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On p-topological groups

Saeid Jafari, Paulraj Gnanachandra∗,
Arumugam Muneesh Kumar

Abstract. In this paper, we introduce the notions of p-topological
group and p-irresolute topological group which are generalizations of
the notion topological group. We discuss the properties of p-topological
groups with illustrative examples and we provide a connected p-topologi-
cal group on any group G whose cardinality is not equal to 2. Also,
we prove that translations and inversion in p-topological group are p-
homeomorphism and demonstrate that every p-topological group is p-
homogenous which leads to check whether a topology on a group satisfies
the conditions of p-topological group or not.

1. introduction

Topological group is a mathematical structure on a set which is defined
by underlying two distinguished structures on that set namely group and a
topology. While merging two distinguished structures, the way of approach
is keeping one structure as fundamental and the other one as deciding factor.
We come across so many types of mathematical structures binded together
in this way such as ring, field, vector space, algebra, normed linear spaces,
etc. Sophus Lie built up the vast theory of those topological groups which
he called continuous groups and are also known as Lie groups [12]. He stud-
ied the case, for a group, how it is possible to define a topology such that
the binary operations, group multiplication and inversion are continuous.
Then he define continuous group, a group having continuous binary oper-
ation which the basic idea of topological groups and Lie groups emerged.
A topological group in modern notion is defined as, a group together with
a topology such that the binary operations - multiplication and inversion
are continuous. Based on this, some generalizations of topological groups
such as paratopological groups, semitopological groups and quasitopological
groups are defined. In a finite group, all the above mentioned generalizations
coincide [1].
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The concepts of S-topological group and s-topological group were dis-
cussed in [10] and the theory of almost topological group was initiated in
[11]. In this paper, we discuss some more generalizations which are defined
based on pre-open sets and present a new generalization of topological group
called p-topological group.

2. Preliminaries

Throughout this paper, the triple (G, ·, τ) denotes a group (G, ·) to-
gether with a topology τ . For x, y ∈ G we write xy instead of x · y.
For any x ∈ G, x−1 denotes the inverse of x in G. Let A,B ⊆ G, then
AB = {ab : a ∈ A, b ∈ B}. The notion of pre-open sets of a topology was
introduced by Mashhour et. al in [2] and the notion of semi-open sets was
defined by N. Levine in [14]. The notion of regular open sets was intro-
duced by K. Kuratowski [8]. Let X be a topological space. For a set A,
interior of A is denoted by int(A) and the closure of A is denoted by cl(A).
A subset A of X is said to be pre-open [2] (respectively, semi-open [14]
and regular open [11]) if A ⊆ int(cl(A)) (respectively, A ⊆ cl(int(A))
and A = int(cl(A))). The largest pre-open set contained in A is termed as
pre-interior of A [17] and the smallest pre-closed set containing A is called
as pre-closure of A [17]. Pre-interior and pre-closure of A are denoted by
pint(A) and pcl(A). For a set S, the power set of S is denoted by P(S) and
for a topology τ , the collection of pre-open sets is denoted by τp. Union of
any collection of pre-open sets is pre-open and intersection of two pre-open
sets need not be pre-open but intersection of an open set with a pre-open
set is pre-open. The complement of a pre-open set is called pre-closed [2].

Definition 1. Let X and Y be topological spaces. A mapping f : X 7→ Y
is said to be continuous (respectively, semi-continuous [14], pre-continuous
[2]) if for each open neighbourhood V of f(x), there exists an open (respec-
tively, semi-open, pre-open) neighbourhood U of x ∈ X such that f(U) ⊆ V .
A mapping f is said to be almost continuous [15] (respectively, pre-
irresolute [6]) if for each regular open (respectively, pre-open) neighbour-
hood V of f(x), there exists an open (respectively, pre-open) neighbourhood
U of x such that f(U) ⊆ V .

Definition 2. Let G be a group and τ be a topology on G. Then the
pair (G, τ) is said to be topological group [3] (respectively, s-topological
group [10], almost topological group [11]) if multiplication and inversion
are continuous (respectively, semi-continuous, almost continuous). The pair
(G, τ) is said to be paratopological group [3] (respectively, semitopolog-
ical group) if multiplication is continuous (respectively, semi-continuous).
Let x, y ∈ G then (G, τ) is called a s-topological group [10] if for each
open neighbourhood U of xy−1 there exist semi-open neighbourhoods V of
x and W of y such that VW−1 ⊆ U .
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Lemma 1 ([7]). Let (Xi)i∈I be a family of topological spaces and ∅ 6= Ai ⊆
Xi for each i ∈ I. Then,

∏
i∈I Ai is pre-open in

∏
i∈I Xi if and only if Ai

is pre-open in Xi for each i ∈ I and Ai is non-dense for only finitely many
i ∈ I.

Lemma 2 ([5]). Let X be a topological space and A ⊆ X. Then:
(i) int(A) ⊆ pint(A);
(ii) pcl(A) ⊆ cl(A).

Definition 3. A topological space X is said to be:
(i) submaximal [7] if every dense subset of X is open;
(ii) p-regular [13] if for each closed set F ofX and each point x ∈ X\F ,

there exist disjoint pre-open sets U and V such that F ⊆ U and
x ∈ V .

Lemma 3 ([7]). For a topological space (X, τ) the following conditions are
equivalent:

(i) X is submaximal.
(ii) Every pre-open set is open.

Lemma 4 ([13]). For a topological space X the following are equivalent:
(i) X is p-regular.
(ii) For each x ∈ X and each open set U of X containing x, there exists

a pre open set V of x such that pcl(V ) ⊂ U .
(iii) For each closed set F of X, ∩{pcl(V ) : F ⊂ V, V is pre-open in

X} = F .
(iv) For each subset A of X and each open set U of X such that A∩U 6=

∅, there exists a pre-open set V of X such that A ∩ V 6= ∅ and
pcl(V ) ⊆ U .

(v) For each nonempty set A of X and each closed set F of X such that
A∩F = ∅, there exist pre-open sets V,W of X such that A∩V 6= ∅,
F ⊆W and V ∩W = ∅.

3. p-topological groups and their basic properties

In this section, we introduce the concept of p-topological group and in-
vestigate its basic properties with illustrative examples.

Definition 4. A pair (G, τ) is said to be p-topological group, for each
x , y ∈ G:

– for each open neighbourhood U of xy, there exist pre-open neigh-
bourhoods V of x and W of y such that VW ⊆ U ,

– for each open neighbourhood I of x−1 there exists pre-open neigh-
bourhood S of x such that S−1 ⊆ I.

In other words, multiplication and inversion mappings are pre-continuous.

We observe that
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– Any group with partition topology is a trivial example of p2-topological
group.

– Every finite left (right) topological group is p-topological group.
Since the basis of topology on finite left (right) topological group
is cosets of a subgroup (partition topology) [1] and for the partition
topology τ on any set X, τp is P(X ) and so every subset of X is
pre-open.

– Every topological group is p-topological group, but converse need not
be true. The following Examples 3.2, 3.4, 3.5 are all a p-topological
group but not a topological group.

One may ask the question that, if there is any topology τ for a group G
whose τp 6= P(X ) such that satisfies the conditions of p-topological group.
An example is given below which answers this.

Example 1. Consider the group G = (Z3,⊕) with the topology τ =
{∅, {1, 2} , G}. For the topology τ , τp = {∅, {1} , {2} , {0, 1} , {0, 2} {1, 2} , G}.

Multiplication:

x⊕ y open neighbourhoods
of (x⊕ y) x y

pre-open
neighbourhood

of x

pre-open
neighbourhood

of y

pre-open neighbourhood
of x ⊕ pre-open neighbourhood

of y

0 G
0 0

G G G1 2
2 1

1 G, {1, 2}
0 1 {0, 1} {1}

{1, 2}1 0 {1} {0, 1}
2 2 {2} {0, 2}

2 G, {1, 2}
0 2 {0, 2} {2}

{1, 2}1 1 {1} {0, 1}
2 0 {2} {0, 2}

Inverse:
x−1 open neighbourhoods

of x−1 x
pre-open neighbourhood

of x
Inverse of pre-open neighbourhood

of x
0 G 0 G G
1 G, {1, 2} 2 {1, 2} {1, 2}
2 G, {1, 2} 1 {1, 2} {1, 2}

Thus (G,⊕, τ) is a p-topological group. Let us change the topology on G
and check whether p-topological group or not.

Example 2. Consider the groupG = (Z3,⊕) with a topology τ = {∅, {0, 1} , G}.
For given τ , τp = {∅, {0} , {1} , {0, 1} , {0, 2} , {1, 2} , G}. Now, consider
1 ∈ G which can be written as 1 = 2 ⊕ 2. Let {0, 1} be an open neigh-
bourhood of 1. Then there does not exist pre-neighbourhoods U, V of 2
such that UV ⊆ {0, 1}. Thus (G, τ) is not a p-topological group. We see
some specialization of the p-topological group mentioned in Example 3.2 as
follows.

A finite group with indiscrete topology is the only connected finite topo-
logical group. But in the case of p-topological group we can provide some
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more connected topologies. For example, the above mentioned p-topological
group is connected. We can define a topology τ on G, for any group G such
that (G, τ) is connected p-topological group as follows.

Example 3. Let G be any group having cardinality greater than 2 with the
topology τ = {∅, G \ {e} , G}. Now, τp is P(G) \ {e}. Let x ∈ G and U be
an open neighbourhood of x. Then x = ab for some a, b ∈ G and x = y−1

for some y ∈ G.
Case 1: Suppose U = G, then G itself is the pre-open neighbourhood of
a, b and y respectively.
Case 2: Suppose U = G \ {e}, then x 6= e and {y} is a pre-open neighbour-
hood of x−1 such that {y}−1 = {x} ⊂ U and so inversion is pre-continuous.
We discuss the pre-continuity of multiplication as follows:

If a, b 6= e, then {a}, {b} are pre-open neighbourhoods of a and b such
that {a} . {b} ⊂ U .
If either a or b is identity, then the other element should be x. {e, z}
where z 6= y and {x} are pre-open neighbourhoods of e and x such that
{e, z} . {x} ⊂ U .

Thus, (G, τ) is a connected p-topological group.

As in the above example, we can provide more connected p-topological
groups for an infinite group as follows :

Example 4. Let G be an infinite group and a ∈ G be an arbitrary non-
identity element with the topology τ = {∅, G \ {e, a} , G}. Then τp =
P(G) \ {{e} , {a} , {e, a}}. Let x = bc for some b, c ∈ G and U be an open
neighbourhood of x. If U = G then (G, τ) is a p-topological group. Let us
assume that U = G \ {e, a}. Then x /∈ {e, a} and the cases follows:
Case 1: If b, c /∈ {e, a}, then {b} , {c} are pre-open neighbourhoods of b and
c such that {b} . {c} = {x} ⊂ U .
Case 2: If b = c = a, then {a, y1}, where y1 /∈

{
e, a−1, y−11 , ay−11 , y−11 a

}
is

a pre-open neighbourhood of b, c such that {a, y1} . {a, y1} ⊂ U .
Case 3: Suppose either b or c ∈ {e, a}.

If either b or c is e, then the other element should be x. Without loss of
generality, let us fix b = e. Then {e, y2}, where y2 /∈

{
x−1, ax−1, x−1a

}
and

{x} are pre-open neighbourhoods of b and c such that {e, y2} . {x} ⊂ U .
If b = a, then c = a−1x. Now, {a, y3} and

{
a−1x, y4

}
, where y3 /∈{

x−1a, ax−1a, y−14 , ay−14

}
and y4 /∈

{
a−1, e

}
are pre-open neighbourhoods

of b and c respectively such that {a, y3} .
{
a−1x, y4

}
⊂ U .

If c = a, then b = xa−1. Now,
{
xa−1, y5

}
and {a, y6}, where y5 /∈

{
a−1, e

}
and y6 /∈ {ax−1, ax−1a, y−15 , y−15 a} are pre-open neighbourhoods of b and c
respectively such that {a, y3} .

{
a−1x, y4

}
⊂ U .

Thus, multiplication is pre-continuous on G. Now, the pre-continuity of
inversion follows:
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Case 1: If x−1 6= a, then
{
x−1

}
is a pre-open neighbourhood of x−1 such

that
{
x−1

}−1
= {x} ⊂ U .

Case 2: If x−1 = a, then
{
x−1, y

}
where y 6= x is a pre-open neighbourhood

of x−1 such that
{
x−1, y

}−1
=
{
x, y−1

}
⊂ U .

Hence (G, τ) is a connected p-topological group. By the above example,
We can see that, in an infinite group G, for any n ∈ N we can provide
n number of connected topologies τi, i = 1, 2, 3, . . . , n such that (G, τi) is
p-topological group.

Example 5. Consider the group of real numbers under usual addition (R,+)
with the lower limit topology. Since the multiplication is continuous on R,
it is pre-continuous. But the inversion is not pre-continuous. Indeed, let
[0, a) : a ∈ R+ be an open neighbourhood of 0. The inverse of 0 is itself.
There does not exists any pre-open neighbourhood of 0 whose inverse is
contained in [0, a).

Proposition 1. Let A be an open set in p-topological group. Then for each
x ∈ G,

(i) xcl(A) ⊆ cl(xA).
(ii) cl(A)x ⊆ cl(Ax).
(iii) [cl(A)]−1 ⊆ cl(A−1).
(iv) int(xA) ⊆ xint(A).
(v) int(Ax) ⊆ int(A)x.
(vi) int(A−1) ⊆ [int(A)]−1.

The proof is trivial by the facts that, A is open ⇔ intA = A and
pcl(A−1) ⊆ cl(A−1) (Lemma 2.4 (ii)). Though the result is trivial an in-
teresting fact is as follows.

In the above proposition, the set A cannot be assumed to be pre-open
and the reverse containment need not be hold. Let G = (Z4,⊕) with τ =
{∅, {0, 1} , {2} , {0, 1, 2} , {3} , {0, 1, 3} , {2, 3} , G}. Then τp = P (Z4) and so
(G, τ) is a p-topological group. Let x = 1 ∈ G and {3} ∈ τ then xA = Ax =
{0} and A−1 = {1}.

(i) cl(xA) = {0, 1}, xcl(A) = {0} ⇒ cl(xA) * xcl(A).
(ii) cl(Ax) = {0, 1}, cl(A)x = {0} ⇒ cl(Ax) * cl(A)x.
(iii) cl(A−1) = {0, 1}, [cl(A)]−1 = {1} ⇒ cl(A−1) * [cl(A)]−1.
(iv) int(xA) = ∅, xint(A) = {0} ⇒ xint(A) * int(xA).
(v) int(Ax) = ∅, int(A)x = {0} ⇒ int(A)x * int(Ax).
(vi) int(A−1) = ∅, [int(A)]−1 = {1} ⇒ [int(A)]−1 * int(A−1).

Proposition 2. Let G be a p-topological group and A be an open set in G.
Then for any x ∈ G, xA and Ax are pre-open.

Proof. Let b ∈ xA, then b = xa for some a ∈ A. Now, a = x−1b and by the
pre-continuity of multiplication there exist pre-open sets U and V of x−1
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and b such that UV ⊆ A which implies b ∈ V ⊆ xA. Hence xA is pre-open.
Similarly we can prove that Ax is pre-open. �

In the above result, the openness of A cannot be extended to pre-openess.
Indeed, consider (G, τ) in Example 3.2 which is a p-topological group. Let
{1} ∈ τp and 2 ∈ G. Then 2⊕ {1} = {1} ⊕ 2 = {0} /∈ τp.

Proposition 3. Let G be a p-topological group. Then A is pre-open if and
only if A−1 is pre-open.

Proof. Let A ∈ τp, then there exists an open set O in G such that A ⊆ O ⊆
cl(A). Now, A−1 ⊆ O−1 ⊆ (cl(A))−1. Since inversion is pre-continuous, we
have O−1 is pre-open and (cl(A))−1 is pre-closure of A−1. By using Lemma
2.4 (ii), A−1 ⊆ O−1 ⊆ int(cl(O−1)) ⊆ (cl(A))−1 ⊆ cl(A−1). Hence there
exists an open set int(cl(O−1)) such that A−1 ⊆ int(cl(O−1)) ⊆ cl(A−1)
and so A−1 is pre-open. Proof of the converse is similar. �

By using Lemma 2.3 and Proposition 3.9, Definition 3.1 can be rewrite
in short as: A pair (G, τ) is said to be p-topological group if for each
x , y ∈ G and for each open neighbourhood U of xy−1 there exist pre-open
sets V of x and W of y such that VW−1 ⊆ U .

Proposition 4. Let A be any closed subset of a p-topological group. Then
for any x ∈ G, xA and Ax are pre-closed.

Proof. Let b ∈ pcl(xA). Let c = x−1b andW be an open neighbourhood of c.
Then by the pre-continuity of the multiplication, there exist pre-open sets U
and V of x−1 and b in G, respectively such that UV ⊂W . Since b ∈ pcl(xA)
we have V ∩ xA 6= ∅. Let d ∈ V ∩ xA, then x−1d ∈ A∩UV ⊆ A∩W which
implies the nonempty set A ∩W . Thus c is a limit point of A. Since A is
closed we have c ∈ A. Now b = xc and so b ∈ xA. By the above argument,
pcl(xA) ⊆ xA and since xA ⊆ pcl(xA) is trivial we have xA = pcl(xA).
Hence xA is pre-closed. Proof of Ax is similar. �

Theorem 1. Let A be any subset of a p-topological group G. Then:
(i) pcl(xA) ⊆ xcl(A).
(ii) xpcl(A) ⊆ cl(xA).
(iii) xint(A) ⊆ pint(xA).
(iv) int(xA) ⊆ xpint(A).
(v) pcl(xcl(A)) ⊆ xcl(A).
(vi) xint(A) ⊆ pint(xint(A)).
(vii) (pcl(A))−1 ⊂ cl(A−1).

Proof. (i) Let b ∈ pcl(xA) and c = x−1b in G. Let W be an open neigh-
bourhood of c. By the pre2-continuity of the multiplication, there exist
pre-open sets U and V of x−1 and b, respectively such that UV ⊆ W .
Since b ∈ pcl(xA), there exists some d in G such that d ∈ (xA) ∩ V
which implies that d ∈ A ∩ UV ⊆ A ∩ W . We have the nonempty set
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A∩W which implies arbitrary open neighbourhood of c intersects A. Thus,
c ∈ cl(A)⇒ xc = b ∈ xcl(A).

(ii) Consider b ∈ xpcl(A), then b = xa for some a ∈ pcl(A). Let W be an
open neighboruhood of b. Since multiplication is pre-continuous, there exist
pre-open sets U and V of x and a such that UV ⊆ W . Since a ∈ pcl(A),
we have the nonempty set A ∩ V . This means that there exists an element
c ∈ A ∩ V which implies xc ∈ xA ∩ UV ⊆ (xA) ∩W . We have, (xA) ∩W
which is nonempty and so every open neighbourhood of b intersects xA.
Thus, b ∈ cl(xA).

(iii) Let b ∈ xint(A). Then b = xa for some a ∈ int(A). Now, by the
pre-continuity of multiplication, there exist pre-open sets U and V of x−1
and b such that UV ⊆ int(A). Then, x−1V ⊆ UV ⊆ int(A) ⊆ A which
implies that V ⊆ xA. Since V is a pre-open neighbourhood of b we have
b ∈ pint(xA). Thus, xint(A) ⊆ pint(xA).

(iv) Let b ∈ int(xA). Then b = xa for some a ∈ A. We know that
multiplication is pre-continuous. Then there exist pre-open neighbourhoods
U and V of x and a such that UV ⊆ int(A). Now, xV ⊆ UV ⊆ int(xA) ⊆
xA implies that xV ⊆ xpint(A). Since b = xa ∈ xV , we have b ∈ xpint(A).
Thus, int(xA) ⊆ xpint(A).

(v) Let b ∈ pcl(xcl(A)) and W be an open neighourhood of c where
c = x−1b. Now, by the pre-continuity of multiplication there exist pre-open
sets U and V of x−1 and b such that UV ⊆ W and so V ⊂ xW . Since
b ∈ pcl(xcl(A)), we have V ∩ (xcl(A)) 6= ∅ which implies xW ∩x(cl(A)) 6= ∅.
Thus, W ∩ cl(A) 6= ∅ and so some points of W are limit points of A. Since
W is an open neighbourhood of those points, we have W ∩ A 6= ∅. Hence
c ∈ cl(A) and so xc = b ∈ xcl(A).

(vi) Suppose b ∈ xint(A). Then b = xa for some a ∈ int(A). Since
multiplication is pre-continuous, there exist pre-open sets U and V of x−1
and b such that UV ⊆ int(A). Now, x−1V ⊆ UV ⊆ int(A) ⊆ pint(A)
implies that V ⊆ xint(A). Since V is a pre-open neighbourhood of b in G
such that b ∈ V and b ∈ pint(xint(A)). Thus, xint(A) ⊆ pint(xint(A)).

(vii) Let y ∈ [pcl(A)]−1 then y = z−1 for some z ∈ pcl(A). Let S be
any open neighbourhood of y in G then by pre-continuity of the inversion
mapping, there exists a pre-open set I of z in G such that I−1 ⊆ S. Since
z ∈ pcl(A) there exist some x ∈ G such that x ∈ A ∩ I which implies that
x−1 ∈ A−1 ∩ I−1 ⊆ A−1 ∩ S and so A−1 ∩ S 6= ∅. Hence, y ∈ cl(A−1) and
so (pcl(A))−1 ⊂ cl(A−1). �

Theorem 2. Let A and B be any subsets of a p-topological group G. Then
pcl(A)pcl(B) ⊆ cl(AB).

Proof. Let x ∈ pcl(A)pcl(B) and W be any open neighbourhood of x in G
where x = ab for some a ∈ pcl(A) and b ∈ pcl(B). By the pre-continuity
of the multiplication, there exist pre-open sets U and V in G containing a
and b, respectively such that UV ⊆ W . Since a ∈ pcl(A) and b ∈ pcl(B)
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there exist c ∈ A ∩ U and d ∈ B ∩ V . Now cd ∈ (AB) ∩ (UV ) ⊆ AB ∩W
which implies that AB ∩W 6= ∅. Hence x is a limit point of AB and so
x ∈ cl(AB). �

Theorem 3. Let G and H be p-topological groups with H is submaximal and
f be a pre-irresolute homomorphism at identity eG. Then f is pre-irresolute.

Proof. Let x ∈ G and V be a pre-open set inH containing f(x) = y. SinceH
is submaximal, by Lemma 2.6, V is open. By Proposition 3.8, left translation
of an open set is pre-open, we have y−1V is pre-open in H containing eH .
Since f is pre-irresolute at identity eG, there exists pre-open set U in G
containing eG such that f(U) ⊂ y−1V . Given that f is homomorphism and
so f(xU) = f(x)f(U) ⊆ V . Hence f is pre-irresolute. �

One may remind that, A bijective mapping f : X 7→ Y is p1-homeo-
morphism [4] if f is pre-continuous and f(A) is pre-open for every open
set A of X.

Theorem 4. Let G be a p-topological group and a ∈ G. Then for all x ∈ G
(i) The mappings λa(x) = ax and ρa(x) = xa are p-homeomorphism.
(ii) Inversion mapping is p-homeomorphism.

Proof. (i) Let x ∈ G and U1 be an open set containing ax. Since mul-
tiplication is pre-continuous, for each open neighbourhood U1 of ax there
exist pre-open neighbourhoods V1 and W1 of a and x such that V1W1 ⊆ U1

which implies aW1 ⊆ U1 and so λa(W1) ⊆ U1. Thus, λa is pre-continuous.
Let x ∈ G and U2 be an open neighbourhood of x. The element x can be
written as x = a−1ax. Since each left translation is pre-continuous, there
exist pre-open sets V2 and W2 of a−1 and ax such that V2W2 ⊆ U2. Hence
each left translation is p-homeomorphism. The proof of ρa(x) is similar.

(ii) Let I1 be an open neighbourhood of x−1. Since G is p-topological
group, for each open neighbourhood I1 of x−1 there exists pre-open neigh-
bourhood S1 of x such that S−11 ⊆ I1. Thus, inversion mapping is pre-
continuous. Let I2 be an open neighbourhood of x. Since inversion is
pre-continuous there exists pre-open neighbourhood S2 of x−1 such that
S−12 ⊆ I2. Hence inversion is p-homeomorphism. �

Definition 5. A topological spaceX is said to be a p-homogeneous space
if for any x, y ∈ X, there exists a p-homeomorphism f such that f(x) = y.

Theorem 5. E0very p-topological group G is p-homogeneous.

Proof. Let a, b ∈ G and c = ba−1. By Theorem 3.14, each translation
in p-topological group is p-homeomorphism. Thus we have λc(a) = ca =
ba−1a = b. Hence, G is p-homogeneous. �

The reason behind Theorem 3.16 is that, it is harder to decide, whether
a topology on a group G satisfies the required conditions of p-topological
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group or not by checking pre-continuity on each elements. In a homogeneous
space, all points behave in the same way. This observation suggests that,
at first we have to define a basis at the identity element e. Then move the
basis by means of translations to obtain a pre-open base at each element of
the group G.

Theorem 6. Let G be a p-topological group and H be a subgroup of G.
(i) If H contains a nonempty open set, then H is pre-open in G.
(ii) If H is open, then it is pre-closed.
(iii) If H is open, then it is a p-topological group.

Proof. (i) Suppose the subgroup H contains a nonempty open set U . By
Proposition 3.14, each translation is p-homeomorphism, so we have Ua is
pre-open in G for each a ∈ H. Therefore H = ∪a∈HUa is pre-open in G.

(ii) Let H be an open subgroup of G. Then γ = {Hai : ai ∈ G} is the
family of all right cosets of H which is disjoint pre-open covering of G. Thus,
G = ∪ai∈GHai and so Hai =

(
∪aj 6=ai∈GHaj

)c. Therefore every element of
γ is both pre-open and pre-closed. In particular, H = He is pre-closed in
G.

(iii) We have to show that for each x, y ∈ H and for each open neighbour-
hoodW of xy−1 in H, there exist pre-open sets U ⊆ H of x and V ⊆ H of y
such that UV −1 ⊆ W . Since G is p-topological group, there exist pre-open
sets A of x and B of y such that AB−1 ⊆ W . Since H is open, the sets
U = H ∩A and V = H ∩B are pre-open. Thus, UV −1 ⊆ AB−1 ⊆W . �

One may note that, by Lemma 2.3, For a family of topological spaces
{Xi}ni=1, a set A ⊆

∏n
i=1Xi is pre-open ⇔ A =

∏n
i Ai where Ai is pre-open

in each component Xi.

Theorem 7. Let G be a p-topological group and U an open base at the
identity e of G. Let Up be the pre-open base at e corresponding to U. Then:

(i) for every U ∈ U, there is an element V ∈ Up such that V 2 ⊂ U .
(ii) for every U ∈ U, there is an element V ∈ Up such that V −1 ⊂ U .
(iii) for every U ∈ U, and every x ∈ U there is V ∈ Up such that xV ⊂ U

(V x ⊂ U).
(iv) for every U ∈ U and x ∈ G, there is V ∈ Up such that xV x−1 ⊂ U .
(v) for U, V ∈ U, there is W ∈ Up such that W ⊂ U ∩ V .

Proof. (i) Let U ∈ U. Then U is an open neighbourhood of e. We know
that e = e.e. Since G is a p-topological group, the mapping (x, y) 7→ xy is
pre-continuous and so there exists pre-neighbourhoods P and Q of e such
that PQ is contained in U . Let V be the smallest pre-neighbourhood among
P and Q and so there exists V ∈ Up such that V 2 ⊂ U .

(ii) Let U ∈ U. Then U is an open neighbourhood of e. We know that the
inverse of e is itself. Since G is a p-topological group, the mapping x 7→ x−1
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is pre-continuous and so there exists a pre-neighbourhood V of e such that
V −1 ⊂ U .

(iii) Let U ∈ U and x ∈ U . We know that x = x.e (x = ex). Since G is a
p-topological group, the mapping (x, y) 7→ xy is pre-continuous and so there
exist pre-neighbourhoods P of x and Q of e such that PQ(QP ) is contained
in U . So for all x ∈ U , there is a V ∈ Up such that xV ⊂ U (V x ⊂ U).

(iv) Let U ∈ U and x ∈ G. We know that xex−1 = e. Since G is a
p-topological group, each translation is a p-homeomorphism of G and so the
map e 7→ xex−1 is a p-homomorphism of G. Hence for every U ∈ U and
x ∈ G, there is a V ∈ Up such that xV x−1 is contained in U .

(v) Since U is an open base at e, for each U, V ∈ U, there is W ∈ U such
that W ⊂ U ∩ V . Since W ∈ U we have W ∈ Up. �

Theorem 8. Let G be a p-topological group with base Be at the identity
element e such that for each U ∈ Be there is a symmetric open neighbourhood
V of e such that V 2 ⊂ U . Then G satisfies the axiom of p-regularity at e.

Proof. Let U be an open set containing the identity e. By assumption,
there is a symmetric open neighbourhood V of e such that V 2 ⊂ U . We
have to prove that pcl(V ) ⊂ U . Let x ∈ pcl(V ). The set xV is a pre-
open neighbourhood of x, which implies xV ∩ V 6= ∅. Therefore, there exist
points a, b ∈ V such that b = xa and so x = ba−1 ∈ V V −1 = V V ⊂ U .
Thus pcl(V ) ⊆ U . By Lemma 2.6 (ii), G satisfies p-regularity at e. �

4. p-irresolute topological groups and pre-connectedness

In this section, we discuss the independency of p-topological group from
other generalization concepts of topological group. We also explore pre-
connectedness properties of p-irresolute topological group.

Example 6. Consider the group G = (Zn,⊕) with the topology τ =
{∅, {0} ,Zn}.

– Suppose if we consider Zn as an open set, then Zn×Zn is a semi-open
set in Zn×Zn and its image under multiplication is Zn. Also, Zn is a
semi-open set in Zn and its image under inversion is Zn. Suppose if
we consider {0} as an open set, then {(0, 0), (1, n−1), (2, n−2), . . . ,
(n− 1, 1)} is a semi-open set in Zn ×Zn and its image under multi-
plication is {0}. Also, {0} is a semi - open set in Zn and its image
under inversion is {0}. Thus, (G, τ) is a S-topological group. But
(G, τ) is not a s-topological group, since the preimage of an open set
{0} under multiplication {(0, 0), (1, n− 1), (2, n− 2), . . . , (n− 1, 1)}
is not a product of two semi - open sets in G.

– Since τp = τ , to be a p-topological group multiplication need to be
continuous. But multiplication is not continuous in (G, τ). Thus,
(G, τ) is not a p-topological group.
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– (G, τ) is also an almost topological group since the only regular open
set in G is itself.

Theorem 9. Let G be a group and τ be a topology on G such that at least
one singleton is open in G then (G, τ) is an s-topological group if and only
if τ is discrete.

Proof. Let τ be discrete then each singleton is open. Since an open set is
semi-open, then each subset is semi-open and thus (G, τ) is s-topological
group. Conversely, suppose (G, τ) is s-topological group having one single-
ton as open. Since each open set is semi-open and (By Lemma 3.1, [10])
translation of a semi-open set is semi-open. Thus, each singleton is semi-
open and so each singleton has a nonempty interior and so each singleton is
open which implies that τ is discrete. �

By considering (G, τ) in Example 4.1, the above result need not be true
in S-topological and almost topological groups.

Example 7. Consider the group G = (Zn,⊕) with the topology τ =
{∅, {0} , {0, 1} , {0, 1, 2} , . . . ,Zn}.

– (G, τ) is an almost topological group, since the only regular open set
in τ is Zn we can take Zn itself as the open set required to obtain
almost continuity for both multiplication and inverse.

– (G, τ) is not a p-topological group, since {0} is open but its 0 trans-
lation 1⊕ {0} = {1} is not pre-open in G.

– The inverse image of an open set {0} is {(0, 0), (1, n−1), (2, n−2), . . . ,
(n−1, 1)} which is semi-open and inverse of {0} is {0}. Hence (G, τ)
is a S-topological group.

– Consider the open set {0} which is singleton, by Theorem 9, since τ
is not discrete, (G, τ) is not an s-topological group.

Example 8. Consider (G, τ) in Example 3.2, which is a p-topological group.
– Since the only regular open set in G is itself, we have (G, τ) is an
almost topological group.

– Since every s-topological group is S-topological we have (G, τ) is not
a s-topological group.

Definition 6. The pair (G, τ) is said to be p-irresolute topological
group if multiplication and inversion mappings are pre-irresolute.

A topological space X is said to be pre-connected [16] if X cannot be
written as the union of two disjoint nonempty pre-open sets.

Example 9. Consider X = {1, 2} with τ = {∅, {1} , X} which is connected.
Now, τ = τp and so connected implies pre-connected. Thus, (X, τ) is pre-
connected.
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Example 10. Consider R with usual topology which is connected. Here Q
and Qc are disjoint pre-open sets [Q ⊂ int(cl(Q)),Qc ⊂ int(cl(Qc))] whose
union is R. Hence R with usual topology is not pre-connected.

Theorem 10. Let G be a p-irresolute topological group and H be a subgroup
of G. If H, G/H are pre-connected, then G is pre-connected.

Proof. Let us assume that G = U ∪V where U and V are disjoint nonempty
pre-open sets. Since H is pre-connected, each coset of H is either a subset
of U or a subset of V . Thus, the relation

G/H = {xH : xH ⊂ U} ∪ {xH : xH ⊂ V }
= {xH : x ∈ U} ∪ {xH : x ∈ V }.

It expresses G/H as the union of disjoint nonempty pre-open sets which is a
contradiction to pre-connectedness of G/H. Thus, G is pre-connected. �

Theorem 11. Let G be a pre-connected p-irresolute topological group and e
be its identity element. If V is any pre-open neighbourhood of e, then G is
generated by V .

Proof. Let V be a pre-open neighbourhood of e. For each n ∈ N, we denote
V n by the set of elements of the form v1 · v2 · · · vn where each vi ∈ V . Let
U = ∪∞n=1V

n. Since G is pre-connected, suppose if we prove U is pre-open
and pre-closed, we have G = U and so G is generated by V . Since each V n

is pre-open and arbitrary union of pre-open sets is pre-open, U is pre-open.
Let us prove that U is pre-closed. Let x ∈ pcl(U). Since xV −1 is a pre-open
neighbourhood of x, it must intersect U . Thus, let y ∈ U ∩ xV −1. Since
y ∈ xV −1 then y = xv−1 for some v ∈ V . Since y ∈ U then y ∈ V n for
some n ∈ N which implies y = v1v2 · · · vn with each vi ∈ V . Now, we have
x = v1v2 · · · vnv and so x ∈ V n+1 ⊆ U . Hence U is pre-closed. Since G is
pre-connected and U is pre-open and pre-closed we have U = G. Thus, G
is generated by V . �

Theorem 12. If G is a pre-connected, p-irresolute topological group and N ,
a discrete invariant subgroup of G, then N ⊆ Z(G), where Z(G) denotes the
center of the group G.

Proof. Suppose the invariant subgroup N = {e}, then the result is trivial.
Suppose that the subgroup N is non-trivial. Let x ∈ N be an arbitrary
element of G distinct from the identity element e. Since the group N is
discrete, we can find an open neighbourhood U of x in G such that U ∩
N = {x}. Since every open set is pre-open and by definition of p-irresolute
topological group, there exist a pre-open neighbourhood V of e and a pre-
open neighbourhood V x of x in G such that (V x)V −1 ⊂ U . Let a ∈ V be
arbitrary. Since N is an invariant subgroup of G, we have aN = Na which
implies that ax ∈ Na and so axa−1 ∈ N . It is also clear that axa−1 ∈
V xV −1 ⊂ U . Therefore, axa−1 ∈ U ∩ N = {x} which implies axa−1 = x.
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Thus, ax = xa for each a ∈ V . Since the group G is pre-connected, V n with
n ∈ N covers the group G. Thus, every element b ∈ G can be written in the
form b = a1a2 · · · an where a1, a2, . . . , an ∈ V and n ∈ N. Since x commutes
with every element of V , we have

bx = a1a2 · · · anx
= a1a2 · · ·xan
...
= a1xa2 · · · an
= xa1a2 · · · an
= xb.

Hence the element x ∈ N is in the center of group G. Since x is an arbitrary
element of N , we proved that the center of G contains N . �

5. Conclusion

Topological groups mostly deals with an infinite set alone by an assump-
tion in separation. To overcome this, some generalizations of topological
groups are defined but they did not attain similar properties to topolog-
ical group. By defining p-topological group, we reach a space which has
properties close relevant to topological group.
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