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Fixed point theorems of generalized multi-valued
mappings in cone b-metric spaces

Mani Gunaseelan, Lakshmi Narayan Mishra,
Vishnu Narayan Mishra∗

Abstract. The aim of this paper is to establish fixed points for multi-
valued mappings, by adapting the ideas in [1] to the cone b-metric space
setting.

1. Introduction and preliminaries

The well-known Banach contraction principle and its several generaliza-
tion in the setting of metric spaces play a central role for solving many
problems of nonlinear analysis. For example, see [3, 10, 12, 20, 21]. Several
authors introduced some interesting concept, see [28, 29, 30, 31, 32]. In
[4], Bakhtin introduced b-metric spaces as a generalization of metric spaces.
He proved the contraction mapping principle in b-metric spaces that gener-
alized the famous contraction principle in metric spaces. Since then, sev-
eral papers have dealt with fixed point theory or the variational principle
for single-valued and multi-valued operators in b-metric spaces(see [6, 7, 11]
and reference therein). In recent investigations, the fixed point in non-convex
analysis, especially in an ordered normed space, occupies a prominent place
in many aspects (see [14, 15, 18, 22]). The authors define an ordering by
using a cone, which naturally induces a partial ordering in Banach spaces.
In 2007, Huang and Zhang [14] introduced the concept of cone metric spaces
as a generalization of metric spaces and establish some fixed point theorems
for contractive mappings in normal cone metric spaces. Subsequently, sev-
eral other authors [2, 16, 23, 25] studied the existence of fixed points and
common fixed points of mappings satisfying contractive type condition on a
normal cone metric space. Recently, Rezapour and Hamlbarani [23] omitted
the assumption of normality in cone metric space, which is a milestone in
developing fixed point theory in cone metric space. In 2011, Hussain and
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Shah [15] introduced the concept of cone b-metric space as a generalization
of b-metric space and cone metric spaces. They established some topologi-
cal properties in such space and improved some recent results about KKM
mappings in the setting of a cone b-metric space. In 2020, Wasfi Shatanawi,
Zoran D. Mitrović, Nawab Hussain and Stojan Radenović [33] proved Gener-
alized Hardy–Rogers Type α-Admissible Mappings in Cone b-Metric Spaces
over Banach Algebras. Krishnakumar and Marudai [1] proved the following
fixed point theorems of multi-valued mappings in cone metric spaces.

Theorem 1. Let (X, d) be a complete cone metric space and the mapping
T : X → CB(X) be multi-valued map satisfying for each x, y ∈ X,

H(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)] + b[d(x, Ty) + d(Tx, y)]

for all x, y ∈ X, and a+ b < 1
2 , a, b ∈ [0, 12). Then T has a fixed point in X.

Theorem 2. Let (X, d) be a complete cone metric space and the mapping
T : X → CB(X) be multi-valued map satisfy the condition,

H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty)}

for all x, y ∈ X, and r ∈ [0, 1). Then T has a fixed point in X.

Theorem 3. Let (X, d) be a complete cone metric space and P a normal
cone with normal constant K. Suppose the mapping T : X → CB(X) be
multi valued mapping satisfying the condition

H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

for all x, y ∈ X, and r ∈ [0, 1). Then T has a unique fixed point in X.

Definition 1 ([14]). Let E be a real Banach space. A subset P of E is
called a cone whenever the following conditions hold:
(C1) P is closed, nonempty and P 6= {0};
(C2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;

(C3) P ∩ (−P ) = {0}.
Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and if y − x ∈ P . We shall write x < y to indicate that x ≤ y
but x 6= y, while x � y will stand for y − x ∈ P 0, where P 0 stands for the
interior of P . If P 0 6= ∅ then P is called a solid cone(see[23]).
There exist two kinds of cone-normal(with the normal constant K) and non-
normal ones [12].
Let E be a real Banach space, P ⊂ E a cone and ≤ partial ordering defined
by P . Then P is called normal if there is a number K > 0 such that for all
x, y ∈ P ,

(1) 0 ≤ x ≤ y imply ‖x‖ ≤ K‖y‖,
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or equivalently, if (∀n)xn ≤ yn ≤ zn and

(2) lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x.

The least positive number K satisfying (1) is called the normal constant of
P .
The cone P is called regular if every increasing sequence which is bounded
above is convergent and every decreasing sequence which is bounded below
is convergent.

Example 1 (see [24]). Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ on

P = {x ∈ E : x(t) ≥ 0}. This cone is not normal. Consider, for example,
xn(t) = tn

n and yn(t) = 1
n . Then 0 ≤ xn ≤ yn, and limn→∞ yn = 0, but

‖xn‖ = maxt∈[0,1] | t
n

n | + maxt∈[0,1] |tn−1| = 1
n + 1 > 1; hence xn does not

converge to zero. It follows by (2) that P is a non-normal cone.

Definition 2 ([14, 26]). Let X be a nonempty set. Suppose that the map-
ping d : X ×X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = 0 if and only if
x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [14] orK-metric [26] on X and (X, d) is called
a cone metric [14] or K-metric space [26].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where E = R and
P = [0,+∞).

Example 2 (see [14]). Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},
X = R and d : X ×X → E defined by d(x, y) = (|x − y|, α|x − y|), where
α ≥ 0 is a constant. Then (X, d) is a cone metric space with normal cone P
where K = 1.

Example 3 (see [22]). Let E = `2, P = {{xn}n≥ ∈ E : xn ≥ 0foralln},
(X, ρ) a metric space, and d : X×X → E defined by d(x, y) = {ρ(x, y)�2n}n≥1.
Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains
the class of metric spaces.

Definition 3 ([15]). Let X be a nonempty set and s ≥ 1 be a given real
number. A mapping d : X ×X → E is said to be cone b-metric if and only
if, for all x, y, z ∈ X, the following conditions are satisfied:

(i) 0 ≤ d(x, y) with x 6= y and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a cone b-metric space.
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Remark 1. The class of cone b-metric spaces is larger than the class of cone
metric space since any cone metric spaces must be a cone b-metric spaces.
Therefore, it is obvious that cone b-metric spaces generalize b-metric spaces
and cone metric spaces.

We give some examples, which show that introducing a cone b-metric
space instead of a cone metric space is meaningful since there exist cone
b-metric space which are not cone metric space.

Example 4 (see [13]). Let E = R2, P = {(x, y) ∈ E : x ≥ 0, y ≥ 0} ⊂ E,
X = R and d : X ×X → E defined by d(x, y) = (|x− y|p, α|x− y|p), where
α ≥ 0 and p > 1 are two constants. Then (X, d) is a cone b-metric space
with the coefficient s = 2p > 1, but not a cone metric space.

Example 5 (see [13]). Let X = `p with 0 < p < 1, where `p = {{xn} ⊂
R :

∞∑
n=1
|xn|p <∞}. Let d : X×X → R+ defined d(x, y) = (

∞∑
n=1
|xn−yn|p)

1
p ,

where x = {xn}, y = {yn} ∈ `p. Then (X, d) is a cone b-metric space with
the coefficient s = 2p > 1, but not a cone metric space.

Example 6 (see [13]). Let X = {1, 2, 3, 4}, E = R2, P = {(x, y) ∈ E : x ≥
0, y ≥ 0}. Define d : X ×X → E by

(3) d(x, y) =

{
(|x− y|−1, |x− y|−1), if x 6= y,

0, if x = y.

Then (X, d) is a cone b-metric space with the coefficient s = 6
5 > 1. But it

is not a cone metric space since the triangle inequality is not satisfied,

d(1, 2) > d(1, 4) + d(4, 2), d(3, 4) > d(3, 1) + d(1, 4).

Definition 4 ([14]). Let (X, d) be a cone b-metric space, x ∈ X and {xn}
be a sequence in X. Then:

(i) {xn} is a Cauchy sequence whenever, if for every c ∈ E with 0 �
c, then there is natural number N such that for all n,m ≥ N ,
d(xn, xm)� c;

(ii) {xn} converges to x whenever, for every c ∈ E with 0 � c, then
there is a natural number N such that for all n ≥ N , d(xn, x) � c.
We denote this by lim

n→∞
xn = x or xn → x as n→∞.

(iii) (X, d) is a complete cone b-metric space if every Cauchy sequence is
convergent.

In the following (X, d) will stand for a cone b-metric space with respect
to a cone P with P 0 6= ∅ in a real Banach space E and ≤ is partial ordering
in E with respect to P . The following lemmas are often used(in particular
while dealing with cone metric spaces in which the cone need not be normal).
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Lemma 1 ([18]). Let P be a cone and {an} be a sequence in E. If c ∈ intP
and 0 ≤ an → 0 as n→∞, then there exists N such that for all n > N , we
have an � c.

Lemma 2 ([18]). Let x, y, z ∈ E, if x ≤ y and y � z, then x� z.

Lemma 3 ([15]). Let P be a cone and if 0 ≤ u� c for each c ∈ intP , then
u = 0.

Lemma 4 ([9]). Let P be a cone, if u ∈ P and u ≤ ku for some 0 ≤ k < 1,
then u = 0.

Lemma 5 ([18]). Let P be a cone and a ≤ b+ c for each c ∈ intP , a ≤ b.

Let (X, d) be a metric space. We denote by CB(X) the family of nonempty
closed bounded subset of X. Let H be the Hausdorff distance on CB(X).
That is, for A,B ∈ CB(X),

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(a,B) = inf{d(a, b) : b ∈ B} is the distance from the point a to the
subset B. An element x ∈ X is said to be a fixed point of a multi-valued
mapping T : X → 2X if x ∈ T (X).

In this paper, we study the existence of fixed points for multi-valued
mappings by adapting the ideas in [1] to the cone b-metric spaces setting.

2. Main results

Theorem 4. Let (X, d) be a complete cone b-metric space with the coefficient
s ≥ 1 and the mapping T : X → CB(X) be multi-valued map satisfying for
each x, y ∈ X

H(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)] + b[d(x, Ty) + d(Tx, y)]

for all x, y ∈ X, and a, b ∈ [0, 1) are constants such that 2a+2bs < 1. Then
T has a fixed point in X.

Proof. For every x0 ∈ X and n ≥ 1, x1 ∈ Tx0 and xn+1 ∈ Txn. We have

d(xn+1, xn) ≤ H(Txn, Txn−1)

≤ a[d(xn, Txn) + d(xn−1, Txn−1)]

+ b[d(xn, Txn−1) + d(Txn, xn−1)]

≤ a[d(xn, xn+1) + d(xn−1, xn)] + b[d(xn, xn) + d(xn+1, xn−1)]

≤ a[d(xn, xn+1) + d(xn−1, xn)] + b[d(xn+1, xn−1)]

≤ a[d(xn, xn+1) + d(xn−1, xn)]

+ bs[d(xn+1, xn) + d(xn, xn−1)]

≤ (a+ bs)[d(xn, xn+1) + d(xn−1, xn)],

(4) d(xn+1, xn) ≤ Ld(xn, xn−1),
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where L = a+bs
1−(a+bs) . As 2a + 2bs < 1, we obtain that L < 1. Similarly, we

obtain

d(xn, xn+1) ≤ Ld(xn−1, xn−2).(5)

Using (5) in (4), we get

d(xn+1, xn) ≤ L2d(xn, xn−1).

Continuing this process, we obtain

d(xn+1, xn) ≤ Lnd(x1, x0).

For any m ≥ 1, p ≥ 1, we have

d(xm, xm+p) ≤ s[d(xm, xm+1) + d(xm+1, xm+p)]

= sd(xm, xm+1) + sd(xm+1, xm+p)

≤ sd(xm, xm+1) + s2[d(xm+1, xm+2) + d(xm+2, xm+p)]

= sd(xm, xm+1) + s2d(xm+1, xm+2) + s2d(xm+2, xm+p)

≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + s3d(xm+2, xm+3)

+ · · ·+ sp−1d(xm+p−2, xm+p−1) + sp−1d(xm+p−1, xm+p)

≤ sLmd(x1, x0) + s2Lm+1d(x1, x0) + s3Lm+2d(x1, x0)

+ · · ·+ sp−1Lm+p−2d(x1, x0) + spLm+p−1d(x1, x0)

= sLm[1 + sL+ s2L2 + s3L3 + · · ·+ (sL)p−1]d(x1, x0)

≤ (
sLm

1− sL
)d(x1, x0).

Let 0 � r be given. Note that ( sLm

1−sL)d(x1, x0) → 0 as m → ∞ for any p.
Making full use of ([13], Lemma 1.8), we find m0 ∈ N such that(

sLm

1− sL

)
d(x1, x0)� r

for each m > m0. Thus,

d(xm, xm+p) ≤
(

sLm

1− sL

)
d(x1, x0)� r

for all m ≥ 1, p ≥ 1. Therefore,{xn} is a Cauchy sequence in (X, d).
Since (X, d) is a complete cone b-metric space, there exists z ∈ X such that
xn → z as n → ∞. Take n0 ∈ N such that d(xn, z) � r 1−as−bss(1+b) for all
n > n0. Hence,

d(z, Tz) ≤ s[d(z, xn+1) + d(xn+1, T z)]

≤ sd(z, Txn) + sH(Txn, T z)

≤ sd(z, xn+1) + s[a(d(xn, Txn) + d(z, Tz))

+ b(d(xn, T z) + d(Txn, z))]
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≤ sd(z, xn+1) + s[a(d(xn, xn+1)

+ d(z, T (z))) + b(d(xn, T z) + d(xn+1, z))].

This implies that

d(z, Tz) ≤
(

s(1 + b)

1− as− bs

)
d(xn, z)� r,

for n > n0. Then, by Lemma (1.10), we deduce that d(Tz, z) = 0, that is
Tz = z. �

Example 7. Let X = [0, 1] endowed with the standard order and E =
C1
R[0, 1] with ‖u‖ = ‖u‖∞ + ‖u′‖∞, u ∈ E and let P = {u ∈ E : u(t) ≥

0 on [0, 1]}. It is well known that this cone is solid, but it is not normal.
Define a cone b-metric d : X ×X → E by d(x, y)(t) = |x − y|2 expt. Then
(X, d) is a complete cone b-metric space with the coefficient s = 2. Define
T : X → CB(X) by

(6) T (x) =

{
{13 ,

2
3}, if 0 ≤ x < 1,

{13}, if x = 1.

Let x, y ∈ X. Without loss of generality, take x ≤ y.
If x = y or x, y < 1, then Tx = Ty. Hence H(Tx, Ty) = 0.
If x < 1 and y = 1, then

H(Tx, Ty) =
1

9
expt

≤ 4

27
expt

=
1

3
.
4

9
expt

=
1

3
(d(x, Tx) + d(y, Ty))

≤ b(d(x, Tx) + d(y, Ty))

where b = 1
3 ∈ [0, 1) and a = 0. So all the conditions of Theorem 2.1 are

satisfied. Moreover, 1
3 and 2

3 are the two fixed points of T .

Corollary 1. Let (X, d) be a complete cone b-metric space with the coeffi-
cient s ≥ 1 and the mapping T : X → CB(X) be multi valued map satisfies
condition

d(Tx, Ty) ≤ b(d(x, Ty) + d(x, Ty))

for all x, y ∈ X, where b ∈ [0, 1
2s) is a constant. Then T has a fixed point in

X.

Proof. The proof of the corollary immediately follows by putting a = 0 in
the previous theorem. �
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Corollary 2. Let (X, d) be a complete cone b-metric space with the coeffi-
cient s ≥ 1 and the mapping T : X → CB(X) be multi valued map satisfies
condition

d(Tx, Ty) ≤ a(d(x, Tx) + d(y, Ty))

for all x, y ∈ X, where a ∈ [0, 1
2s) is a constant. Then T has a fixed point in

X.

Proof. The proof of the corollary immediately follows by putting b = 0 in
the previous theorem. �

Theorem 5. Let (X, d) be a complete cone b-metric space with the coefficient
s ≥ 1 and the mapping T : X → CB(X) be multi valued map satisfy the
condition, H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty)} for all x, y ∈ X,
and r ∈ [0, 1). Then T has a unique fixed point in X.

Proof. For every x0 ∈ X and n ≥ 1, x1 ∈ Tx0 and xn+1 ∈ Txn
d(xn+1, xn) ≤ H(Txn, Txn−1)

≤ rmax{d(xn, xn−1), d(xn, Txn), d(xn−1, Txn−1)}
≤ rmax{d(xn, xn−1), d(xn, xn+1), d(xn−1, xn)}
≤ rd(xn−1, xn)
≤ rnd(x1, x0)

For any m ≥ 1, p ≥ 1, we have

d(xm, xm+p) ≤ s[d(xm, xm+1) + d(xm+1, xm+p)]

= sd(xm, xm+1) + sd(xm+1, xm+p)

≤ sd(xm, xm+1) + s2[d(xm+1, xm+2) + d(xm+2, xm+p)]

= sd(xm, xm+1) + s2d(xm+1, xm+2) + s2d(xm+2, xm+p)

≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + s3d(xm+2, xm+3)

+ · · ·+ sp−1d(xm+p−2, xm+p−1) + sp−1d(xm+p−1, xm+p)

≤ srmd(x1, x0) + s2rm+1d(x1, x0) + s3rm+2d(x1, x0)

+ · · ·+ sp−1rm+p−2d(x1, x0) + sprm+p−1d(x1, x0)

= srm[1 + sr + s2r2 + s3r3 + · · ·+ (sr)p−1]d(x1, x0)

≤
(

srm

1− sr

)
d(x1, x0).

Let 0� r be given. Note that ( srm

1−sr )d(x1, x0)→ 0 as m→∞ for any p.
Making full use of ([13], Lemma 1.8), we find m0 ∈ N such that(

srm

1− sr

)
d(x1, x0)� c
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for each m > m0. Thus,

d(xm, xm+p) ≤
(

srm

1− sr

)
d(x1, x0)� c

for all m ≥ 1, p ≥ 1. Therefore, {xn} is a Cauchy sequence in (X, d).
Since (X, d) is a complete cone b-metric space, there exists z ∈ X such that
xn → z as n → ∞. Take n0 ∈ N such that d(xn, z) � c1−ss for all n > n0.
Hence,

d(z, Tz) ≤ s[d(z, xn+1) + d(xn+1, T z)]

≤ sd(z, Txn) + sH(Txn, T z)

≤ sd(z, xn+1) + s[max{d(xn, z), d(xn, Txn), d(z, Tz)}]
≤ sd(z, xn+1) + s[max{0, d(xn, xn+1), d(z, Tz)}]
≤ sd(z, xn+1) + s[max{0, 0, d(z, Tz)}]
≤ sd(z, xn) + sd(z, Tz).

This implies that

d(z, Tz) ≤
(

s

1− s

)
d(xn, z)� c,

for n > n0. Then, by Lemma (1.10), we deduce that d(Tz, z) = 0,
that is Tz = z.
Assume that there is another fixed point q in X such that Tq = q.

∴ d(z, q) ≤ H(Tz, Tq)

≤ rmax{d(z, q), d(z, Tz), d(q, T q), d(z, T q), d(q, Tz)}
≤ rmax{d(z, q), d(z, z), d(q, q), d(z, q), d(q, z)}
≤ rd(z, q)

This is contradiction and hence T has a unique fixed point in X. �

Example 8. Let X = [0,∞) endowed with the standard order and E =
C1
R[0, 1] with ‖u‖ = ‖u‖∞ + ‖u′‖∞, u ∈ E and let P = {u ∈ E : u(t) ≥

0on[0, 1]}. It is well known that this cone is solid, but it is not normal.
Define a cone metric d : X × X → E by d(x, y)(t) = |x − y|2 expt. Then
(X, d) is a complete cone b-metric space with the coefficient s = 2. Define
T : X → CB(X) by

(7) T (x) =

{
{23}, if 0 ≤ x < 1,

{13}, if x > 1.

Let x, y ∈ X. Without loss of generality, take x ≤ y.
If x = y or x, y < 1, then Tx = Ty. Hence H(Tx, Ty) = 0.
If x < 1 and y = 1, then
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H(Tx, Ty) =
1

9
expt

≤ 4

27
expt

=
1

3
.
4

9
expt

=
1

3
d(y, Ty)

≤ rmax{d(x, y), d(x, Tx), d(y, Ty)}

where r = 1
3 ∈ [0, 1). So all the conditions of Theorem 2.5 are satisfied.

Moreover, 0 is a unique fixed point of T .

Corollary 3. Let(X, d) be a complete cone b-metric space with the coefficient
s ≥ 1 and the mapping T : X → CB(X) be multi valued mapping satisfy the
condition

(8) H(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X where k ∈ [0, 1
2s) is a constant. Then T has a unique fixed

point in X.

Proof. The proof of the corollary immediately follows by taking d(x, y) as
maximum value in the previous theorem. �

We prove the above theorems in the setting of P is a normal cone with
normal constant K.

Theorem 6. Let (X, d) be a complete cone b-metric space with the coeffi-
cient s ≥ 1 and P a normal cone with normal constant K. Suppose the
mapping T : X → CB(X) be multi valued mapping satisfying the condi-
tion, H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} for
all x, y ∈ X, and r ∈ [0, 1), 2sr < 1. Then T has a unique fixed point in X.

Proof. For every x0 ∈ X and n ≥ 1, x1 ∈ Tx0 and xn+1 ∈ Txn,

d(xn+1, xn) ≤ H(Txn, Txn−1)

≤ rmax{d(xn, xn−1), d(xn, Txn), d(xn−1, Txn−1),
d(xn, Txn−1), d(xn−1, Txn)}

≤ rmax{d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), d(xn, xn),

d(xn+1, xn−1)}
≤ rmax{d(xn−1, xn), d(xn, xn+1), d(xn+1, xn−1)}.

Case (i)
If d(xn+1, xn) ≤ rd(xn, xn−1) then we get, d(xn+1, xn) ≤ rnd(x1, x0).
For any m ≥ 1, p ≥ 1, we have
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d(xm, xm+p) ≤ s[d(xm, xm+1) + d(xm+1, xm+p)]

= sd(xm, xm+1) + sd(xm+1, xm+p)

≤ sd(xm, xm+1) + s2[d(xm+1, xm+2) + d(xm+2, xm+p)]

= sd(xm, xm+1) + s2d(xm+1, xm+2) + s2d(xm+2, xm+p)

≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + s3d(xm+2, xm+3)

+ · · ·+ sp−1d(xm+p−2, xm+p−1) + sp−1d(xm+p−1, xm+p)

≤ srmd(x1, x0) + s2rm+1d(x1, x0) + s3rm+2d(x1, x0)

+ · · ·+ sp−1rm+p−2d(x1, x0) + sprm+p−1d(x1, x0)

= srm[1 + sr + s2r2 + s3r3 + · · ·+ (sr)p−1]d(x1, x0)

≤
(

srm

1− sr

)
d(x1, x0).

We get ‖d(xm, xm+p)‖ ≤ K( srm

1−sr )‖d(x1, x0)‖.d(xm, xm+p)→ 0 as p,m→
∞. Hence {xm} is a Cauchy sequence. By the completeness of X, there is
z ∈ X such that xm → z as m→∞.

d(z, Tz) ≤ s[d(z, xn+1) + d(xn+1, T z)]

≤ sd(z, Txn) + sH(Txn, T z)

≤ sd(z, xn+1) + s[rmax{d(xn, z), d(xn, Txn),
d(z, Tz), d(xn, T z), d(z, Txn)}]

≤ sd(z, xn+1) + s[rmax{0, d(xn, xn+1), d(z, Tz),

d(xn, T z), d(z, xn+1)}]
≤ sd(z, xn+1) + s[rmax{0, 0, d(z, Tz)}]
≤ sd(z, xn) + srd(z, Tz)

≤ srd(z, Tz),
which implies that d(Tz, z) = 0. Hence z ∈ Tz.
Case (ii)
If d(xn+1, xn) ≤ rd(xn+1, xn−1) then we get

d(xn+1, xn) ≤ rs[d(xn+1, xn) + d(xn, xn−1)]

≤ sr

1− sr
d(xn, xn−1)

≤ hd(xn, xn−1), where h =
sr

1− sr
< 1.

For any m ≥ 1, p ≥ 1, we have

d(xm, xm+p) ≤ s[d(xm, xm+1) + d(xm+1, xm+p)]

= sd(xm, xm+1) + sd(xm+1, xm+p)

≤ sd(xm, xm+1) + s2[d(xm+1, xm+2) + d(xm+2, xm+p)]
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= sd(xm, xm+1) + s2d(xm+1, xm+2) + s2d(xm+2, xm+p)

≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + s3d(xm+2, xm+3)

+ · · ·+ sp−1d(xm+p−2, xm+p−1) + sp−1d(xm+p−1, xm+p)

≤ shmd(x1, x0) + s2hm+1d(x1, x0) + s3hm+2d(x1, x0)

+ · · ·+ sp−1hm+p−2d(x1, x0) + sphm+p−1d(x1, x0)

= shm[1 + sh+ s2h2 + s3h3 + · · ·+ (sh)p−1]d(x1, x0)

≤
(

shm

1− sh

)
d(x1, x0).

We get ‖d(xm, xm + p)‖ ≤ K( shm

1−sh)‖d(x1, x0)‖. d(xm, xm + p) → 0 as
p,m → ∞. Hence {xm} is a Cauchy sequence. By the completeness of X,
there is z ∈ X such that xm → z as m→∞.

d(z, Tz) ≤ s[d(z, xn+1) + d(xn+1, T z)]

≤ sd(z, Txn) + sH(Txn, T z)

≤ sd(z, xn+1) + s[rmax{d(xn, z), d(xn, Txn), d(z, Tz),
d(xn, T z), d(z, Txn)}]

≤ sd(z, xn+1) + s[rmax{0, d(xn, xn+1), d(z, Tz), d(xn, T z),

d(z, xn+1)}]
≤ sd(z, xn+1) + s[rmax{0, 0, d(z, Tz)}]
≤ sd(z, xn) + srd(z, Tz)

≤ srd(z, Tz)
d(Tz, z) = 0.

Hence z ∈ Tz.
Assume that there is another fixed point q in X such that Tq = q.

∴ d(z, q) ≤ H(Tz, Tq)

≤ rmax{d(z, q), d(z, Tz), d(q, T q), d(z, T q), d(q, Tz)}
≤ rmax{d(z, q), d(z, z), d(q, q), d(z, q), d(q, z)}
≤ rd(z, q)

This is contradiction and hence T has a unique fixed point in X. �

Example 9. Let X = [0, 1], E = R2. Take P = {(x, y) ∈ E : x, y ≥ 0}. We
define d : X ×X → E as d(x, y) = (|x− y|2, |x− y|2) for all x, y ∈ X.
Then (X, d) is a complete cone b-metric. Let us define T : X → CB(X) as

(9) T (x) =

{
{25}, if 0 ≤ x < 1,

{15}, if x = 1.

Let x, y ∈ X. Without loss of generality, take x ≤ y.
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If x = y or x, y < 1, then Tx = Ty. Hence H(Tx, Ty) = 0.
If x < 1 and y = 1, then

H(Tx, Ty) = ( 1
25 ,

1
25) ≤ ( 16

125 ,
16
125) =

1
5(

1
25 ,

1
25) =

1
5d(y, Ty)

≤ rmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

where r = 1
5 ∈ [0, 1). So all the conditions of Theorem 2.8 are satisfied.

Moreover, 2
5 is a unique fixed point of T .

Corollary 4. Let (X, d) be a complete cone b-metric space with the co-
efficient s ≥ 1 and P a normal cone with normal constant K. Suppose
the mapping T : X → CB(X) be multi-valued mapping satisfies the condi-
tion, H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty)} for all x, y ∈ X, and
r ∈ [0, 1). Then T has a unique fixed point in X.

Proof. The proof of the corollary immediately follows since

max{d(x, y), d(x, Tx), d(y, Ty)} ≤
max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. �
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