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New family of special numbers
associated with finite operator

Mouloud Goubi

Abstract. Using the notion of the generating function of a function,
we define an operator with whom we manage to build a large family
of numbers and polynomials. This technique permits to give the closed
formulae and interesting combinatorial identities. Among others, these
polynomials are a generalization of the Fubini numbers and polynomials.

1. Introduction

New families of polynomials, numbers and operators are widely used in
mathematics. With the help of an operator, we construct a family of num-
bers and polynomials, we give their explicit formulae, state combinatorial
identities and derive some identities from the generating functions in terms
of continued fractions. To do this, we come back to the notion of the gener-
ating function of a function, in order to introduce the desired operator. The
result obtained has many applications in pure and applied mathematics.

Given a function f ∈ F (C,C) such that f(t) − f(0) − 1 6= 0, we define
the operator C by the following relation

C[f ](t) =
1

1 + f(0)− f(t)
.

C satisfies the identity
1

C[f + g]
=

1

2C[2f ]
+

1

2C[2g]
.

This operator is defined in a different ways from the known operators, in
which we give three similar - but not the same - example. First one is those
given by Simsek [20] extracted mainly from the operator

Ea[f ](t) = f(t+ a).
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Operator Pn (f, t) presented by Cheney and Sharma [5, Identity 4], which is
defined by

Pn (f, t) = (1− t)n+1 exp

(
xt

1− t

)∑
v≥0

f

(
v

v + n

)
L(n)
v (x)tv,

where x ≤ 0 and L(n)
v (x) denotes the Laguerre polynomial. Finally operator

Mn(f, x) introduced in [16] by the following expression

Mn(f, x) =
1

A (g(1))B (ng(1)x)

∑
v≥0

pv(nx)f
( v
n

)
,

where pv(x) are generalized Appell polynomials defined by the generating
function

(1) A (g(t))B (xg(t)) =
∑
n≥0

pv(x)tv

and A, B, g are generating functions such that

A(t) =
∑
n≥0

ant
n, a0 6= 0,

B(t) =
∑
n≥0

bnt
n, bn 6= 0,

g(t) =
∑
n≥1

gnt
n, g1 6= 0.

We recall the definition of the generating function of functions already given
in the article [12]. The sequence of functions fn admit a generating function
if and only if there exists a function F (t, y) such that

F (t, y) =
∑
n≥0

fn(t)yn

on at least one non-empty interval I centered in zero. The convergence of
the series to the left of the preceding equality is ensured once the sequence
of functions fn is bounded and |y| < 1. Throughout this paper we consider
the family of functions f such that |f(t)−f(0)| < 1 on a non-empty interval
I ⊂ R centered in zero. The series of functions

∑
n≥0 y

n (f(t)− f(0))n is
a convergent geometric series for |y| ≤ 1. Then the generating function of
g(t) = f(t) − f(0) is the function 1

1−yg(t) . The usual successive derivatives
of g(t) allow to write

∂n

∂tn
1

1− yg(t)
=
∑
j≥0

(
dn

dtn
gj(t)

)
yj .

In the case y = 1, we will have

C[g](t) = C[f ](t) =
∑
j≥0

(f(t)− f(0))j .
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Applying the derivative operator to above sequence we get
dn

dtn
C[f ](t) =

∑
j≥0

dn

dtn
((f(t)− f(0))j .

The computation of C ◦ C · · · ◦ C︸ ︷︷ ︸
m times

permits to introduce a large family of func-

tions defined recursively by

(2) Cm[f ](t) =
1

1 + Cm−1[f ](0)− Cm−1[f ](t)
; m ≥ 1.

with the initial term C0[f ](t) = f(t). If f(t) =
∑

n≥0 ant
n is a generating

function; Cm[f ](t) is a generating function too and we have

C[f ](t) =
1

1 + a0 − f(t)
.

The higher iterations are given by the recursion (2), with Cm[f ](0) = 1,m ≥
1. For more information about generating function theory and computational
methods for the sum of power series we refer to the book [22]. The operator
Cm is a continued fraction, for example;

C5[f ](t) =
1

2− 1
2− 1

2− 1

2− 1
1+f(0)−f(t)

.

If f(t) = 1 + t we conclude that

C5[f ](t) =
1

2− 1
2− 1

2− 1

2− 1
1−t

.

In this work we are interested in numbers generated by the operators Cm
and the combinatorial identities that arise. At the end of this paper, we
apply the operator method on Fubini numbers and polynomials to give their
explicit formulae.

2. Statement of the main results

Given a generating function f(t) =
∑

n≥0 ant
n, several types of continued

fractions and their connections to generating functions have been studied. P.
Flajolet (see [9]) investigated the Jacobi Type continued fraction (J-fraction)
which is taken under the form:

(3) J(X, t) =
1

1− c0t− a0b1t2

1−c1t−a1b2t
2

···

,

where X = {a0, a1, . . . , b0, b1, . . . , c0, c1, . . . }. When we set formally the co-
efficients cj to 0 and let X ′ = {a0, a1, . . . , b0, b1, . . . }, we obtain the Stieltjes
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type continued fraction defined as

(4) S(X ′, t) =
1

1− a0b1t2

1−a1b2t
2

···

.

Each of these continued fractions has a power series expansion in t:

J(X, t) =
∑
n≥0

Rnt
n and S(X ′, t) =

∑
n≥0

R′nt
n.

Rn and R′n are polynomials in X and X ′ respectively; the first is Jacobi-
Rogers polynomial, the second is Stieltjes-Rogers polynomial. Inspired from
the recent work [15] of T. Komatsu we provide the continued fraction of
operator C. T. Komatsu considered that the continued T -fraction of f is
written under the form

f(t) = 1− h1t

g1 + h1t− g1h2t

g2+h2t− g2h3t

g3+h3t−
g3h4t

g3+h4t−···

.

Let Pn(t) and Qn(t) be polynomials of degrees not exceeding n. The Padé
approximants Rn(t) = Pn(t)

Qn(t) of f are defined (see [1]) with the property that

Qn(t)f(t)− Pm(t) = O
(
tn+m+1

)
.

These polynomials are chosen so that the power-series expansion of Rn(t)
reproduces as many terms of the Taylor series of f(t) as possible. The ex-
istence and convergence of rational functions Rn(t) to f(t) are established
in the works [1, 2]. For more details on this approximation method we refer
to the book [3] of G.A. Baker. Komatsu provided the following recurrence
relations to calculate the polynomials Pn(t) and Qn(t) according to the co-
efficients gn and gn of the continued T-fraction of f .

Pn(t) = (gn + hnt)Pn−1(t)− gn−1hntPn−2(t),

Qn(t) = (gn + hnt)Qn−1(t)− gn−1hntQn−2(t),

with initial terms

P−1(t) = 1, Q−1(t) = 0 and P0(t) = Q0(t) = 1.

The closed formulae of Pn(t) and Qn(t) are

Pn(t) = g1 · · · gn and Qn(t) = g1 · · · gn
n∑
j=0

h1 · · ·hj
g1 · · · gj

tj .

Then we have

f(t) = lim
n→∞

Pn(t)

Qn(t)
=

 ∞∑
j=0

h1 · · ·hj
g1 · · · gj

tj

−1

.



M. Goubi 87

According to this result we deduce that Cm[f ] admit at least tow continued
fraction expansions, the most important (at order 5) is

C5[f ](t) =
1

2− 1
2− 1

2− 1

2− 1

a0−
h1t

g1+h1t−
g1h2t

g2+h2t−
g2h3t

g3+h3t−
g3h4t

g3+h4t−···

.

Throughout this paper we use the following notations and definitions:

0n =

{
1, n = 0,

0, n 6= 0,(
α

n

)
=
α(α− 1) · · · (α− k + 1)

k!
,

the multinomial coefficient,(
k

k1, · · · , kn

)
=

k!

k1! · · · kn!

and the set

πn(k) =

{
(k1, . . . , kn) ∈ Nn−k+1\ k1 + · · ·+ kn = k,

k1 + 2k2 + · · ·+ nkn = n;

}
.

We complete the work of Komatsu [15] by the following theorem which shows
the link between the coefficients gn, hn and the complex numbers an.

Theorem 1.

(5) an =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(−1)k
(

k

k1 · · · kn

)
a1−k

0

n∏
r=1

(
hr
gr

)kr
.

We note by a
(m)
n the numbers generated by the function Cm[f ](t). We

compute the numbers a(1)
n in two different ways.This calculation allows us

to find a combinatorial identity satisfied by the numbers an. More exactly
we have the following result.

Theorem 2. For n ≥ 1 we have
n∑
i=1

i∑
k=0

∑
(k1,··· ,ki)∈πi(k)

(
n− i
k

)(
k

k1 · · · ki

)
an−i−k1

i+1∏
r=2

akr−1
r

=
n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

) n∏
r=1

akrr .(6)
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Each part of the equality (6) is an expression of a(1)
n and we have

(7) a(1)
n =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

) n∏
r=1

akrr

or

(8) a(1)
n =

n∑
i=1

i∑
k=0

∑
(k1,··· ,ki)∈πi(k)

(
n− i
k

)(
k

k1 · · · ki

)
an−i−k1

i+1∏
r=2

akr−1
r .

If we consider f(t) = 1
1−t , the following corollary holds true.

Corollary 1.
n∑
k=0

k∑
i=0

∑
(i1,··· ,ik)∈πk(i)

(
n− k
i

)(
i

i1 · · · ik

)
=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
.

In addition the numbers a(1)
n admit a series expansion, for which the

coefficients are products of powers of ai, 0 ≤ i ≤ n. More precisely we have
the following theorem.

Theorem 3.

(9) a(1)
n =

∑
j≥0

∑
n,j

(−1)j−m
(
j

m

)(
m

k

)(
k

k1 · · · kn

)
aj−k0

n∏
r=1

akrr ,

where ∑
n,j

=

j∑
m=0

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

.

According to identity (9), the following combinatorial identity holds.

Proposition 1. For any complex number a0 6= 0 we have

(10)
∑
j≥0

j∑
m=0

(−1)j−m
(
j

m

)(
m

k

)
aj−k0 = 1.

If a0 = 0 the last series reduces to the identity
k∑

m=0

(−1)k−m
(
k

m

)(
m

k

)
= 1.

If a0 = 1, we will have

(11)
∑
j≥0

j∑
m=0

(−1)j−m
(
j

m

)(
m

k

)
= 1.
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2.1. Proof of Main results. To prove the main results, we need the fol-
lowing lemma.

Lemma 1. Let α ∈ C\ {0} and a0 6= 0, then we have

(12) fα(t) =
∑
n≥0

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
α

k

)(
k

k1 · · · kn

)
aα−k0

n∏
r=1

akrr t
n.

We reproduce here the proof given in [10]. If f(t) and g(t) are functions
for which all the necessary derivatives are defined; Faà di Bruno (see [8])
provide the following formula for computing the successive derivatives of
the composition g ◦ f(t).

(g ◦ f)(n) (t) =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

n!

k1! · · · kn!

(
g(k) ◦ f(t)

) n∏
i=1

(
f (i)(t)

i!

)ki
.

Let the auxiliary function g(t) = tα then g ◦ f(t) = fα(t) =
∑

n≥0 bnt
n is

a generating function and the derivative at order n in zero is
dnfα(t)

dtn
|t=0 = n!bn.

But from the Faà di Bruno formula we have

(g ◦ f)(n) (t) =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

n!

k1! · · · kn!
(α)kf

α−k(t)

n∏
i=1

(
f (i)(t)

i!

)ki
.

The evaluation of g ◦ f(t) in zero gives

(g ◦ f)(n) |t=0 =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

n!

k1! · · · kn!
(α)ka

α−k
0

n∏
i=1

ak1i , n ≥ 1.

Finally b0 = (g ◦ f)(0) (0) = aα0 and

bn =

n∑
k=0

1

k!

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
(α)ka

α−k
0

n∏
r=1

akrr , n ≥ 1.

Using the property
(−1
k

)
= (−1)k the following corollary is immediate.

Corollary 2. For a0 6= 0, we have

(13)
1

f(t)
=
∑
n≥0

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(−1)k
(

k

k1 · · · kn

)
a−1−k

0

n∏
r=1

akrr t
n.

a0 6= 0 is a necessary and sufficient condition for the reciprocal to be a
generating function, for the proof we refer to the Proposition in [22, §.2,p.31].
So expression (13) improves the result given in [4, Theorem 1] with the use of
the determinants. If 1

f(t) is written in the form 1
f(t) =

∑
n≥0 bnt

n. Then we
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have bn = (−1)nDn(ar)

an+1
0

, whereDn(ar) is the determinant given by recurrence
[4, Proposition 2.1]:

n∑
i=0

(−a0)iaiDn−i(ar) = 0.

We then deduce the explicit formula of Dn(ar):

(14) Dn(ar) = (−1)n
n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
(−a0)n−k

n∏
r=1

akrr .

2.2. Proof of Theorem 1. In one hand we have f(t) =
∑

n≥0 ant
n and in

another hand

f(t) =

 ∞∑
j=0

h1 · · ·hj
g1 · · · gj

tj

−1

.

After computation and simplification of f−1(t) with the coefficient

an =
h1 · · ·hn
g1 · · · gn

as in the identity (13) Corollary 2, we will have the identity (5) Theorem 1.

2.3. Proof of Theorem 2. The function

C[f ](t) =
∑
n≥0

a(1)
n tn

is written in two different ways. First from the expression

C[f ](t) =
∑
j≥0

(f(t)− a0)j

we have

C[f ](t) =
∑
j≥0

∑
i≥0

ai+1t
i

j

tj .

But according to identity (12) Lemma 1 we have∑
i≥0

ai+1t
i

j

=
∑
i≥0

i∑
k=0

∑
(k1,··· ,ki)∈πi(k)

(
j

k

)(
k

k1 · · · ki

)
aj−k1

i+1∏
r=2

akr−1
r ti

and

C[f ](t) =
∑
j≥0

∑
i≥0

i∑
k=0

∑
(k1,··· ,ki)∈πi(k)

(
j

k

)(
k

k1 · · · ki

)
aj−k1

i+1∏
r=2

akr−1
r ti+j .
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Then we replace j by n = j + i, to deduce that

C[f ](t) =
∑
n≥0

n∑
i=0

i∑
k=0

∑
(k1,··· ,ki)∈πi(k)

(
n− i
k

)(
k

k1 · · · ki

)
an−i−k1

i+1∏
r=2

akr−1
r tn

and

a(1)
n =

n∑
i=0

i∑
k=0

∑
(k1,··· ,ki)∈πi(k)

(
n− i
k

)(
k

k1 · · · ki

)
an−i−k1

i+1∏
r=2

akr−1
r .

In another way we have

C[f ](t) =
1

1−
∑

n≥1 ant
n

but by means of identity (12) Lemma 1 we have1−
∑
n≥1

ant
n

−1

=
∑
n≥0

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(−1)k
(
−1

k

)(
k

k1 · · · kn

) n∏
r=1

akrr t
n

and (−1)k
(−1
k

)
= 1. Then

a(1)
n =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

) n∏
r=1

akrr

and the combinatorial identity (6) follows.

2.4. Proof of Theorem 3. The proof of Theorem 3 consists in writing

C[f ](t) =
∑
j≥0

(f(t)− a0)j =
∑
j≥0

j∑
m=0

(
j

m

)
(−a0)j−mfm(t).

With the use of identity (12) Lemma 1, we can show that

C[f ](t) =∑
n≥0

∑
j≥0

j∑
m=0

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(−1)j−m
(
j

m

)(
m

k

)(
k

k1 · · · kn

)
aj−k0

n∏
r=1

akrr t
n

and the coefficient a(1)
n is deduced:

a(1)
n =

∑
j≥0

j∑
m=0

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(−1)j−m
(
j

m

)(
m

k

)(
k

k1 · · · kn

)
aj−k0

n∏
r=1

akrr .

Finally the identity (10) Proposition 1 is derived from the identities (7) and
(9).
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2.5. Numbers associated to Cm(f). In the general case, what we hope is
a few recurrence formulae satisfied by the numbers a(m)

n m ≥ 2. First, we
can derive from relation (9) Theorem 3 the following identity.

a(m)
n (x) =

∑
j≥0

∑
n,j

(−1)j−m
(
j

m

)(
m

k

) n∏
r=1

(
a(m−1)
r

)kr
.

But the most elegant is given by the following theorem.

Theorem 4. For m ≥ 2 we have

(15) a(m)
n =

1

2

n∑
j=1

(
n

j

)
a

(m)
n−ja

(m−1)
j .

The proof is to use the relation

Cm[f ](t)
(
2− Cm−1[f ](t)

)
= 1.

So we will have

2Cm[f ](t)− Cm[f ](t)Cm−1[f ](t) = 1.

Returning to the generating functions we conclude that a(m)
0 = 1 and

2a(m)
n −

n∑
j=0

(
n

j

)
a

(m)
n−ja

(m−1)
j = 0.

Thus the desired result follows.

3. Generalization and Application

We can extend the operator C to the sequence fn(t) = (f(t)− f(0))ωn and
we consider f(y, t) =

∑
n≥n y

ωn (f(t)− f(0))ωn where ω is a positive integer.
This series is convergent for |y| ≤ 1 because we also have | (f(t)− f(0))ω | <
1 in the interval I. The operator Cy,ω is defined by

Cy,ω[f ](t) =
1

1− yω (f(t)− f(0))ω
.

We have C1,1 = C, the composition of Cy,ω with itself m times gives the
operator C(m)

y,ω obtained recursively by the formula

(16) C(m)
y,ω [f ](t) =

1

1− yω
(
C(m−1)
y,ω [f ](t)− f(0)

)ω , m ≥ 1.

For f =
∑

n≥0 ant
n be a generating function and a(m,ω)(y) the corresponding

polynomials associated to the generating function Cmy,ω[f ](t). It is obvious
to remark that

Cy,ω[f ](t) =

1−

∑
n≥1

yant
n

ω−1

.



M. Goubi 93

According to the identity (12) Lemma 1 we will have∑
n≥1

yant
n

ω

=
∑
n≥ω

∑
(ω1,··· ,ωn)∈πn(ω)

(
ω

ω1 · · ·ωn

)
aω1

1 · · · a
ωn
n yωtn.

For the sake of simplifying the calculations, we write

1−

∑
n≥1

yant
n

ω

=
∑
n≥0

a∗n,ω(y)tn

with a∗0,ω(y) = 1, a∗n,ω(y) = 0; 1 ≤ n ≤ ω − 1 and

a∗n,ω(y) = −
∑

(ω1,··· ,ωn)∈πn(ω)

(
ω

ω1 · · ·ωn

)
aω1

1 · · · a
ωn
n yω, n ≥ ω.

Using the result (13) Corollary 2 we conclude that

Cy,ω[f ](t) =
∑
n≥0

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
a∗k11,ω(y) · · · a∗knn,ω(y)tn

and

a(1,ω)
n (y) =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
a∗k11,ω(y) · · · a∗knn,ω(y).

The identity

Cy,ω[f ](t)
(

1− y
(
C(m−1)
y,ω [f ](t)− 1

))
= 1, m ≥ 2

implies that

(1 + y)
∑
n≥0

a(m,ω)
n (y)tn − y

∑
n≥0

a(m,ω)
n (y)tn

∑
n≥0

a(m−1,ω)
n (y)tn

 = 1.

Then we have a(m,ω)
0 (y) = 1 and

(1 + y) a(m,ω)
n (y) = y

n∑
k=0

a
(m,ω)
k (y)a

(m−1,ω)
n−k (y).

Finally

a(m,ω)
n (y) = y

n−1∑
k=0

a
(m,ω)
k (y)a

(m−1)
n−k (y).

So we have already proved the following theorem.
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Theorem 5.

(17) a(1,ω)
n (y) =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
a∗k11,ω(y) · · · a∗knn,ω(y)

and

(18) (1 + y) a(m,ω)
n (y) = y

n−1∑
k=0

a
(m,ω)
k (y)a

(m−1)
n−k (y), m ≥ 2.

Now for m = ω = 1, we note a(1,1)
n (y) = a

(1)
n (y) and a∗n,1(y) = −any. We

deduce the following corollary.

Corollary 3. For n > 0 we have

(19) a(1)
n (y) =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

) n∏
r=1

akrr (−y)k.

Substitute y = 1 in the identity (17) Theorem 5, we get identity (7) in
another way.

3.1. Application to Fubini numbers and two variable Fubini polyno-
mials. The application of this operator on the exponential function, allows
us to calculate the explicit formulas of the Fubini numbers and the two vari-
ables Fubini polynomials. The two variable Fubini or geometric polynomials
(see [13]) are usually defined by means of the generating function

(20)
ext

1− y (et − 1)
=
∑
n≥0

Fn(x, y)
tn

n!
.

The case x = 0 corresponds to Fubini polynomials Fn(y) = Fn(0, y); for
which the generating function is

(21)
1

1− y (et − 1)
=
∑
n≥0

Fn(y)
tn

n!
.

The case (x, y) = (0, 1) corresponds to the ordered Bell numbers; given by

(22)
1

2− et
=
∑
n≥0

Fn
tn

n!
.

The function et respects the condition |et − 1| < 1 on a chosen nonempty
interval I centered in 0. Thus the application of the operator Cy,ω on the
function et makes it possible to deduce that extCy,1[e](t) generates polyno-
mials Fn (x, y), Cy,1[e](t) generates polynomials Fn(y) and C[e](t) generates
numbers Fn.

In 1939 Sheffer (see [19]) initiated study of a class of polynomials which
are known as Sheffer sequences. These sequences have been characterized in
a variety of ways. We choose here to take the Sheffer sequences investigated
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in article [14]; a sequence Sn(x) is called the Sheffer sequence for the Sheffer
pair (g(t), f(t)), which is denoted by Sn (g(t), f(t)) ∼ (g(t), f(t)) if and only
if

(23)
exf̄(t)

g
(
f̄(t)

) =
∑
n≥0

Sn(x)
tn

n!
,

where f, g two generating functions and f̄ is the compositional inverse of f
satisfying f

(
f̄(t)

)
= f̄ (f(t)) = t. Sn(x) satisfies the Sheffer identity (see

[18]):

Sn(x+ y) =
n∑
k=0

(
n

k

)
Sk(x)Pn−k(y),

where Pn(x) = g(t)Sn(x) ∼ (1, f(t)) . According to identity (23) we have for
example

Fn (x, y) ∼
(
1− y

(
et − 1

)
, t
)
.

The ω-torsion Fubini polynomial is the Sheffer sequence

Fn,ω(x, y) ∼
(
1− yω

(
et − 1

)ω
, t
)

and we have

(24)
ext

1− yω (et − 1)ω
=
∑
n≥0

Fn,ω(x, y)
tn

n!
.

In addition, more general Fubini polynomials than Fn,ω(x, y) have been stud-
ied in the literature, like r-Fubini polynomials Fn,r(x), r-Whitney-Fubini
polynomials Fm,r(n, x) and Eulerian-Fubini polynomials Am,r(n, x). We re-
call respectively their generating functions; for Fn,r(x) (see [17, Theorem 1,
p.73]) we have

r!ert

(1− x (et − 1))r+1 =
∑
n≥0

Fn,r(x)
tn

n!
.

But for Fm,r(n, x) (see [7, Theorem 10 Identity 14]) we have

r!ert

(1− x (emt − 1))r+1 =
∑
n≥0

Fm,r(n, x)
tn

n!
.

Finally for Am,r(n, x) (see [7, Theorem 19 Identity 18])we have

r!(x− 1)r+1er(x−1)t(
x− em(x−1)t

)r+1 =
∑
n≥0

Am,r(n, x)
tn

n!
.

These polynomials are related each other by the following connections:

Fm,r(n, x) = xnAm,r
(
n,
x+ 1

x

)
,

F1,r(n, x) = Fn,r(x)
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and then

Fn,r(x) = xnA1,r

(
n,
x+ 1

x

)
.

Of course, Fubini polynomials have been studied as ordered Bell polyno-
mials too. Different of Bell polynomials Beln(x) defined by means of the
generating function ex(e

t−1) and Bell numbers Beln = Beln(1) given by the
generating function ee

t−1. First we consider the Fubini polynomials Fn(x)
(see [6]). Many authors have been very interested in arithmetic properties
of these polynomials. S.M. Tannay (see [21]) provided that the polynomials
Fn(y) admit the following configuration

(25) Fn(y) =
n∑
k=0

S (n, k) k!yk,

where S (n, k) are the Stirling numbers of the second kind (see [6, Defini-
tion A §5.1]). From the generating function (21), he derived a remarkable
representation of Fn(x) for x 6= −1 as an infinite series:

(26) Fn(y) =
1

1 + y

∑
n≥0

(
y

1 + y

)k
kn,

and obtained the known identity

(27) Fn =
1

2

∑
n≥0

kn

2k
.

The next corollary states an improvement of the formula (25).

Corollary 4.

(28) Fn(y) = n!

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)(
1

1!

)k1
· · ·
(

1

n!

)kn
yk.

After comparison between the two forms of Fn(y) we conclude that

S (n, k) = (n!/k!)
∑

(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)(
1

1!

)k1
· · ·
(

1

n!

)kn
.

Also we have
1

1− yω (et − 1)ω
=
∑
n≥0

Fn,ω(y)
tn

n!
.

that is to say that

Cy,ω[f ](t) =
∑
n≥0

Fn,ω(y)
tn

n!
,

and then
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Corollary 5.

(29) Fn,ω(y) = n!

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
a∗k11,ω(y) · · · a∗knn,ω(y),

with

a∗n,ω(y) = −
∑

(ω1,··· ,ωn)∈πn(ω)

(
ω

ω1 · · ·ωn

)(
1

1!

)ω1

· · ·
(

1

n!

)ωn

yω, n ≥ ω.

We end this work, by establishing the explicit formula of the ω-torsion
Fubini polynomials. Using the Cauchy product (see [11]) of generating func-
tions we will have

ext

1− yω (et − 1)ω
=

∑
n≥0

xn
tn

n!

∑
n≥0

Fn,ω(y)
tn

n!


and ∑

n≥0

Fn,ω(x, y)
tn

n!
=
∑
n≥0

(
1

n!

n∑
k=0

(
n

k

)
Fk,ω(y)xn−k

)
tn.

Furthermore

Fn,ω(x, y) =
n∑
k=0

(
n

k

)
Fk,ω(y)xn−k.

So the following identity is true

Corollary 6.

Fn,ω(x, y) =
n∑
k=0

k∑
j=0

∑
(j1,··· ,jk)∈πk(j)

n!

(n− k)!

(
j

j1 · · · jk

) k∏
r=1

a∗jrr,ω(y)xn−k.
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