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New inequalities for F -convex functions
pertaining generalized fractional integrals

Hüseyı̇n Budak, Pınar Kösem, Artion Kashuri

Abstract. In this paper, the authors, utilizing F -convex functions
which are defined by B. Samet, establish some new Hermite-Hadamard
type inequalities via generalized fractional integrals. Some special cases
of our main results recaptured the well-known earlier works.

1. Introduction

Let f : I ⊆ R→ R be a convex function on the interval I of real numbers
and a, b ∈ I with a < b. If f is a convex function then the following double
inequality, which is well known in the literature as the Hermite–Hadamard
inequality, holds [17]:

(1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f (a) + f (b)

2
.

Both inequalities in (1) hold in the reversed direction if f is concave.
Over the last decade, this classical double inequality has been improved

and generalized in a number of ways, see [5, 7, 8, 13, 18], [23]–[25] and
the references therein. Also, many types of convexities have been defined,
such as quasi–convex in [6], pseudo–convex in [14], strongly convex in [20],
ε–convex in [11], s–convex in [10], h–convex in [28], etc. Recently, Samet
in [21], has defined a new concept of convexity that depends on a certain
function satisfying some axioms, that generalizes different types of convexity.

Recall the family F of mappings F : R× R× R× [0, 1]→ R satisfying the
following axioms:
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118 New inequalities for F -convex functions

(A1) If ei ∈ L1(0, 1), i = 1, 2, 3, then for every λ ∈ [0, 1] , we have
1∫

0

F (e1(t), e2(t), e3(t), λ)dt = F

 1∫
0

e1(t)dt,

1∫
0

e2(t)dt,

1∫
0

e3(t)dt, λ

 ;

(A2) For every u ∈ L1 (0, 1) , w ∈ L∞(0, 1) and (z1, z2) ∈ R2, we have
1∫

0

F (w(t)u(t), w(t)z1, w(t)z2, t)dt = TF,w

 1∫
0

w(t)u(t)dt, z1, z2

 ,

where TF,w : R× R× R → R is a function that depends on (F,w),
and it is nondecreasing with respect to the first variable;

(A3) For any (w, e1, e2, e3) ∈ R4, e4 ∈ [0, 1] , we have

wF (e1, e2, e3, e4) = F (we1, we2, we3, e4) + Lw,

where Lw ∈ R is a constant that depends only on w.

Definition 1. Let f : [a, b]→ R, (a, b) ∈ R2, a < b, be a given function. We
say that f is a convex function with respect to some F ∈ F (or F -convex
function), if and only if:

F (f(tx+ (1− t)y), f(x), f(y), t) ≤ 0, (x, y, t) ∈ [a, b]× [a, b]× [0, 1] .

Remark 1. 1) Let ε ≥ 0, and let f : [a, b] → R, (a, b) ∈ R2, a < b, be an
ε-convex function, see [11], that is

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε, (x, y, t) ∈ [a, b]× [a, b]× [0, 1] .

Define the functions F : R× R× R× [0, 1]→ R by

(2) F (e1, e2, e3, e4) = e1 − e4e2 − (1− e4)e3 − ε

and TF,w : R× R× R→ R by

(3) TF,w(e1, e2, e3) = e1 −

 1∫
0

tw(t)dt

 e2 −

 1∫
0

(1− t)w(t)dt

 e3 − ε.

For

(4) Lw = (1− w)ε,

it is clear that F ∈ F and

F (f(tx+(1−t)y), f(x), f(y), t) = f(tx+(1−t)y)−tf(x)−(1−t)f(y)−ε ≤ 0,

that is f is an F–convex function. Particularly, taking ε = 0, we show that
if f is a convex function then f is an F–convex function with respect to F
defined above.
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2) Let h : J → [0,+∞) be a given function which is not identical to 0,
where J is an interval in R such that (0, 1) ⊆ J. Let f : [a, b] → [0,+∞),
(a, b) ∈ R2, a < b, be an h-convex function, see [28], that is

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y), (x, y, t) ∈ [a, b]× [a, b]× [0, 1] .

Define the functions F : R× R× R× [0, 1]→ R by

(5) F (e1, e2, e3, e4) = e1 − h(e4)e2 − h(1− e4)e3

and TF,w : R× R× R→ R by

(6) TF,w(e1, e2, e3) = e1 −

 1∫
0

h(t)w(t)dt

 e2 −

 1∫
0

h(1− t)w(t)dt

 e3.

For Lw = 0, it is clear that F ∈ F and

F (f(tx+(1−t)y), f(x), f(y), t) = f(tx+(1−t)y)−h(t)f(x)−h(1−t)f(y) ≤ 0,

that is, f is an F–convex function.

Samet in [21], established the following Hermite–Hadamard type inequal-
ities using the new convexity concept:

Theorem 1. Let f : [a, b]→ R, (a, b) ∈ R2, a < b, be an F -convex function,
for some F ∈ F . Suppose that f ∈ L1[a, b]. Then

F

(
f

(
a+ b

2

)
,

1

b− a

∫ b

a
f(x)dx,

1

b− a

∫ b

a
f(x)dx,

1

2

)
≤ 0,

TF,1

(
1

b− a

∫ b

a
f(x)dx, f(a), f(b)

)
≤ 0.

Definition 2. Let f ∈ L1[a, b]. The Riemann–Liouville integrals Jαa+f and
Jαb−f of order α > 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1 f(t)dt, x < b,

respectively. Here, Γ(α) is the Gamma function and

J0
a+f(x) = J0

b−f(x) = f(x).

Definition 3. Let f ∈ L1[a, b]. Then k–fractional integrals of order α, k > 0
are defined by

Iαa+,kf(x) =
1

kΓk(α)

∫ x

a
(x− t)

α
k
−1f(t)dt, x > a,
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and

(7) Iαb−,kf(x) =
1

kΓk(α)

∫ b

x
(t− x)

α
k
−1f(t)dt, b > x,

where Γk(·) stands for the k-gamma function. For k = 1, the k–fractional
integrals yield Riemann–Liouville integrals. For α = k = 1, the k–fractional
integrals yield classical integrals. For more details, see [9, 12, 15, 19].

It is remarkable that Sarikaya et al. in [26], first give the following inter-
esting integral inequalities of Hermite–Hadamard type involving Riemann–
Liouville fractional integrals.

Theorem 2. Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1 [a, b] . If f is a convex function on [a, b], then the following inequalities
for fractional integrals hold:

(8) f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
≤ f (a) + f (b)

2
,

with α > 0.

Budak et al. in [1], prove the following Hermite-Hadaamrd type inequal-
ities for F -convex functions via fractional integrals:

Theorem 3. Let I ⊆ R be an interval, f : I◦ ⊆ R → R be a mapping on
I◦, a, b ∈ I◦, a < b. If f is F -convex on [a, b] for some F ∈ F , then we have

(9)
F

(
f

(
a+ b

2

)
,
Γ(α+ 1)

(b− a)α
Jαa+f(b),

Γ(α+ 1)

(b− a)α
Jαb−f(a),

1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

and

(10)

TF,w

(
Γ(α+ 1)

(b− a)α
[Jαa+f(b) + Jαb−f(a)] , f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt ≤ 0,

where w(t) = αtα−1.

For other papers involving F -convex functions, see [1]-[4], [16, 27].

Now we summarize the generalized fractional integrals defined by Sarikaya
and Ertuğral in [22].

Let’s define a function ϕ : [0,+∞) → [0,+∞) satisfying the following
conditions:

(11)
∫ 1

0

ϕ(t)

t
dt < +∞,
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(12)
1

A1
≤ ϕ(v)

φ(u)
≤ A1 for

1

2
≤ v

u
≤ 2,

(13)
ϕ(u)

u2
≤ A2

ϕ(v)

v2
for v ≤ u,

(14)

∣∣∣∣∣ϕ(u)

u2
− ϕ(v)

v2

∣∣∣∣∣ ≤ A3|u− v|
ϕ(u)

u2
for

1

2
≤ v

u
≤ 2,

where A1, A2, A3 > 0 are independent of u, v > 0. If ϕ(u)uα is increasing
for some α ≥ 0 and ϕ(u)

uβ
is decreasing for some β ≥ 0, then ϕ satisfies the

above conditions.
The following left-sided and right–sided generalized fractional integral op-

erators are defined respectively, as follows:

(15) a+Iϕf(x) =

∫ x

a

ϕ (x− t)
x− t

f(t)dt, x > a,

(16) b−Iϕf(x) =

∫ b

x

ϕ (t− x)

t− x
f(t)dt, x < b.

The most important feature of generalized fractional integrals is that they
generalize some types of fractional integrals such as Riemann–Liouville frac-
tional integral, k–Riemann–Liouville fractional integral, Katugampola frac-
tional integrals, conformable fractional integral, Hadamard fractional inte-
grals, etc.

Sarikaya and Ertuğral in [22], establish the following Hermite–Hadamard
inequality and lemmas for the generalized fractional integral operators:

Theorem 4. Let f : [a, b] → R be a convex function on [a, b] with a < b,
then the following inequalities for fractional integral operators hold:

(17) f

(
a+ b

2

)
≤ 1

2Ψ(1)
[a+Iϕf(b) +b− Iϕf(a)] ≤ f(a) + f(b)

2
,

where the mapping Λ : [0, 1]→ R is defined by

Ψ(x) =

x∫
0

ϕ ((b− a) t)

t
dt.

Budak et al. prove the following Hermite Hadamard type inequalities for
F -convex functions.

Theorem 5 ([4]). Let I ⊆ R be an interval, f : I◦ ⊆ R → R be a mapping
on I◦, a, b ∈ I◦, a < b. If f is F -convex on [a, b] for some F ∈ F , then we
have

F

(
f

(
a+ b

2

)
,

1

Ψ(1)
a+Iϕf(b),

1

Ψ(1)
b−Iϕf(a),

1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,
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and

TF,w

(
1

Ψ(1)
[a+Iϕf(b) + b−Iϕf(a)] , f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt ≤ 0,

where w(t) = ϕ((b−a)t)
tΨ(1) .

Motivated by the above literatures, the main objective of this article is
to establish some new Hermite–Hadamard type inequalities via generalized
fractional integrals utilizing F–convex functions. Some special cases of our
main results recaptured the well–known earlier works. At the end, a briefly
conclusion will be given as well.

2. Main results

In this section, we establish some inequalities of Hermite–Hadamard type
including generalized fractional integrals via F–convex functions.

Theorem 6. Let I ⊆ R be an interval, f : I◦ ⊆ R→ R be a mapping on I◦,
a, b ∈ I◦, a < b and let F be linear with respect to the first three variables.
If f is F -convex on [a, b] for some F ∈ F , then we have

(18)
F

(
f

(
a+ b

2

)
,

1

Λ(1) (a+b2 )
+Iϕf (b) ,

1

Λ(1) (a+b2 )
−Iϕf (a) ,

1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

and

(19)

TF,w

(
1

Λ(1)

[
(a+b2 )

+Iϕf (b) +
(a+b2 )

−Iϕf (a)

]
,

f(a) + f(b), f(a) + f(b)

)
+

1∫
0

Lw(t)dt ≤ 0,

where w(t) =
ϕ(( b−a2 )t)
tΛ(1) and the function Λ : [0, 1]→ R is defined by

Λ(x) =

x∫
0

ϕ
(
b−a

2 t
)

t
dt.

Proof. Since f is F–convex, we have

F

(
f

(
x+ y

2

)
, f(x), f(y),

1

2

)
≤ 0, ∀x, y ∈ [a, b] .
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For
x =

t

2
a+

(
2− t

2

)
b and y =

(
2− t

2

)
a+

t

2
b,

we have

F

(
f

(
a+ b

2

)
, f

(
t

2
a+

(
2− t

2

)
b

)
, f

((
2− t

2

)
a+

t

2
b

)
,
1

2

)
≤ 0.

for all t ∈ [0, 1] . Multiplying this inequality by w(t) =
ϕ(( b−a2 )t)
tΛ(1) and using

axiom (A3), we get

F

(
ϕ
((

b−a
2

)
t
)

tΛ(1)
f

(
a+ b

2

)
,
ϕ
(
( b−a2 )t

)
tΛ(1)

f

(
t

2
a+

(
2− t

2

)
b

)
,

ϕ
((

b−a
2

)
t
)

tΛ(1)
f

((
2− t

2

)
a+

t

2
b

)
,
1

2

)
+ Lw(t) ≤ 0

for all t ∈ (0, 1). Integrating over (0, 1) with respect to the variable t and
using axiom (A1), we obtain

F

f (a+b
2

)
Λ(1)

∫ 1

0

ϕ
(

(b−a)
2 t

)
t

dt,
1

Λ(1)

∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

(
t

2
a+

(
2− t

2

)
b

)
dt,

1

Λ(1)

∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

((
2− t

2

)
a+

t

2
b

)
dt,

1

2

+

∫ 1

0
Lw(t)dt ≤ 0.

Using the facts that∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

(
t

2
a+

(
2− t

2

)
b

)
dt

=

∫ b

a+b
2

ϕ (b− x)

b− x
f(x)dx =

(a+b2 )
+Iϕf (b)

and ∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

((
2− t

2

)
a+

t

2
b

)
dt

=

∫ a+b
2

a

ϕ (x− a)

x− a
f(x)dx =

(a+b2 )
−Iϕf (a) ,

we obtain

F

(
f

(
a+ b

2

)
,

1

Λ(1) (a+b2 )
+Iϕf (b) ,

1

Λ(1) (a+b2 )
−Iϕf (a) ,

1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,
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which gives (18).
On the other hand, since f is F–convex, we have

F

(
f

(
t

2
a+

(
2− t

2

)
b

)
, f(a), f(b), t

)
≤ 0, ∀t ∈ [0, 1] ,

and

F

(
f

((
2− t

2

)
a+

t

2
b

)
, f(a), f(b), t

)
≤ 0, ∀t ∈ [0, 1] .

Using the linearity of F, we get

F

(
f

(
t

2
a+

(
2− t

2

)
b

)
+ f

((
2− t

2

)
a+

t

2
b

)
,

f(a) + f(b), f(a) + f(b), t

)
≤ 0,

for all t ∈ [0, 1]. Applying the axiom (A3) for w(t) =
ϕ
(

(b−a)
2

t
)

tΛ(1) , we obtain

F

ϕ
(

(b−a)
2 t

)
tΛ(1)

[
f

(
t

2
a+

(
2− t

2

)
b

)
+ f

((
2− t

2

)
a+

t

2
b

)]
,

ϕ
(

(b−a)
2 t

)
tΛ(1)

[f(a) + f(b)] ,
ϕ
(

(b−a)
2 t

)
tΛ(1)

[f(a) + f(b)] , t

+ Lw(t) ≤ 0,

for all t ∈ (0, 1). Integrating over (0, 1) and using axiom (A2), we have

TF,w

(∫ 1

0

ϕ
(

(b−a)
2 t

)
tΛ(1)

[
f

(
t

2
a+

(
2− t

2

)
b

)
+ f

((
2− t

2

)
a+

t

2
b

)]
dt,

f(a) + f(b), f(a) + f(b)

)
+

∫ 1

0
Lw(t)dt ≤ 0,

that is

TF,w

(
1

Λ(1)

[
(a+b2 )

+Iϕf (b) +
(a+b2 )

−Iϕf (a)

]
, f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt ≤ 0.

The proof of Theorem 6 is completed. �
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Remark 2. If we choose ϕ(t) = t in Theorem 6, then we have the following
inequalities

(20)
F

f (a+ b

2

)
,

2

b− a

b∫
a+b
2

f(t)dt,
2

b− a

a+b
2∫
a

f(t)dt,
1

2


+

∫ 1

0
Lw(t)dt ≤ 0,

and

(21) TF,w

 2

b− a

b∫
a

f(t)dt, f(a) + f(b), f(a) + f(b)

+

1∫
0

Lw(t)dt ≤ 0,

where w(t) = 1.

Remark 3. If we choose ϕ(t) = tα

Γ(α) in Theorem 6, then we have the
following inequalities for Riemann-Liouville fractional integrals

F

(
f

(
a+ b

2

)
,
2αΓ(α+ 1)

(b− a)α
Jα
(a+b2 )

+f(b),
2αΓ(α+ 1)

(b− a)α
Jα
(a+b2 )

−f(a),
1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

and

TF,w

(
2αΓ(α+ 1)

(b− a)α

[
Jα
(a+b2 )

+f(b) + Jα
(a+b2 )

−f(a)

]
,

f(a) + f(b), f(a) + f(b)

)
+

1∫
0

Lw(t)dt ≤ 0,

where w(t) = αtα−1 which is given by Budak et al. in [5].

Corollary 1. If we take ϕ(t) = t
α
k

kΓk(α) in Theorem 6, then we have the
following inequalities for k–Riemann–Liouville fractional integrals

F

(
f

(
a+ b

2

)
,
2
α
k Γk(α+ k)

(b− a)
α
k

Iα
(a+b2 )+, k

f (b) ,

2
α
k Γk(α+ k)

(b− a)
α
k

Iα
(a+b2 )−, k

f (a) ,
1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

and

TF,w

(
2
α
k Γk(α+ k)

(b− a)
α
k

[
Iα
(a+b2 )+, k

f (b) + Iα
(a+b2 )−, k

f (a)

]
,
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f(a) + f(b), f(a) + f(b)

)
+

1∫
0

Lw(t)dt ≤ 0,

where w(t) = α
k t

α
k
−1.

Theorem 7. Let I ⊆ R be an interval, f : I◦ ⊆ R→ R be a mapping on I◦,
a, b ∈ I◦, a < b and let F be linear with respect to the first three variables.
If f is F -convex on [a, b] for some F ∈ F , then we have

(22)
F

(
f

(
a+ b

2

)
,

1

Λ(1)
b−Iϕf

(
a+ b

2

)
,

1

Λ(1)
a+Iϕf

(
a+ b

2

)
,
1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

and

(23)

TF,w

(
1

Λ(1)

[
a+Iϕf

(
a+ b

2

)
+ b−Iϕf

(
a+ b

2

)]
,

f(a) + f(b), f(a) + f(b)

)
+

1∫
0

Lw(t)dt ≤ 0,

where w(t) =
ϕ(( b−a2 )t)
tΛ(1) .

Proof. Since f is F -convex, we have

F

(
f

(
x+ y

2

)
, f(x), f(y),

1

2

)
≤ 0, ∀x, y ∈ [a, b] .

For

x =

(
1− t

2

)
a+

(
1 + t

2

)
b and y =

(
1 + t

2

)
a+

(
1− t

2

)
b,

we have

F

(
f

(
a+ b

2

)
, f

((
1− t

2

)
a+

(
1 + t

2

)
b

)
,

f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
,
1

2

)
≤ 0,

for all t ∈ [0, 1] . Multiplying this inequality by w(t) =
ϕ(( b−a2 )t)
tΛ(1) and using

axiom (A3), we get

F

(
ϕ
((

b−a
2

)
t
)

tΛ(1)
f

(
a+ b

2

)
,
ϕ
(
( b−a2 )t

)
tΛ(1)

f

((
1− t

2

)
a+

(
1 + t

2

)
b

)
,

ϕ
((

b−a
2

)
t
)

tΛ(1)
f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
,
1

2

)
+ Lw(t) ≤ 0,
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for all t ∈ (0, 1). Integrating over (0, 1) with respect to the variable t and
using axiom (A1), we obtain

F

f (a+b
2

)
Λ(1)

∫ 1

0

ϕ
(

(b−a)
2 t

)
t

dt,

1

Λ(1)

∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

((
1− t

2

)
a+

(
1 + t

2

)
b

)
dt,

1

Λ(1)

∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
dt,

1

2


+

∫ 1

0
Lw(t)dt ≤ 0.

Using the facts that∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

((
1− t

2

)
a+

(
1 + t

2

)
b

)
dt

=

∫ b

a+b
2

ϕ
(
x− a+b

2

)
x− a+b

2

f(x)dx

= b−Iϕf

(
a+ b

2

)
,

and ∫ 1

0

ϕ
(

(b−a)
2 t

)
t

f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
dt

=

∫ a+b
2

a

ϕ
(
a+b

2 − x
)

a+b
2 − x

f(x)dx

= a+Iϕf

(
a+ b

2

)
,

we obtain

F

(
f

(
a+ b

2

)
,

1

Λ(1)
b−Iϕf

(
a+ b

2

)
,

1

Λ(1)
a+Iϕf

(
a+ b

2

)
,
1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

which gives (22).
On the other hand, since f is F–convex, we have

F

(
f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
, f(a), f(b), t

)
≤ 0, ∀t ∈ [0, 1] ,
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and

F

(
f

((
1− t

2

)
a+

(
1 + t

2

)
b

)
, f(a), f(b), t

)
≤ 0, ∀t ∈ [0, 1] .

Using the linearity of F, we get

F

(
f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
+ f

((
1− t

2

)
a+

(
1 + t

2

)
b

)
,

f(a) + f(b), f(a) + f(b), t

)
≤ 0, ∀t ∈ [0, 1] .

Applying the axiom (A3) for w(t) =
ϕ
(

(b−a)
2 t

)
tΛ(1)

, we obtain

F

(ϕ( (b−a)
2 t

)
tΛ(1)

×
[
f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
+

f

((
1− t

2

)
a+

(
1 + t

2

)
b

)]
,
ϕ
(

(b−a)
2 t

)
tΛ(1)

[f(a) + f(b)] ,

ϕ
(

(b−a)
2 t

)
tΛ(1)

[f(a) + f(b)] , t

)
+ Lw(t) ≤ 0,

for all t ∈ (0, 1). Integrating over (0, 1) and using axiom (A2), we have

TF,w

(∫ 1

0

ϕ
(

(b−a)
2 t

)
tΛ(1)

×
[
f

((
1 + t

2

)
a+

(
1− t

2

)
b

)
+

f

((
1− t

2

)
a+

(
1 + t

2

)
b

)]
dt,

f(a) + f(b), f(a) + f(b)

)
+

∫ 1

0
Lw(t)dt ≤ 0,

that is

TF,w

(
1

Λ(1)

[
a+Iϕf

(
a+ b

2

)
+ b−Iϕf

(
a+ b

2

)]
,

f(a) + f(b), f(a) + f(b)

)
+

1∫
0

Lw(t)dt ≤ 0.

The proof of Theorem 7 is completed. �

Remark 4. If we take ϕ(t) = t in Theorem 7, then the inequalities (22)
and (23) reduce to the inequalities (20) and (21)
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Remark 5. If we take ϕ(t) = tα

Γ(α) in Theorem 7, then we have the following
inequalities for Riemann-Liouville fractional integrals

F

(
f

(
a+ b

2

)
,
2αΓ(α+ 1)

(b− a)α
Jαb−f

(
a+ b

2

)
,

2αΓ(α+ 1)

(b− a)α
Jαa+f

(
a+ b

2

)
,
1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

and

TF,w

(
2αΓ(α+ 1)

(b− a)α

[
Jαb−f

(
a+ b

2

)
+ Jαa+f

(
a+ b

2

)]
,

f(a) + f(b), f(a) + f(b)

)
+

1∫
0

Lw(t)dt ≤ 0,

where w(t) = αtα−1 which is given by Budak et al. in [5].

Corollary 2. If we take ϕ(t) = t
α
k

kΓk(α) in Theorem 7, then we have the
following inequalities for k–Riemann–Liouville fractional integrals:

F

(
f

(
a+ b

2

)
,
2
α
k Γk(α+ k)

(b− a)
α
k

Iαb−, kf

(
a+ b

2

)
,

2
α
k Γk(α+ k)

(b− a)
α
k

Iαa+, kf

(
a+ b

2

)
,
1

2

)
+

∫ 1

0
Lw(t)dt ≤ 0,

and

TF,w

(
2
α
k Γk(α+ k)

(b− a)
α
k

[
Iαa+, kf

(
a+ b

2

)
+ Iαb−, kf

(
a+ b

2

)]
,

f(a) + f(b), f(a) + f(b)) +

1∫
0

Lw(t)dt ≤ 0,

where w(t) = α
k t

α
k
−1.

Remark 6. One can obtain several results for convexity, ε-convexity,
h-convexity, etc by special choice of the function F in Theorems 6 and 7.

3. Conclusion

In the development of this work, using the definition of F -convex functions
some new Hermite-Hadamard type inequalities via generalized fractional
integrals have been deduced. We also give several results capturing Riemann-
Liouville fractional integrals and k-Riemann-Liouville fractional integrals as
special cases. The authors hope that these results will serve as a motivation
for future work in this fascinating area.
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