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New properties of the time-scale fractional
operators with application to dynamic equations

Amin Benaissa Cherif, Fatima Zohra Ladrani

Abstract. We introduce new properties of Riemann–Liouville frac-
tional integral and derivative on time scales. As well as sufficient condi-
tions for existence and uniqueness of solution to an initial value problem
for a class differential equations on time scales.

1. Introduction

Fractional calculus was introduced and developed by Leibniz, Liouville,
Riemann, Letnikov, and Grünwald [15]. This branch was applied in physics,
natural and social sciences. In recent years, there has been much research
activity concerning the Fractional calculus of various dynamic equations.
The theory of time scales was introduced by Stefan Hilger in his PhD thesis
[22] in 1988, in order to unify and generalize continuous and discrete analysis.
For more detailed discussions on the time scale calculus we refer to the books
(Bohner and Peterson, 2001, 2003), see [17, 18].

In 2016, Benkhettou et al. [21], introduced a concept of fractional deriv-
ative of Riemann-Liouville on time scales. Several authors have obtained
important results about different subjects on time scales. See for instance
M. Rchid et al [19], A. Abdeljawad et al [25], T. Gülsen et al [26].

The main purpose of this paper is to be deduced some new properties of
the Riemann-Liouville fractional operator. As applications, we investigate
fon existence and uniqueness of solutions some classes fractional dynamic
equations.

The paper is organized as follows. In the next sections, we give some
definitions and facts of time scale calculus. In Section 3, we establish some
new properties of the Riemann-Liouville fractional operator. In Section 4,
we investigate some IVPs for some classes fractional dynamic equations. In
Section 5, we illustrate our results with examples.
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2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers
R. The jump operators σ, ρ : T→ R are defined by:

σ (t) := inf {s ∈ T : s > t} , ρ (t) := inf {s ∈ T : s > t} .
The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if
ρ (t) = t, ρ (t) < t, σ (t) = t, σ (t) > t, respectively. The graininess function
µ, for a time scale, is defined by µ (t) = σ (t)− t. For a function f : T→ R,
the function fσ denotes f ◦ σ. The ∆-derivative of f : T→ R at a right
dense point t is defined by

f∆ (t) = lim
s→t

f (t)− f (s)

t− s
.

If t is right scattered, then the ∆−derivative is defined by

f∆ (t) =
fσ (t)− f (t)

µ (t)
.

A function f : T→ R is said to be rd-continuous if it is continuous at each
right-dense point and if there exists a finite left limit in all left-dense points.
The set of rd-continuous functions f : T→ R is denoted by Crd (T,R).
In what follows, with C ([a, b]T ,R) we denote the Banach space of all con-
tinuous functions from [a, b]T into R, where [a, b]T = [a, b] ∩ T, with the
norm

‖x‖∞ := sup {|x (t)| : t ∈ [a, b]T} .
Definition 1. [17] Let [a, b]T denote a closed bounded interval in T. A func-
tion F : [a, b]T→ R is called a delta antiderivative function f : [a, b]T→ R
provided F is continuous on [a, b]T, delta differentiable on [a, b), and F∆ (t) =
f (t) , for all t ∈ [a, b). Then, we define the ∆-integral of f from a to b by∫ b

a
f (t) ∆t = F (b)− F (a) .

Proposition 1. [1] Let [a, b]T denote a closed bounded interval in T and f
is an integrable function on [a, b]T. Then∫ b

a
f (t) ∆t =

∫
[a,b]T

f (t) d t+
∑

t∈R∩[a,b)

µ (t) f (t) ,

where R = {t ∈ T : σ (t) > t} is at most countable.

Definition 2 (Fractional integral on time scales). [21] Suppose T is a time
scale, [a, b] is an interval of T, and h is an integrable function on [a, b]. Let
0 < α < 1. Then the (left) fractional integral of order α of h is defined by

T
aI

α
t h (t) =

∫ t

a

(t− s)α−1

Γ (α)
h (s) ∆s,

where Γ is the gamma function.
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Definition 3 (Riemann–Liouville fractional derivative on time scales [21]).
Let T be a time scale, t ∈ T, 0 < α < 1, and h : T→ R. The (left)
Riemann–Liouville fractional derivative of order α of h is defined by

T
aD

α
t h (t) =

(∫ t

a

(t− s)−α

Γ (1− α)
h (s) ∆s

)∆

=
(
T
aI

1−α
t h (t)

)∆
.

Proposition 2. If T = R, the Riemann–Liouville fractional integral satisfies

(1) T
aI

β
t ◦Ta Iαt =T

a I
β+α
t , for α > 0 and β > 0.

3. Main Results

In this section, we present some of the new properties of the time-scale
fractional operators.

The following counter example, to prove that the equality (1) is not always
satisfied on time scales.

Example 1 (Counter example). We take T = N, a = 1 and h : T→ R,
h (t) = 1. Let α > 0 and b > 0, then by Definition 2, we have

N
1 I

α
t h (t) =

1

Γ (α)

∫ t

1
(t− s)α−1 ∆s =

1

Γ (α)

s=t−1∑
s=1

(t− s)α−1

=
1

Γ (α)

[
(t− 1)α−1 + (t− 2)α−1 + · · ·+ 1α−1

]
=

1

Γ (α)

s=t−1∑
s=1

sα−1 := ϕ (t) .

By, the last equality, deduce

N
1 I

α+β
t h (t) =

1

Γ (α+ β)

s=t−1∑
s=1

sα+β−1.

On the other hand, we have(
T
1 I

β
t ◦T1 Iαt

)
h (t) = N

1 I
β
t ϕ (t) =

1

Γ (β)

∫ t

1
(t− s)β−1 ϕ (s) ∆s

=
1

Γ (β)

s=t−1∑
s=1

(t− s)β−1 ϕ (s) .

Thus,(
T
1 I

β
t ◦T1 Iαt

)
h (2) =

1

Γ (α) Γ (β)
and N

1 I
α+β
t h (2) =

1

Γ (α+ β)

and (
T
1 I

β
t ◦T1 Iαt

)
h (2) 6= T

1 I
α+β
t h (2) .
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Remark 1. By counter example 1, we conclude that T
aI

β
t ◦ T

aI
α
t = T

aI
β+α
t ,

for α > 0, β > 0 are not always correct on the time scales, which are
proposition 16 in [21]. If you suggest a counterexample to T

aD
α
t ◦ T

aI
α
t = Id

and T
aI

α
t ◦ T

aD
α
t = Id, α > 0, you leave to provide exact calculations in

Example 1. Example 1 is a for T
aI

β
t ◦ T

aI
α
t 6= T

aI
β+α
t only.

Before starting to introduce the properties of the time scale fractional
operators, we present a new generalization for the Beta function on time
scales.

Definition 4 (Beta function on time scales). We will define the function
BT
a,b (α, β) as follows

BT
a,b (α, β) =

∫ b

a
(s− a)β−1 (b− s)α−1 ∆s, for α > 0, β > 0.

Remark 2. If T = R, a = 0 and b = 1, then Definition 4 takes the form

BR
0,1 (α, β) = B (α, β) , for α > 0 and β > 0,

where B is the classical beta function.

Proposition 3. The function BT
a,b (α, β) satisfies the following inequality

BT
a,b (α, β) ≥ B (α, β) (b− a)α+β−1 , for α > 0 and β > 0.

Proof. By Proposition 1, we have

BT
a,b (α, β) ≥

∫ b

a
(s− a)β−1 (b− s)α−1 ds = BR

a,b (α, β) .

By setting s = a+ r (b− a) , r ∈ [0, 1], we obtain that

BT
a,b (α, β) ≥ (b− a)α+β−1

∫ b

a
rβ−1 (1− r)α−1 d s

= (b− a)α+β−1BR
0,1 (α, β)

= B (α, β) (b− a)α+β−1 .

The proof is complete. �

Example 2. If T = N, let a, b ∈ N, by Definition 4, we have

BN
a,b (α, β) =

s=b−1∑
s=a

(s− a)β−1 (b− s)α−1 , for α > 1, β > 1.

Definition 5. Let λ ∈ R and a ∈ R we define the time scales λT and T+ a
by:

λT : = {λt : t ∈ T} , T + a := {t+ a : t ∈ T} .

Definition 6. Let λ ∈ R, a ∈ R and let be the function v : T → λ (T + a)
defined by

vλ,a (s) = λ (s+ a) , for all s ∈ T.
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Remark 3. Let λ ∈ R and a ∈ R, such as λ 6= 0, then function vλ,a is
bijective and the inverse function v−1

λ,a given by

v−1
λ,a (s) =

s

λ
− a = v 1

λ
,−aλ (s) , for all s ∈ λ (T + a) .

Notation 1. We define the time scales Ta,b by:

Ta,b :=
1

b− a
(T−a) .

Proposition 4. The Beta function on time scales satisfies the following
useful property:

BT
a,b (α, β) = (b− a)β+α−1 β

Ta,b
0,1 (β, α) , for α > 0 and β > 0,

where

β
Ta,b
0,1 (β, α) =

∫ 1

0
rβ−1 (1− r)α−1 ∆Ta,br.

Proof. The function ua,b = v 1
b−a ,−a

is bijective and the inverse function u−1
a,b

given by
u−1
a,b (r) = a+ r (b− a) , for all r ∈ Ta,b.

By the chain rule [17], we see that

BT
a,b (α, β) = (b− a)

∫
ua,b

(b)

ua,b(a)

[
(s− a)β−1 (b− s)α−1

]
◦ u−1

a,b (r) ∆Ta,br

= (b− a)β+α−1
∫ 1

0
rβ−1 (1− r)α−1 ∆Ta,br

= (b− a)β+α−1 β
Ta,b
0,1 (β, α) .

The proof is complete. �

Proposition 5. For any function h integrable on [a, b]T, the Riemann–
Liouville ∆-fractional integral satisfies(

T
aI

β
t ◦Ta Iαt

)
(h (t)) =

1

Γ (α+ β)

∫ t

a
h (u) (t− u)β+α−1 β

Tu,t
0,1 (β, α)

B (α, β)
∆u,

for α > 0 and β > 0, where βTu,t0,1 (β, α) is defined as in Proposition 4.

Proof. By Definition 4, we get(
T
aI

α
t ◦Ta I

β
t

)
(h (t)) =T

a I
α
t

(
T
aI

β
t h (t)

)
=

1

Γ (α)

∫ t

a
(t− s)α−1

(
T
aI

β
t h (s)

)
∆s

=
1

Γ (α) Γ (β)

∫ t

a
(t− s)α−1

(∫ s

a
(s− u)β−1 h (u) ∆u

)
∆s.



128 New properties of the time-scale fractional operators. . .

From Fubini’s theorem, we interchange the order of integration to obtain(
T
aI

α
t ◦Ta I

β
t

)
(h (t)) =

1

Γ (α) Γ (β)

∫ t

a
h (u)

(∫ t

u
(s− u)β−1 (t− s)α−1 ∆s

)
∆u

=
1

Γ (α) Γ (β)

∫ t

a
h (u)BT

u,t (α, β) ∆u.

By Proposition 4, we obtain that(
T
aI

α
t ◦Ta I

β
t

)
(h (t)) =

1

Γ (α) Γ (β)

∫ t

a
h (u) (t− u)β+α−1 β

Tu,t
0,1 (β, α) ∆u

=
1

Γ (α+ β)

∫ t

a
h (u) (t− u)β+α−1 β

Tu,t
0,1 (β, α)

B (α, β)
∆u.

The proof is complete. �

Remark 4. If T = R, we have βTu,t0,1 (β, α) = B (α, β) , then Proposition 5
gives the classic result.

Corollary 1. For any function h integrable and positive on [a, b]T, the
Riemann–Liouville ∆-fractional integral satisfies(

T
aI

β
t ◦Ta Iαt

)
(h (t)) ≥T

a I
β+α
t (h (t)) ,

for α > 0 and β > 0.

Proof. Form Proposition 5 and Proposition 3, we have(
T
aI

β
t ◦Ta Iαt

)
(h (t)) =

1

Γ (α+ β)

∫ t

a
h (u) (t− u)β+α−1 β

Tu,t
0,1 (β, α)

B (α, β)
∆u

≥ 1

Γ (α+ β)

∫ t

a
h (u) (t− u)β+α−1 ∆u

= T
aI

β+α
t (h (t)) .

The proof is complete. �

Proposition 6. Let h : [a, b]T → R be a function ∆ is differentiable, such
that h∆ integrable on [a, b]T. Then

T
aI

α
t h

∆ (t) =
1

Γ (α− 1)

∫ t

a
(t− s)α−2 η (t, s)hσ (s) ∆s− h (a)

Γ (α)
(t− a)α−1 ,

for all α > 1, with η (t, s) =
∫ 1

0

[
1− hµ(s)

t−s

]α−2
dh.

Proof. By Definition 2, we have

T
aI

α
t h

∆ (t) =

∫ t

a

(t− s)α−1

Γ (α)
h∆ (s) ∆s

=

∫ t

a

(t− s)α−1

Γ (α)
[h (s)− h (t)]∆ ∆s
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=
1

Γ (α)

[
(t− s)α−1 [h (s)− h (t)]

]t
a

− 1

Γ (α)

∫ t

a

[
(t− s)α−1

]∆s

[hσ (s)− h (t)] ∆s

= − 1

Γ (α)

∫ t

a

[
(t− s)α−1

]∆s

[hσ (s)− h (t)] ∆s

− 1

Γ (α)
(t− a)α−1 [h (a)− h (t)] .

By Pötzsche’s chain rule, we have

− 1

Γ (α)

[
(t− s)α−1

]∆s

=
α− 1

Γ (α)

∫ 1

0
[(1− h) (t− s) + h (t− σ (s))]α−2 dh

=
(t− s)α−2

Γ (α− 1)

∫ 1

0

[
1− h+ h

t− σ (s)

t− s

]α−2

dh

=
(t− s)α−2

Γ (α− 1)

∫ 1

0

[
1− hµ (s)

t− s

]α−2

dh

=
(t− s)α−2

Γ (α− 1)
η (t, s) .

Then,

T
aI

α
t h

∆ (t) =
1

Γ (α− 1)

∫ t

a
(t− s)α−2 η (t, s)hσ (s) ∆s

+
h (t)

Γ (α)

∫ t

a

[
(t− s)α−1

]∆s

∆s− 1

Γ (α)
(t− a)α−1 [h (a)− h (t)]

=
1

Γ (α− 1)

∫ t

a
(t− s)α−2 η (t, s)hσ (s) ∆s− h (t)

Γ (α)
(t− a)α−1

− 1

Γ (α)
(t− a)α−1 [h (a)− h (t)]

=
1

Γ (α− 1)

∫ t

a
(t− s)α−2 η (t, s)hσ (s) ∆s− h (a)

Γ (α)
(t− a)α−1 .

The proof is complete. �

Corollary 2. Let h : [a, b]T → R be a function ∆ is differentiable, such that
h∆ integrable on [a, b]T, then∣∣∣TaIαt h∆ (t)

∣∣∣ ≤ ∣∣∣TaIα−1
t h (t)

∣∣∣+
|h (a)|
Γ (α)

(t− a)α−1 ,

for all α > 1.
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Proof. Form Proposition 6, we have∣∣∣TaIαt h∆ (t)
∣∣∣ ≤ 1

Γ (α− 1)

∫ t

a
(t− s)α−2 |hσ (s)|∆s+

|h (a)|
Γ (α)

(t− a)α−1

=
∣∣∣TaIα−1

t h (t)
∣∣∣+
|h (a)|
Γ (α)

(t− a)α−1 .

The proof is complete. �

We consider the following initial value problem:

(2)
{
λx∆ (t) +T

a D
α
t (p (t)x (t)) = f (t, x (t)) ,

λxσ (a) +
(T
aI

1−α
t

)σ
(p (a)x (a)) = 0,

for
{
t ∈ [σ (a) , b]T ,

0 < α < 1,

where T
aD

α
t is the Riemann–Liouville fractional derivative operator of order

α defined on T. The problem (2) will be studied under the following as-
sumptions f ∈ C ([σ (a) , b]T × R,R), p ∈ C ([σ (a) , b]T ,R), and λ ∈ R−{0}.
Our main results give necessary and sufficient conditions for the existence
and uniqueness of solution to the problem (2).

Lemma 1. Let α ∈ (0, 1) and f : [σ (a) , b]T × R → R. Function x ∈
C ([σ (a) , b]T ,R) is a solution of the problem (2) if and only if it is a solution
of the following integral equation:

x (t) =
1

λ

∫ t

σ(a)
f (s, x (s)) ∆s− 1

λΓ (1− α)

∫ t

a
(t− s)−α p (s)x (s) ∆s.

Proof. By Definition 2, we have

λx∆ (t) = f (t, x (t))− 1

Γ (1− α)

(∫ t

a
(t− s)−α p (s)x (s) ∆s

)∆

= f (t, x (t))−
(
T
aI

1−α
t p (t)x (t)

)∆

= f (t, x (t))−T
a D

α
t (p (t)x (t)) .

The proof is complete. �

Our first main result is based on the Banach fixed point theorem [2].

Theorem 1. Let α ∈ (0, 1) and f ∈ C ([σ (a) , b]T × R,R), there exists a
positive and continuous function r : [σ (a) , b]T → R, such that

(3)
|f (t, x)− f (t, y)| ≤ r (t) |x− y| .
for all x, y ∈ R and t ∈ [σ (a) , b]T .

If

(4)
(
T
aI

1
t |p (t)|+T

a I
1−α
t |p (t)|

)
< |λ| , for all t ∈ [σ (a) , b]T ,

then the problem (2) has a unique solution on [σ (a) , b]T.
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Proof. We transform the problem (2) into a fixed point problem. Consider
the operator L : C ([σ (a) , b]T ,R)→ C ([σ (a) , b]T ,R) defined by

(5) Lx (t) =
1

λ

∫ t

σ(a)

(
f (s, x (s))− 1

Γ (1− α)
(t− s)−α p (s)x (s)

)
∆s.

We need to prove that L has a fixed point, which is a unique solution of
(2) on [σ (a) , b]T . For that, we show that F is a contraction. Let x, y ∈
C ([σ (a) , b]T ,R). For t ∈ [σ (a) , b]T, we have

|Lx (t)− Ly (t)| ≤ 1

|λ|

∫ t

σ(a)
|f (s, x (s))− f (s, y (s))|∆s

+
1

Γ (1− α)

∫ t

a
(t− s)−α |p (s)| |x (s)− y (s)|∆s

≤ 1

|λ|

(
T
aI

1
t |p (t)|+ T

aI
1−α
t |p (t)|

)
‖x− y‖ .

By (4), L is a contraction and thus, by the contraction mapping theorem,
we deduce that L has a unique fixed point. This fixed point is the unique
solution of (2). �

Now, we give our second main result guarantees the existence of at least
one solution of the problem (2). This result is based on the Schauder’s fixed
point theorem [2].

Theorem 2. Let α ∈ (0, 1) and f ∈ C ([σ (a) , b]T × R,R), there are two
functions r ∈ C ([σ (a) , b]T , [0,∞)) and ϕ ∈ C (R, [0,∞)), such that

|f (t, x)| ≤ r (t)ϕ (x) , for all y ∈ R and t ∈ [σ (a) , b]T .

Then the problem (2) has a solution on [σ (a) , b]T.

Proof. We use Schauder’s fixed point theorem to prove that L defined by
(5) has a fixed point. The proof is given in several steps.

Step 1: L is continuous. Let xn be a sequence such that xn → x in
C ([σ (a) , b]T ,R). Then, for each t ∈ [σ (a) , b]T,

|Lxn (t)− Lx (t)| ≤ 1

|λ|

∫ t

σ(a)
|f (s, xn (s))− f (s, x (s))|∆s

+
1

Γ (1− α)

∫ t

a
(t− s)−α |p (s)| |xn (s)− x (s)|∆s

≤ b− σ (a)

|λ|
sup

t∈[σ(a),b]T

|f (s, xn (s))− f (s, x (s))|

+ sup
t∈[a,b]T

(
T
aI

1−α
t |p (t)|

)
‖xn − x‖
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=
b− σ (a)

|λ|
‖f (., xn (.))− f (s, x (.))‖

+
∥∥∥TaI1−α

t |p|
∥∥∥ ‖xn − x‖ .

Since f is a continuous function, we have Lxn → Lx in C ([σ (a) , b]T ,R).

Step 2: The map Lmaps bounded sets into bounded sets in C([σ(a), b]T, R).
Indeed, it is enough to show that for any ε there exists a positive constant
δ such that, for each x ∈ B (0, ε), we have Lx ∈ B (0, δ). By hypothesis, for
each t ∈ [σ (a) , b]T, we get

|Lx (t)| ≤ 1

|λ|

∫ t

σ(a)
r (s)ϕ (x (s)) ∆s

+
1

|λ|Γ (1− α)

∫ t

a
(t− s)−α |p (s)| |x (s)|∆s

≤ 1

|λ|
max

x∈[−ε,ε]
ϕ (x)

∫ b

σ(a)
r (s) ∆s+

ε

|λ|

∥∥∥TaI1−α
t |p|

∥∥∥ = δ.

Step 3: The map Lmaps bounded sets into equicontinuous sets of C([σ(a), b]T,
R). Let t1, t2 ∈ [σ (a) , b]T, t1 < t2 and B (0, ε) be a bounded set of
C ([σ (a) , b]T ,R). For all x ∈ B (0, ε), we get

|Lx (t2)− Lx (t1)| ≤ 1

|λ|

∫ t2

t1

r (s)ϕ (x (s)) ∆s

+
1

|λ|Γ (1− α)

∫ t2

a
(t2 − s)−α |p (s)| |x (s)|∆s

− 1

|λ|Γ (1− α)

∫ t1

a
(t1 − s)−α |p (s)| |x (s)|∆s

≤ 1

|λ|
max

x∈[−ε,ε]
ϕ (x)

∫ t2

t1

r (s) ∆s

+
ε ‖p‖

|λ|Γ (1− α)

∫ t2

t1

(t2 − s)−α ∆s

+
ε ‖p‖

|λ|Γ (1− α)

∫ t1

a

∣∣(t2 − s)−α − (t1 − s)−α
∣∣∆s.

On the other hand, by Proposition 1, we get∫ t2

t1

(t2 − s)−α ∆s ≤
∫ t2

t1

(t2 − s)−α d s+
∑

s∈[t1,t2)∩R

µ (s) (t2 − s)−α

≤ 1

1− α
(t2 − t1)1−α +

∑
s∈[t1,t2)∩R

(t2 − s)1−α
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≤ 1

1− α
(t2 − t1)1−α + (t2 − t1)2−α .

Similarly, we get ∫ t1

a

∣∣(t2 − s)−α − (t1 − s)−α
∣∣∆s

≤ 1

1− α

[
(t2 − t1)1−α + (t2 − a)1−α

− (t1 − a)1−α
]

+
∑

s∈[a,t1)∩R

(t1 − s)1−α

−
∑

s∈[a,t1)∩R

(t1 − s) (t2 − s)−α .

As t1 → t2, the right-hand side of the above inequality tends to zero. As
a consequence of Steps 1 to 3, together with the Arzela–Ascoli theorem,
we conclude that L : C ([σ (a) , b]T ,R) → C ([σ (a) , b]T ,R) is completely
continuous. As a consequence of Schauder’s fixed point theorem, we conclude
that L has a fixed point, which is solution of the problem (2). �

4. Conclusion

If we take λ = 0 in the problem (2), we get

(6)
{ T

aD
α
t (p (t)x (t)) = f (t, x (t)) , for t ∈ [σ (a) , b]T , α ∈ (0, 1) ,(T

aI
1−α
t

)σ
(p (a)x (a)) = 0.

We consider the following integral equation

(7) x (t) =
1

Γ (α)

∫ t

a
(t− s)α−1 p (s) f (s, x (s)) ∆s, for t ∈ [σ (a) , b]T .

Since T
aD

α
t ◦Ta Iαt = Id, and T

aI
α
t ◦Ta Dα

t = Id, for α > 0 are not always correct
defined on the time scales. Then, if x is a solution to the problem (6), it has
no permanent relationship the solution of integral equation (7).

5. Example

Remark 5. Let f : [a, b]T → R and a is right-scattered. By Definition 2,
we have(

T
aI

α
t h
)σ

(a) =

∫ σ(a)

a

(σ (a)− s)α−1

Γ (α)
h (s) ∆s =

(µ (a))α h (a)

Γ (α)
.

Example 3. Let T = hZ, a = h and b = mh, where h > 1 and m ∈ N.
Then σ (t) = t+ h and µ (t) = 0.

We consider the following initial value problem:

(8)

 λx∆ (t) +hZ
h D

1
2
t x (t) = t2x (t) , for t ∈ [h,mh]hZ ,

λx (2h) = −
√
h

π
h (h) .
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Here, λ > 0, α =1
2 , p (t) = 1 and f (t, x) = t2x, for t ∈ [h,mh]hZ and x ∈ R.

By Remark 5, we find that the problem (8) is a private case of the problem
(2) in T = hZ. Then (3) holds, and

hZ
h I1

t |p (t)|+ hZ
h I

1
2
t |p (t)| ≤ 3m

2
(h− 1) .

If 3m (h− 1) < 2λ, then (4) holds, Thus, the conditions of Theorem 1 are
satisfied, and we conclude that there is a function x ∈ C ([h,mh]hZ ,R) the
unique solution of (8).
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