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Some fixed point theorems for generalized
(ψ − φ)-weak contraction mappings

in partial metric spaces

G.S. Saluja

Abstract. The aim of this paper is to introduce the concepts of gen-
eralized (ψ − φ)-weak contraction mappings of type (A) and (B) and
establish some fixed point theorems for said contraction mappings in
complete partial metric spaces. Our results extend and generalize sev-
eral results from the current existing literature.

1. Introduction

The Banach contraction mappings principle is the opening and vital result
in the direction of fixed point theory. In this theory, contraction is one of the
main tools to prove the existence and uniqueness of a fixed point. Banach’s
contraction principle which gives an answer to the existence and uniqueness
of a solution of an operator equation Tx = x, is the most widely used fixed
point theorem in all of analysis. This principle is constructive in nature and
is one of the most useful techniques in the study of nonlinear equations.
Banach contraction principle has been generalized in various ways either by
using contractive conditions or by imposing some additional conditions on
the underlying space.

In 1994, Matthews ([21, 22]) launched the notion of partial metric spaces
as a generalizations of the notion of metric space in which, in definition
of metric the condition d(x, x) = 0 is replaced by the condition d(x, x) ≤
d(x, y). In ([22]), Matthews discussed some properties of convergence of
sequences and proved the fixed point theorem for contraction mapping on
partial metric spaces: any mapping S of a complete partial metric space X
onto itself that satisfies, where 0 ≤ k < 1, the inequality p(S(x), S(y)) ≤
k p(x, y) for all x, y ∈ X, has a unique fixed point. Also, the concept of PMS
provides to study denotational semantics of dataflow networks [21, 22, 27,
31].
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Many authors studied the fixed points for mappings satisfying contractive
conditions in complete partial metric spaces. More recently, in [3], [5], [6],
[7], [11], [12], [18], [30] some fixed point theorems under various contractive
conditions in complete partial metric spaces are proved.

Alber and Guerre-Delabriere [4], defined weakly contractive mappings on
a Hilbert space and established a novel fixed point theorem for such a map-
pings. Subsequently, Rhoades [26] used the notion of weakly contractive
mappings and obtained a fixed point theorem in complete metric space.
Afterward, weak contraction and function satisfying weak contractive type
inequalities have been considered in a large number of papers, (see, for in-
stance [1], [2], [9], [13], [14], [15], [16], [23], [25], [28], [29] and references
therein).

In this paper, we introduce the concept of generalized (ψ − φ)-weak con-
traction mapping and establish some fixed point theorems for said class of
mappings in complete partial metric spaces.

The main purpose of the present work is encouraged by its possible appli-
cation, especially in discrete models for numerical analysis, where iterative
schemes are extensively used due to their versatility for computer simulation.
These models play an essential role in applied mathematical studies of cer-
tain nonlinear processes in relation with economics, biology and numerical
physics.

2. Definitions and Lemmas

The definition of partial metric space is given by Matthews ([21]) as fol-
lows:

Definition 1 ([21]). Let X be a nonempty set. A function p : X×X → R+

is said to be a partial metric on X if for any x, y, z ∈ X, the following
conditions hold:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space (in short PMS).

If p(x, y) = 0, then from (P1) and (P2), x = y, but the converse does
not always hold. Various applications of this space has been extensively
investigated by many authors (see [20], [30] for details).

Remark 1 ([17]). Let (X, p) be a partial metric space.
(1) The function dp : X × X → R+ defined as dp(x, y) = 2p(x, y) −

p(x, x) − p(y, y) is a (usual) metric on X and (X, dp) is a (usual)
metric space.
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(2) The function dm : X×X → R+ defined as dm(x, y) = max{p(x, y)−
p(x, x), p(x, y) − p(y, y)} is a (usual) metric on X and (X, dm) is a
(usual) metric space.

It is clear that dp and dm are equivalent. Each partial metric p on X
generates a T0 topology τp on X with a base of the family of open p-balls
{Bp(x, ε) : x ∈ X, ε > 0} where Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε}
for all x ∈ X and ε > 0.

Example 1 ([7]). Let X = R+ and p : X × X → R+ given by p(x, y) =
max{x, y} for all x, y ∈ R+. Then (R+, p) is a partial metric space.

Example 2 ([7]). Let X = {[a, b] : a, b ∈ R, a ≤ b}. Then p
(

[a, b], [c, d]
)

=

max{b, d} −min{a, c} defines a partial metric p on X.

On a partial metric space the notions of convergence, the Cauchy se-
quence, completeness and continuity are defined as follows [21].

Definition 2 ([21]). Let (X, p) be a partial metric space.
a) A sequence {xn} in (X, p) is said to be convergent to a point x ∈ X

if and only if p(x, x) = limn→∞ p(xn, x),
b) A sequence {xn} is called a Cauchy sequence if limm,n→∞ p(xm, xn)

exists and finite,
c) (X, p) is said to be complete if every Cauchy sequence {xn} in X

converges to a point x ∈ X with respect to τp. Furthermore,

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(xn, x) = p(x, x).

d) A mapping f : X → X is said to be continuous at x0 ∈ X if for every
ε > 0, there exists δ > 0 such that f

(
Bp(x0, δ)

)
⊂ Bp

(
f(x0), ε

)
.

Definition 3 ([24]). Let (X, p) be a partial metric space.
(1) A sequence {xn} in (X, p) is called 0-Cauchy if limm,n→∞ p(xm, xn) =

0,
(2) (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in

X converges to a point x ∈ X, such that p(x, x) = 0.

Lemma 1 ([21, 22]). Let (X, p) be a partial metric space.
(a1) A sequence {xn} in (X, p) is a Cauchy sequence if and only if it is a

Cauchy sequence in the metric space (X, dp),
(a2) (X, p) is complete if and only if the metric space (X, dp) is complete,
(a3) A subset E of a partial metric space (X, p) is closed if a sequence

{xn} in E such that {xn} converges to some x ∈ X, then x ∈ E.

Lemma 2 ([3]). Assume that xn → x as n → ∞ in a partial metric space
(X, p) such that p(x, x) = 0. Then limn→∞ p(xn, y) = p(x, y) for every
y ∈ X.
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Definition 4 ([4], Weak Contraction Mapping). Let (X, d) be a complete
metric space. A mapping f : X → X is said to be weakly contractive if

(1) d(f(x), f(y)) ≤ d(x, y)− ψ(d(x, y)),

where x, y ∈ X, ψ : [0,∞) → [0,∞) is continuous and non-decreasing,
ψ(x) = 0 if and only if x = 0 and limx→∞ ψ(x) =∞.

If we take ψ(x) = cx where 0 < c < 1 then it reduces to the Banach
contraction condition given in [8].

Definition 5 ([19]). The function φ : [0,+∞)→ [0,+∞) is called an alter-
ing distance function if the following properties are satisfied:

(1) φ is continuous and nondecreasing.
(2) φ(t) = 0 if and only if t = 0.

3. Main Results

In this section, we shall establish some unique fixed point theorem in a
complete partial metric space. We begin with the following.

Let (X, p) be a partial metric space and T : X → X be a mapping. We
set for all x, y ∈ X

(2)
Θ(x, y) = max

{
p(x, y), p(x, T x), p(y, T y),

1

3
[p(x, T y) + p(y, T y) + p(y, T x)]

}
,

(3) θ(x, y) = max
{
p(x, y), p(y, T y)

}
.

With the above setting, we introduce the following definition.

Definition 6. Let (X, p) be a partial metric space and ψ, φ be altering
distance functions. A mapping T : X → X is called a generalized (ψ − φ)-
weak contraction of type (A) if for any x, y ∈ X, we have

(4) ψ(p(T x, T y)) ≤ ψ(Θ(x, y))− φ(θ(x, y)).

Now, we prove our main result.

Theorem 1. Let (X, p) be a complete partial metric space and let T : X →
X be a generalized (ψ− φ)-weak contraction of type (A) mapping (4). Then
T has a unique fixed point.

Proof. Let x0 ∈ X. We define a sequence {xn} in X such that

(5) xn+1 = T xn, for any n ∈ N

If for some n ∈ N, xn+1 = xn, then xn = T xn, that is, T has a fixed point.
Thus, we may assume that xn+1 6= xn for all n ∈ N. Now, using equation
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(4) and condition (P4), we have

(6)
ψ(p(xn, xn+1)) = ψ(p(T xn−1, T xn))

≤ ψ(Θ(xn−1, xn))− φ(θ(xn−1, xn)),

where

Θ(xn−1, xn) = max
{
p(xn−1, xn), p(xn−1, T xn−1), p(xn, T xn),

1

3
[p(xn−1, T xn) + p(xn, T xn) + p(xn, T xn−1)]

}
= max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

3
[p(xn−1, xn+1) + p(xn, xn+1) + p(xn, xn)]

}
≤ max

{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

3
[p(xn−1, xn) + 2p(xn, xn+1)]

}
,

(7)
θ(xn−1, xn) = max

{
p(xn−1, xn), p(xn, T xn)

}
= max

{
p(xn−1, xn), p(xn, xn+1)

}
.

From (6)-(7), we obtain

(8)

ψ(p(xn, xn+1)) ≤ ψ
(

max
{
p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

3
[p(xn−1, xn) + 2p(xn, xn+1)]

})
− φ

(
max

{
p(xn−1, xn), p(xn, xn+1)

})
.

Since

(9)
1

3
[p(xn−1, xn) + 2p(xn, xn+1)] ≤ max

{
p(xn−1, xn), p(xn, xn+1)

}
,

if for some n ∈ N

(10) max
{
p(xn−1, xn), p(xn, xn+1)

}
= p(xn, xn+1),

then

(11) ψ(p(xn, xn+1)) ≤ ψ(p(xn, xn+1))− φ(p(xn, xn+1)).

Thus, φ(p(xn, xn+1)) = 0, and, hence, by the property of φ, p(xn, xn+1) =
0. Therefore, from from (P1) and (P2), we have xn = xn+1, which is a
contradiction. So,

(12) max
{
p(xn−1, xn), p(xn, xn+1)

}
= p(xn−1, xn),
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thus, we get

(13) p(xn, xn+1) ≤ p(xn−1, xn), ∀ n ∈ N,

(14) ψ(p(xn, xn+1)) ≤ ψ(p(xn−1, xn))− φ(p(xn−1, xn)), ∀ n ∈ N.
By (13), {p(xn, xn+1) : n ∈ N} is a non-increasing sequence. Hence it is
convergent to a real number, therefore there exists c ≥ 0 such that

(15) lim
n→∞

p(xn, xn+1) = c.

Taking the limit as n→∞ in (14), we obtain

(16) ψ(c) ≤ ψ(c)− φ(c).

Therefore φ(c) = 0 and, hence, c = 0. Thus

(17) lim
n→∞

p(xn, xn+1) = 0.

Now, we show that {xn} is a Cauchy sequence in X. If otherwise, then there
exists ε > 0 and increasing sequences of integers {m(k)} and {n(k)} such
that for all integers k,

(18) n(k) > m(k) > k,

(19) p(xm(k), xn(k)) ≥ ε.
Further corresponding to m(k), we can choose n(k) in such a way that it is
the smallest integer with n(k) > m(k) and satisfying (18). Then

(20) p(xm(k), xn(k)−1) < ε.

Now, using (19), (P3) and (P4), we have

(21)

ε ≤ p(xm(k), xn(k))

≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k))− p(xn(k)−1, xn(k)−1)
≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k))

≤ ε+ p(xn(k)−1, xn(k)), (by (20)).

Letting k → +∞ in equation (21) and using (17), we get

(22) lim
k→∞

p(xm(k), xn(k)) = ε.

Again, with the help of (P3), (P4) and using (17), we have

(23)

p(xm(k), xn(k)) ≤ p(xm(k), xm(k)−1) + p(xn(k), xm(k)−1)

− p(xm(k)−1, xm(k)−1)

≤ p(xm(k), xm(k)−1) + p(xn(k), xm(k)−1)

≤ p(xn(k), xm(k)−1)

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1)

− p(xn(k)−1, xn(k)−1)
≤ p(xm(k)−1, xn(k)−1).
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Also, with the help of (P3), (P4) and using (17), we have

(24)

p(xm(k)−1, xn(k)−1) ≤ p(xm(k)−1, xm(k)) + p(xn(k)−1, xm(k))

− p(xm(k), xm(k))

≤ p(xm(k)−1, xm(k)) + p(xn(k)−1, xm(k)).

Letting k → +∞ in equation (24) and using (17), (22) and (23), we get

(25) lim
k→∞

p(xm(k)−1, xn(k)−1) = ε.

Again note that with the help of (P3), (P4) and using (17), we have

(26)

p(xm(k), xn(k)) ≤ p(xm(k), xm(k)−1) + p(xn(k), xm(k)−1)

− p(xm(k)−1, xm(k)−1)

≤ p(xm(k), xm(k)−1) + p(xm(k)−1, xn(k))

≤ p(xm(k)−1, xn(k)).

Again note that

(27)

p(xm(k)−1, xn(k)) ≤ p(xm(k)−1, xm(k)) + p(xm(k), xn(k))

− p(xm(k), xm(k))

≤ p(xm(k)−1, xm(k)) + p(xm(k), xn(k)).

Letting k → +∞ in equation (27) and using (17), (22) and (26), we get

(28) lim
k→∞

p(xm(k)−1, xn(k)) = ε.

Again note that with the help of (P3), (P4) and using (17), we have

(29)

p(xm(k), xn(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))

− p(xn(k)−1, xn(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))

≤ p(xn(k)−1, xm(k)).

Again note that

(30)

p(xn(k)−1, xm(k)) ≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k))

− p(xn(k), xn(k))
≤ p(xn(k)−1, xn(k)) + p(xn(k), xm(k)).

Letting k → +∞ in equation (30) and using (17), (22) and (29), we get

(31) lim
k→∞

p(xn(k)−1, xm(k)) = ε.

Now consider inequality (4) and putting x = xm(k)−1 and y = xn(k)−1, we
obtain

(32)

ψ(p(xm(k), xn(k))) = ψ(p(T xm(k)−1, T xn(k)−1))
≤ ψ(Θ(xm(k)−1, xn(k)−1))

− φ(θ(xm(k)−1, xn(k)−1)),
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where

Θ(xm(k)−1, xn(k)−1) = max
{
p(xm(k)−1, xn(k)−1), p(xm(k)−1, T xm(k)−1),

p(xn(k)−1, T xn(k)−1),
1

3

[
p(xm(k)−1, T xn(k)−1) + p(xn(k)−1, T xn(k)−1)

+ p(xn(k)−1, T xm(k)−1)
]}

= max
{
p(xm(k)−1, xn(k)−1), p(xm(k)−1, xm(k)),

p(xn(k)−1, xn(k)),

1

3

[
p(xm(k)−1, xn(k)) + p(xn(k)−1, xn(k))

+ p(xn(k)−1, xm(k))
]}

θ(xm(k)−1, xn(k)−1) = max
{
p(xm(k)−1, xn(k)−1), p(xn(k)−1, T xn(k)−1)

}
= max

{
p(xm(k)−1, xn(k)−1), p(xn(k)−1, xn(k))

}
.

Substituting in (32), we get

(33)

ψ(p(xm(k), xn(k)) = ψ(p(T xm(k)−1, T xn(k)−1))

≤ ψ
(

max
{
p(xm(k)−1, xn(k)−1), p(xm(k)−1, xm(k)),

p(xn(k)−1, xn(k)),

1

3

[
p(xm(k)−1, xn(k)) + p(xn(k)−1, xn(k))

+ p(xn(k)−1, xm(k))
]})

− φ
(

max
{
p(xm(k)−1, xn(k)−1), p(xn(k)−1, xn(k))

})
.

Letting k → +∞ in equation (33) and using (17), (22), (25), (28), (31) and
the continuity of ψ and φ, we have

(34) ψ(ε) ≤ ψ(ε)− φ(ε) < ψ(ε),

which is a contradiction since ε > 0. This shows that {xn} is a Cauchy
sequence in X. Thus by Lemma 1 this sequence will also Cauchy in (X, dp).
In addition, since (X, p) is complete, (X, dp) is also complete. Thus there
exists u ∈ X such that xn → u as n→ +∞.

Moreover by Lemma 2,

(35) p(u, u) = lim
n→∞

p(u, xn) = lim
n,m→∞

p(xn, xm) = 0



G. S. Saluja 107

implies

(36) lim
n→∞

dp(u, xn) = 0.

Now, we show that u is a fixed point of T . Notice that due to (35), we
have p(u, u) = 0. By using inequality (4), we get

(37)
ψ(p(xn+1, T u) = ψ(p(T xn, T u))

≤ ψ(Θ(xn, u))− φ(θ(xn, u)),

where

Θ(xn, u) = max
{
p(xn, u), p(xn, T xn), p(u, T u)

1

3

[
p(xn, T u) + p(u, T u) + p(u, T xn)

]}
= max

{
p(xn, u), p(xn, xn+1), p(u, T u)

1

3

[
p(xn, T u) + p(u, T u) + p(u, xn+1)

]}
,

θ(xn, u) = max
{
p(xn, u), p(u, T u)

}
.

Letting n→ +∞ in the above and using (35), we get

(38)
Θ(xn, u)→ p(u, T u),

θ(xn, u)→ p(u, T u).

On letting n→ +∞ in (37) and using the continuity of ψ and φ, we get

(39) ψ(p(u, T u)) ≤ ψ(p(u, T u))− φ(p(u, T u)) < ψ(p(u, T u)),

a contradiction. Therefore ψ(p(u, T u)) = 0 and hence by the property of ψ,
we have p(u, T u) = 0 and so u = T u. Thus u is a fixed point of T .

Now, to show that the fixed point of T is unique. For this, suppose
u, v ∈ X be two fixed points of T such that u 6= v. Therefore from equation
(4) and using (P3) and (35), we have

(40) ψ(p(u, v)) = ψ(p(T u, T v)) ≤ ψ(Θ(u, v))− φ(θ(u, v)),

where

Θ(u, v) = max
{
p(u, v), p(u, T u), p(v, T v),

1

3
[p(u, T v) + p(v, T v) + p(v, T u)]

}
= max

{
p(u, v), p(u, u), p(v, v),

1

3
[p(u, v) + p(v, v) + p(v, u)]

}
= max

{
p(u, v), 0, 0,

2

3
p(u, v)

}
= p(u, v),
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(41)

θ(u, v) = max
{
p(u, v), p(v, T v)

}
= max

{
p(u, v), p(v, v)

}
= max

{
p(u, v), 0

}
= p(u, v).

By (40) and (41), we obtain

(42)

ψ(p(u, v)) = ψ(p(T u, T v))

≤ ψ(p(u, v))− φ(p(u, v))

< ψ(p(u, v)),

a contradiction. Thus ψ(p(u, v)) = 0 and hence p(u, v) = 0 by the property
of ψ and therefore u = v. This shows that the fixed point of T is unique.

This completes the proof. �

Corollary 1. Let (X, p) be a complete partial metric space and let T : X →
X be a mapping. Suppose there exists k ∈ [0, 1) such that

(43)
p(T x, T y) ≤ k max

{
p(x, y), p(x, T x), p(y, T y),

1

3

[
p(x, T y) + p(y, T y) + p(y, T x)

]}
,

for all x, y ∈ X. Then T has a unique fixed point.

If we take

max
{
p(x, y), p(x, T x), p(y, T y),

1

3

[
p(x, T y)+p(x, T x)+p(y, T x)

]}
= p(x, y)

in Corollary 1, then we have the following result.

Corollary 2 ([22]). Let (X, p) be a complete partial metric space and let
T : X → X be a mapping. Suppose there exists k ∈ [0, 1) such that

(44) p(T x, T y) ≤ k p(x, y),

for all x, y ∈ X. Then T has a unique fixed point.

Remark 2. Corollary 2 extends well-known Banach contraction mapping
principle ([8]) from complete metric space to the setting of complete partial
metric space.

Corollary 3. Let (X, p) be a complete partial metric space and let T : X →
X be a mapping. Suppose there exist nonnegative real numbers α, β, γ and
δ with α+ β + γ + δ < 1 such that

(45)
p(T x, T y) ≤ αp(x, y) + β p(x, T x) + γ p(y, T y)

+
δ

3

[
p(x, T y) + p(y, T y) + p(y, T x)

]
,

for all x, y ∈ X. Then T has a unique fixed point.
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Proof. Follows from Corollary 1, by using

(46)

αp(x, y) + β p(x, T x) + γ p(y, T y)

+
δ

3

[
p(x, T y) + p(y, T y) + p(y, T x)

]
≤ (α+ β + γ + δ) max

{
p(x, y), p(x, T x), p(y, T y),

1

3

[
p(x, T y) + p(y, T y) + p(y, T x)

]}
. �

Again we consider (X, p) is a partial metric space, and T : X → X a
mapping. We set

(47)
M(x, y) = max

{
p(x, y), p(x, T x), p(y, T y),

1

3
[p(x, T y) + p(x, T x) + p(y, T x)]

}
,

(48) N (x, y) = max
{
p(x, T x), p(y, T y)

}
.

Now, we introduce the following notion.

Definition 7. Let (X, p) be a partial metric space and ψ, φ be altering
distance functions. A mapping T : X → X is called a generalized (ψ − φ)-
weak contraction of type (B) if for any x, y ∈ X, we have

(49) ψ(p(T x, T y) ≤ ψ(M(x, y))− φ(N (x, y)).

Following the same arguments as those in the proof of Theorem 1, we
obtain the following.

Theorem 2. Let (X, p) be a complete partial metric space and let T : X →
X be a generalized (ψ − φ)-weak contraction of type (B), that is, satisfying
condition (49). Then T has a unique fixed point.

The following results are direct consequences of Theorem 2.

Corollary 4. Let (X, p) be a complete partial metric space and let T : X →
X be a mapping. Suppose there exists k ∈ [0, 1) such that

(50)
p(T x, T y) ≤ k max

{
p(x, y), p(x, T x), p(y, T y),

1

3

[
p(x, T y) + p(x, T x) + p(y, T x)

]}
,

for all x, y ∈ X. Then T has a unique fixed point.

Corollary 5. Let (X, p) be a complete partial metric space and let T : X →
X be a mapping. Suppose there exist nonnegative real numbers α, β, γ and
δ with α+ β + γ + δ < 1 such that

(51)
p(T x, T y) ≤ αp(x, y) + β p(x, T x) + γ p(y, T y)

+
δ

3

[
p(x, T y) + p(x, T x) + p(y, T x)

]
,
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for all x, y ∈ X. Then T has a unique fixed point.

We also obtain some fixed point theorems of integral type as corollaries
to the results.

Denote Φ the set of functions φ : [0,+∞) → [0,+∞) satisfying the fol-
lowing hypothesis:
(H1) φ is a Lebesgue-integrable mapping on each compact subset of [0,+∞);
(H2) for any ε > 0 we have

∫ ε
0 φ(s)ds > 0.

It is an easy matter, to see that the mapping ψ : [0,+∞) → [0,+∞)
defined by

(52) ψ(t) =

∫ t

0
φ(s)ds

an altering distance function. Now, we have the following result.

Corollary 6. Let (X, p) be a complete partial metric space. Let T : X → X
be a mapping such that for φ, λ ∈ Φ, we have

(53)

∫ p(T x,T y)

0
φ(s)ds

≤
∫ max

{
p(x,y),p(x,T x),p(y,T y), 1

3

[
p(x,T y)+p(y,T y)+p(y,T x)

]}
0

φ(s)ds

−
∫ max

{
p(x,y),p(y,T y)

}
0

λ(s)ds

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Follows from Theorem 1 by taking

�(54) ψ(t) =

∫ t

0
φ(s)ds, φ(t) =

∫ t

0
λ(s)ds.

Corollary 7. Let (X, p) be a complete partial metric space. Let T : X → X
be a mapping such that for φ, λ ∈ Φ, we have

(55)

∫ p(T x,T y)

0
φ(s)ds

≤
∫ max

{
p(x,y),p(x,T x),p(y,T y), 1

3

[
p(y,T x)+p(x,T x)+p(x,T y)

]}
0

φ(s)ds

−
∫ max

{
p(x,T x),p(y,T y)

}
0

λ(s)ds

for all x, y ∈ X. Then T has a unique fixed point.
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Proof. Follows from Theorem 2 by taking

�(56) ψ(t) =

∫ t

0
φ(s)ds, φ(t) =

∫ t

0
λ(s)ds.

The following result is a special case of Corollary 1 and 4.

Corollary 8. Let (X, p) be a complete partial metric space. Let T : X → X
be a mapping. Suppose that there exists 0 < k < 1 such that for φ ∈ Φ, we
have

(57)
∫ p(T x,T y)

0
φ(s)ds ≤ k

∫ p(x,y)

0
φ(s)ds,

for all x, y ∈ X. Then T has a unique fixed point.

Proof. Follows from Corollary 1 or Corollary 4 by taking ψ(t) = t and

�(58) t =

∫ t

0
φ(s)ds.

Remark 3. Corollary 8 extends Theorem 2.1 of Branciari [10] from complete
metric space to the setting of complete partial metric space.

4. Illustrations

Now we give some examples in support of our results.

Example 3. Let X = R and defined p : X2 → R+ by p(x, y) = max{x, y}
for all x, y ∈ X. Then p is a partial metric on X and (X, p) is a partial
metric space. Let T : X → X defined by T (x) = x

3 and ψ(t) = t, φ(t) = t
2

for all t ≥ 0, where ψ, φ : [0,∞)→ [0,∞) are continuous and non-decreasing
functions. Without loss of generality we assume that x ≥ y. Then, choosing
x = 1 and y = 1

2 , we have

p(x, y) = max{x, y} = x,

p(T x, T y) = max
{x

3
,
y

3

}
=
x

3
,

p(x, T x) = max
{
x,
x

3

}
= x,

p(y, T y) = max
{
y,
y

3

}
= y,

p(x, T y) = max
{
x,
y

3

}
= x,

p(y, T x) = max
{
y,
x

3

}
= y,

Θ(x, y) = max
{
x, x, y,

1

3
(x+ y + y)

}
= x,

θ(x, y) = max
{
x, y
}

= x.



112 Some fixed point theorems for generalized (ψ − φ)-weak. . .

Result Analysis

(1) We have

ψ
(
p(T (x), T (y))

)
= ψ

(x
3

)
=
x

3
and

ψ
(

Θ(x, y)
)
− φ

(
θ(x, y)

)
= ψ(x)− φ(x) = x− x

2
.

Now consider inequality (4), we get
x

3
≤ x− x

2
=
x

2
,

or
1

3
≤ 1

2
which true. Thus T satisfies all the hypothesis of Theorem 1. Hence by
applying Theorem 1, T has a unique fixed point. It is seen that 0 ∈ X is
the unique fixed point of T .

(2) Now consider inequality (43), we get

x

3
≤ k max

{
x, x, y,

1

3
(x+ y + y)

}
= k x,

or

k ≥ 1

3
.

If we take 0 < k < 1, then T satisfies all the hypothesis of Corollary 1.
Hence by applying Corollary 1, T has a unique fixed point. It is seen that
0 ∈ X is the unique fixed point of T .

(3) Now consider inequality (45), we have

x

3
≤ αx+ β x+ γ y +

δ

3
(x+ 2y),

putting x = 1 and y = 1
2 , we get

1

3
≤ α+ β +

1

2
γ +

2

3
δ.

The above inequality is satisfied for:
(i) α = β = 1

4 , γ = 1
3 and δ = 0, with α+ β + γ + δ = 5

6 < 1;
(ii) α = 1

6 , β = 0, γ = 1
5 and δ = 1

4 , with α+ β + γ + δ = 13
30 < 1;

(iii) α = 0, β = 1
5 , γ = 1

4 and δ = 1
3 , with α+ β + γ + δ = 47

60 < 1;
(iv) α = 1

5 , β = 1
4 , γ = 0 and δ = 1

7 , with α+ β + γ + δ = 83
140 < 1.

Thus, T satisfies all the hypothesis of Corollary 3. Hence by applying Corol-
lary 3, T has a unique fixed point. It is seen that 0 ∈ X is the unique fixed
point of T .
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Example 4. Let X = {1, 2, 3, 4} and p : X ×X → R be defined by

p(x, y) =

 |x− y|+ max{x, y}, if x 6= y,
x, if x = y 6= 1,
0, if x = y = 1,

for all x, y ∈ X. Then (X, p) is a complete partial metric space.
Define the mapping T : X → X by

T (1) = 1, T (2) = 1, T (3) = 2, T (4) = 2.

Now, we have

p(T (1), T (2)) = p(1, 1) = 0 ≤ 3

4
· 3 =

3

4
p(1, 2),

p(T (1), T (3)) = p(1, 2) = 3 ≤ 3

4
· 5 =

3

4
p(1, 3),

p(T (1), T (4)) = p(1, 2) = 3 ≤ 3

4
· 7 =

3

4
p(1, 4),

p(T (2), T (3)) = p(1, 2) = 3 ≤ 3

4
· 4 =

3

4
p(2, 3),

p(T (2), T (4)) = p(1, 2) = 3 ≤ 3

4
· 6 =

3

4
p(2, 4),

p(T (3), T (4)) = p(2, 2) = 2 ≤ 3

4
· 5 =

3

4
p(3, 4).

Thus, T satisfies all the hypothesis of Corollary 2 with k = 3
4 < 1. Now

by applying Corollary 2, T has a unique fixed point, which in this case is 1.

5. Conclusion

In this paper, we introduce two contractive conditions (i) generalized (ψ−
φ)-weak contraction of type (A) and (ii) generalized (ψ−φ)-weak contraction
of type (B) in partial metric spaces and establish some fixed point results
for above said contraction conditions in complete partial metric spaces. We
support our results by some examples. Also, we obtain some fixed point
results for mappings satisfying contractive conditions of integral type in
partial metric spaces as corollaries to the results.
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