gµ0,G
2µ0), (G

2µ0,G
3µ0), . . . , (G

nµ0,G
n+1µ0), . . . ∈ R̊,

in such way that (µn, µn+1) ∈ R̊, for all n ∈ N ∪ {0} and the sequence {µn}
is a R̊- preserving sequence.

Denote Mn(t) = M(µn, µn+1, t). As (µn, µn+1) ∈ R̊, from condition (iii),
for every t > 0, we get

χ(Mn(t)) = χ(M(µn, µn+1, t))(1)
= χ(M(Gµn−1,Gµn, t)) ≤ η(t).χ(M(µn−1, µn, t))

= η(t).χ(Mn−1(t)) < χ(Mn−1(t)).

χ is strictly decreasing, so that Mn(t) > Mn−1(t), i.e., M(µn, µn+1, t) >
M(µn−1, µn, t), for t > 0.
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Hence the sequence {Mn(t)} is a non-decreasing and bounded sequence
for t > 0, so there exists γ : (0,∞)→ [0.1] such that

(2) lim
n→∞

Mn(t) = lim
n→∞

M(µn, µn+1, t) = γ(t), t > 0.

From (1), (2) and letting n→∞ for t > 0, we have

(3) χ(γ(t)) ≤ η(t).χ(γ(t)) < χ(γ(t)),

which implies that γ(t) ≡ 1, for t > 0, i.e.,

(4) lim
n→∞

M(µn, µn+1, t) = 1.

Now suppose that the (v) (a) holds. As ∗ is a t-norm of H-type, using (2)
and proposition 1, there exists n1 ∈ N such that

(5) ∗∞i=nM(µi, µi+1, t) > 1− ε, t > 0, n ≥ n1.
Since {∗ni=1M(µi, µi+1, t)}n∈N is a non-decreasing sequence and (X,M, ∗) is
a strong fuzzy metric space, from (5), we get

(6) M(µn+r+1, µn, t) ≥ ∗n+s
i=nM(µi, µi+1, t) > 1− ε, t > 0, n ≥ n1, r ∈ N.

Hence {µn} is a Cauchy sequence and due to completeness of space (X,M, ∗),
there exists µ ∈ X such that

(7) lim
n→∞

µn = µ.

Now, we have to show that µ is the fixed point of the map G. As {µn}
is an R̊-preserving sequence, by condition (v) (b), we have a subsequence
{µnk}n∈N of {µn} such that

[µnk , µ] ∈ R̊ for all k ∈ N,
by condition (iii) and Proposition 4, for t > 0, we have

0 ≤ χ(M(µnk+1
,Gµ, t)) = χ(M(Gµnk ,Gµ, t))(8)

≤ η(t).χ(M(µnk , µ, t)),

as n→∞, we have
χ(M(µ,Gµ, t)) ≤ η(t).χ(1),

i.e., χ(M(Gµ, µ, t)) = 0, which implies that M(Gµ, µ, t) = 1. Hence µ is a
fixed point of G.

Suppose that condition (iv) holds. As {µn} is a R̊-preserving sequence
and from (4) we have a convergent subsequence {µnk} which converges to µ
and [µnk , µ] ∈ R̊, for all k ∈ N ∪ {0}. Now, we only have to prove that µ is
a fixed point of G, which is similar to the proof given above. �

Remark 3. In the above Theorem 1, we introduce the R̊-sequentially com-
pact property to omit the completeness property of fuzzy metric spaces and
in this part of the proof of this Theorem, we do not require to show that the
R̊-preserving sequence {µn} is a Cauchy sequence.
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Theorem 2. Let (X,M, ∗) be a fuzzy metric space endowed with a binary
relation R̊. Let G be a self-mapping on X. Suppose that the following condi-
tions hold:

(i) X(G, R̊) is nonempty,
(ii) R̊ is G-closed,
(iii) (X,M, ∗) is R̊-complete,
(iv) there exists η : (0,∞) → (0, 1) and an altering distance function χ

such that

χ(M(Gµ,Gν, t)) ≤ η(t).χ(M(µ, ν, t)),

for all µ, ν ∈ X, µ 6= ν, t > 0, with (µ, ν) ∈ R̊,
(v) R̊ is locally G-transitive,
(vi) (a) G is R̊-continuous, or

(b) (X,M, R̊) is regular.
Then G has a fixed point.

Proof. From the conditions (i), (ii) and (iv), we get an R̊-preserving sequence
{µn}n∈N∪{0} such that

(9) lim
n→∞

M(µn, µn+1, t) = 1, t > 0.

The proof of above is analogous to the proof given in Theorem 1.
Now, we show that the sequence {µn} is a Cauchy sequence. On the

contrary, suppose that {µn} is not a Cauchy sequence, then there exist
0 < ε < 1, t > 0 and two subsequences {µmj} and {µnj} of sequence {µn}
with mj > nj ≥ j, for j ∈ N ∪ {0}, such that
(10)
M(µmj , µnj , t) ≤ 1−ε, M(µmj−1 , µnj−1 , t) = 1−ε andM(µmj−1 , µnj , t) = 1−ε.

From definition of fuzzy metric space and (10), we have

1− ε ≥ M(µmj , µnj , t) ≥ M(µmj−1 , µmj , t) ∗M(µmj−1 , µnj , t)

= Mmj (t) ∗M(µmj−1 , µnj , t).(11)

Since lim
j→∞

Mmj (t) = 1, for t > 0, from (10) and (11), we have

lim
j→∞

M(µmj , µnj , t)→ 1− ε, t > 0.

Moreover, as {µn} is an R̊-preserving sequence and {µn} is based on Picard
iteration, so by condition (v), we have (µmj , µnj ) ∈ R̊, for every j. Now in
the light of condition (iv), for each t > 0, we get

χ(M(µmj , µnj , t)) = χ(M(Gµmj−1 ,Gµnj−1 , t))

≤ η(t).χ(M(µmj−1 , µnj−1 , t)) < χ(M(µmj−1 , µnj−1 , t)).
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Using definition of χ, M(µmj , µnj , t) > M(µmj−1 , µnj−1 , t), for each j ∈ N,
t > 0 and from (10), we get

(12) 1− ε ≥ M(µmj , µnj , t) > M(µmj−1 , µnj−1 , t) > 1− ε,
which is a contradiction. Hence {µn} is a Cauchy sequence. Owing to
R̊-completeness of the space (X,M, ∗), we have a point µ ∈ X such that
sequence {µn} converges to µ.

At last we have to prove that µ is the fixed point of the map G. By
condition (vi) (a), G is R̊-continuous and µn is R̊-preserving sequence such
that lim

n→∞
M(µn, µ, t) = 1, which implies that

lim
n→∞

M(Gµn,Gµ, t) = 1, for all t > 0.

Uniqueness of limit implies that Gµ = µ.
To prove µ is a fixed point of G, we use condition (vi) (b) and following

the lines of proof presented in Theorem 1. �

Corollary 1. Let (X,M, ∗) be a fuzzy metric space endowed with a binary
relation R̊. Let G be a self-mapping on X. Suppose that following conditions
hold:

(i) X(G, R̊) is nonempty,
(ii) R̊ is G-closed,
(iii) (X,M, ∗) is R̊-complete,
(iv) there exists an altering distance function χ such that

χ(M(Gµ,Gν, t)) < χ(M(µ, ν, t)),

for all µ, ν ∈ X, µ 6= ν, t > 0, with (µ, ν) ∈ R̊,
(v) R̊ is locally G-Transitive,
(vi) (a) G is R̊-continuous, or

(b) (X,M, R̊) is regular.
Then G has a fixed point.

Proof. As
χ(M(Gµ,Gν, t)) < χ(M(µ, ν, t)),

for all µ, ν ∈ X, µ 6= ν, t > 0, with (µ, ν) ∈ R̊, then following the lines of
the proof of Theorem 2 above we get the result. �

Remark 4. Instead of condition (v) in the Theorem 2 and Corollary 1 if
we use one of the following conditions, the Theorem will remain true:

(i) R̊ is transitive.
(ii) R̊ is G-transitive.
(iii) R̊ is locally transitive.

Theorem 3. In addition to the hypothesis of Theorem 1, 2 and Corollary
1. Suppose that G(X) is R̊s-connected. Then G has a unique fixed point.
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Proof. In the light of Theorem 1 and 2, the set of all fixed points (say F (G))
of map G is non empty and suppose µ, ν ∈ F (G), we have

(13) Gn(µ) = µ,Gn(ν) = ν, for all n ∈ N ∪ {0}.

As G(X) is R̊s-connected, so there exists a path (say {ς0, ς1, . . . , ςm}) of finite
length m in R̊s from µ to ν, such that

(14) µ = ς0, ν = ςm and [ςi, ςi+1] ∈ R̊, for each 0 ≤ i ≤ m− 1.

As R̊ is G-closed, from Proposition 2 and 3, we have

(15) [Gnςi,G
nςi+1] ∈ R̊, for each i (0 ≤ i ≤ m− 1) and n ∈ N ∪ {0}.

Denote Mi
n(t) = M(Gnςi,M

nςi+1, t), for each i (0 ≤ i ≤ m− 1), n ∈ N ∪ {0}
and t > 0.

We claim that lim
n→∞

Mi
n(t) = 1, for all t > 0. Now, for a fix i, we discuss

two cases.
Firstly, suppose that Mi

n0
(t) = M(Gn0ςi,G

n0ςi+1, t) = 1, for some n0 ∈
N0 and for all t > 0, i.e. Gn0ςi = Gn0ςi+1, which implies that Gn0+1ςi =
Gn0+1ςi+1, i.e., Mi

n0+1(t) = M(Gn0+1ςi,G
n0+1ςi+1, t) = 1, for all t > 0. Thus

by induction, we have Mi
n0

(t) = 1, for all n ≥ n0 and t > 0, therefore

(16) lim
n→∞

Mi
n(t) = lim

n→∞
M(Gnςi,G

nςi+1, t) = 1, t > 0.

Secondly, suppose that Mi
n(t) < 1, for all t > 0. Using (15), Proposition 4

and contractive condition, we have

χ(Mi
n+1(t)) = χ(M(Gn+1ςi,G

n+1ςi+1, t))

≤ η(t).χ(M(Gnςi,G
nςi+1, t))

= η(t).χ(Mi
n(t)) < χ(Mi

n(t)), t > 0.(17)

As χ is strictly decreasing function, so Mi
n+1(t) > Mi

n(t) for all t > 0.
Hence the sequence {Mi

n(t)} is non-decreasing and bounded for all t > 0,
for each i (0 ≤ i ≤ m− 1), so there exists a : (0,∞)→ [0, 1] such that

(18) lim
n→∞

Mi
n(t) = lim

n→∞
M(Gnςi,G

nςi+1, t) = a(t), for all t > 0.

From (17) and (18), we have

χ(a(t)) ≤ η(t).χ(a(t)) < χ(a(t)), t > 0.

From the definition of χ, we get a(t) = 1. Thus, in both cases,

(19) lim
n→∞

Mi
n(t) = lim

n→∞
M(Gnςi,G

nςi+1, t) = 1, for all t > 0.

Now, from (13), (14), (19), definition of fuzzy metric spaces and n→∞, we
get
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M (µ, ν, t) = M (Gnς0,G
nςm, t)

≥ M

(
Gnς0,G

nς1,
t

m

)
∗M

(
Gnς1,G

nς2,
t

m

)
∗ · · · ∗M

(
Gnςm−1,G

nςm,
t

m

)
= 1.

Hence µ = ν. �

Remark 5. Instead of the condition “G(X) is R̊s-connected” in the hypoth-
esis of Theorem 3, if we use one of the following conditions, the Theorem
will remains true:

(i) R̊|G(X) is complete,
(ii) G(X) is R̊s-directed.

If conditions (i) and (ii) hold, then for each µ, ν ∈ F (G), there will exist
path of length 1 and 2 respectively on R̊s from µ to ν. Hence G(X) is
R̊s-connected. By Theorem 3 the proof is immediate.

Example 3. Let X = R+ be a set and (X,M, ∗) a fuzzy metric space, where
∗ is a continuous t-norm

M(µ, ν, t) =
min{µ, ν}+ t

max{µ, ν}+ t
, for all µ, ν ∈ X.

Define a binary relation R̊ on set X as

R̊ = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 4), (5, 1)}

and a mapping G : X→ X such that

G(µ) =

{
2, if µ ∈ (0, 4],

1, otherwise.

(i) X(G, R̊) is non-empty, because X(G, R̊) = {1, 5}.
(ii) As for all (µ, ν) ∈ R̊, (G(µ),G(ν)) ∈ {(1, 2), (2, 1)} which implies

that R̊ is G-closed.
(iii) Suppose that {µn} be any R̊-preserving sequence, we know that

{µn} ∈ {1, 2} for every n ∈ N, which implies that the space (X,M, ∗)
is R̊-complete. Notice that the space (X,M, ∗) is not complete.

(iv) Define an altering function χ : [0, 1]→ [0, 1] such that

χ(a) =


1− a, if a ∈ (0, 1),

0, if a = 1,

1, if a = 0.
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and η(t) : (0,∞) → (0, 1) such that η(t) =
9

10
, for all t ∈ (0,∞).

We have

1− min{Gµ,Gν}+ t

max{Gµ,Gν}+ t
≤ 9

10
.

(
1− min{µ, ν}+ t

max{µ, ν}+ t

)
,

for all (µ, ν) ∈ R̊ and t > 0.
(v) For any R̊-preserving sequence, µn ∈ {1, 2}, range F = {1, 2} then

R̊|F = {(1, 2)}. Hence R̊ is locally G-transitive.
Whereas, {(G(5),G(1)), (G(1),G(5))} ∈ R̊ but (G(5),G(5)) /∈ R̊, so
R̊ is neither G-transitive nor transitive.

(vi) Conditions (vi) (a) and (b) of Theorem 2 are satisfied, one can easily
prove these conditions.

Hence the hypothesis of Theorem 2 is satisfied. So, the mapping B has a
fixed point, that is, 2. As G(X) is R̊s-connected. So, from Theorem 3 the
mapping G has a unique fixed pint.

In the light of above non-trivial example, we generalize Theorem 3.1 of
paper [23]. We also notice that:

(i) In Theorem 2 and 3 R̊-completeness of the space (X,M, ∗) is used,
which is relatively weaker than completeness.

(ii) Since our contractive condition enjoys only on those elements which
are related under the underlying binary relation R̊. Thus our con-
tractive condition is a generalized version of any other contraction
used in the fuzzy metric setting.

(iii) Instead of binary relation R̊, if we take universal relation, i.e. R̊ =
X×X then Theorem 2 and 3 coincides with the Theorem 3.1 of [23].

(iv) Our results also generalize the fixed point result in [25]. Choosing
altering distance function χ(t) = 1 − t, η(t) = α, where α ∈ (0, 1),
t-norm as ρ ∗ σ = max{ρ+ σ − 1, 0}, for all ρ, σ ∈ [0, 1] and binary
relation as universal relation, our result coincides with Corollary 3.5
presented in [25].

3. Application

In this section, as an application we prove existence and uniqueness of
solution for the following ordinary differential equation using Corollary 1
and Theorem 3. Problem:

(20) ζ ′(p) = g(p, ζ(p)), p ∈ I = [0, l], ζ(0) = ζ(l),

where g : I × R→ R is a continuous function and l > 0 (see, [16]).
Let C(I) denote the space of all continuous functions defined on I. Now we

define ∗ : [0, 1]× [0, 1]→ [0, 1] such that ρ∗σ = ρσ and for β(p), ζ(p) ∈ C(I),
t > 0,

(21) M(β(p), ζ(p), t) = e−
d(β(p),ζ(p))

t ,
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where d(β(p), ζ(p)) = sup |β(p) − ζ(p)|, for p ∈ I. Then (C(I),M, ∗) is a
fuzzy metric space.

Theorem 4. Considering the Problem (20), suppose that there exists ϑ > 0

such that for (β, ζ) ∈ R̊ with β ≤ ζ,

(22) 0 ≤ g(p, ζ) + ϑζ − [g(p, β) + ϑβ] < ϑ(ζ − β).

Then there exists a unique solution of Problem (20).

Proof. Problem (20) can be rewritten as

(23) ζ ′(p) + ϑζ(p) = g(p, ζ(p)) + ϑζ(p), p ∈ I = [0, l], ζ(0) = ζ(l).

This corresponds to the Integral equation

(24) ζ(p) =

∫ l

0
κ(p, s)[g(s, ζ(s)) + ϑζ(s)]ds,

where

κ(p, s) =


eϑ(l+s−p)

eϑl − 1
, 0 ≤ s < p ≤ l,

eϑ(s−p)

eϑl − 1
, 0 ≤ p < s ≤ l.

Define a mapping G : C(I)→ C(I) such that

(25) (Gζ)(p) =

∫ l

0
κ(p, s)[g(s, ζ(s)) + ϑζ(s)]ds

and a binary relation

R̊ = {(β(p), ζ(p)) ∈ C(I)× C(I) : β(p) ≤ ζ(p) with β(p)ζ(p) ≥ 0 ∀ p ∈ I}.

(i) For any ζ(p) ≥ 0, p ∈ I, we have Gζ(p) ≥ 0 and ζ(p) ≤ Gζ(p), for all
p ∈ I, which implies that (ζ,Gζ) ∈ R̊. Hence X(G, R̊) is non-empty.

(ii) Suppose (β, ζ) ∈ R̊, i.e. β(p) ≤ ζ(p), by (22) and for each p ∈ I we
have

g(p, β(p)) + ϑβ(p) < g(p, ζ(p)) + ϑζ(p).

As, κ(p, s) > 0, (p, s) ∈ I× I and by (25), we get Gβ(p) ≤ Gζ(p), for
every p ∈ I and obviously, if β(p)ζ(p) ≥ 0 we will get Gβ(p)Gζ(p) ≥
0. Hence (Gβ,Gζ) ∈ R̊, i.e. R̊ is G-closed.

(iii) As (C(I),M, ∗) is a complete fuzzy metric space, so it is R̊−complete.
(iv) Now, from (25) and for all (β(p), ζ(p)) ∈ R̊, we have

sup |Gβ(p)− Gζ(p)|

= sup

∣∣∣∣∫ l

0
κ(p, s)[g(s, ζ(s)) + ϑζ(s)− g(s, β(s))− ϑβ(s)]ds

∣∣∣∣ ,
< sup

∣∣∣∣∫ l

0
κ(p, s)ϑ(ζ − β)ds

∣∣∣∣ ,
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≤ ϑ (sup |β − ζ|)
(

sup

∫ l

0
κ(p, s)ds

)
,

≤ ϑ(sup |β − ζ|)
{

sup
1

ϑ(eϑl − 1)
.
(
eϑl − 1

)}
= sup |β − ζ|.

Therefore, for all t > 0, we get

e−
d(Gβ,Gζ)

t > e−
d(β,ζ)
t .

Now, considering an altering distance function χ, we get

χ(M(Gβ,Gζ, t)) = χ(e−
d(Gβ,Gζ)

t ) < χ(e−
d(β,ζ)
t ) = χ(K(β, ζ, t)).

Hence the contractive condition holds for every (β, ζ) ∈ R̊ and t > 0.
(v) Choose an R̊−preserving sequence {βn(p)}, such that it converges

to β(p). By the defined binary relation R̊, we discuss two cases: (a1)
βn(p) ≥ 0 and (b1) βn(p) ≤ 0 for all p ∈ I. Considering case (a1),
i.e. βn(p) ≥ 0, a sequence of non-negative real numbers such that
βn(p) → β(p), which implies that β(p) ≥ 0, for each p ∈ I. Hence
(βn(p), β(p)) ∈ R̊ for all p ∈ R̊ and n ∈ N ∪ {0}. So, condition (vi)
(b) of Corollary 1 is satisfied. Also, as βn(p) ≥ 0, then the range set
of βn(p) (say, E) is a set of non-negative real numbers. So R̊|E is
transitive. Hence R̊ is locally G-Transitive.

Since all the conditions of Corollary 1 are satisfied. Therefore, G has a fixed
point. Finally, it is easy to prove that the conditions of Theorem 3 are
satisfied, which implies that G has a unique fixed point, i.e., there exists a
unique solution of the Problem (20). �
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