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Common fixed points under strict conditions

Hakima Bouhadjera, Said Beloul, Achref Eddine Tabet

Abstract. In this contribution, three new concepts called reciprocally
continuous, strictly subweakly compatible and strictly subreciprocally
continuous single and multivalued mappings are given for obtention
some common fixed point theorems in a metric space. Our results im-
prove and complement the results of Aliouche and Popa, Azam and Beg,
Deshpande and Pathak, Kaneko and Sessa, Popa and others.

1. Introduction and preliminaries

Let (X , d) be a metric space. We denote by CL(X ) (resp., CB(X )) the
nonempty closed (resp., closed and bounded) subsets of X and H the Haus-
dorff metric on CL(X ) (resp., CB(X ))

H(A,B) = max{sup
x∈A

d(x,B), supx ∈ Bd(A, x)},

where A, B ∈ CL(X ) or CB(X ), and
d(x,A) = inf

y∈A
{d(x, y)}.

Now, let f and g be two self-mappings of a metric space (X , d). In 1982,
Sessa [11] gave the weaker concept of the commutativity, namely the weakly
commuting notion. f and g are weakly commuting if

d(fgx, gfx) ≤ d(gx, fx),
for all x ∈ X .

In 1986, Jungck [5] gave a generalization of the weak commutativity by
giving the notion of compatible mappings. He defined f and g to be com-
patible if

lim
n→∞

d(fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for
some t ∈ X .
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64 Common fixed points under strict conditions

Weakly commuting mappings are compatible. However, compatible map-
pings need not be weakly commuting (see example 2.2 of [13]).

In 1996, Jungck [6] generalized the above notion by introducing the con-
cept of weakly compatible mappings. He defined f and g to be weakly
compatible if they commute at their coincidence points; i.e., if fu = gu for
some u ∈ X , then fgu = gfu.

If f and g are compatible then they are obviously weakly compatible but
as shown in example 2.52 of [1] the converse is not true.

In their paper [8], Kaneko and Sessa extended the definition of com-
patibility to include multivalued mappings in the following way: mappings
f : X → X and F : X → CB(X ) are compatible if fFx ∈ CB(X ) for all
x ∈ X and

lim
n→∞

H(fFxn, Ffxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

Fxn = M ∈ CB(X ) and
lim
n→∞

fxn = t ∈M .
To generalize the above notion, Jungck and Rhoades [7] gave the concept

of weakly compatible mappings. f : X → X and F : X → CB(X ) are said
to be weakly compatible if they commute at their coincidence points; i.e., if
fFx = Ffx whenever fx ∈ Fx.

Recall that a point t ∈ X is called a strict coincidence point (resp.
strict common fixed point) of mappings f : X → X and F : X → CB(X )
if Ft = {ft} (resp. Ft = {ft} = {t}).

2. Main results

Our first objective in this contribution is to generalize the above defini-
tion by introducing the concept of strictly subweakly compatible single and
multivalued mappings.

Definition 1. Mappings f : X → X and F : X → CB(X ) are strictly
subweakly compatible (shortly sswc) if and only if fFx ∈ CB(X ) and
there exists a sequence {xn} in X such that lim

n→∞
fxn = t, lim

n→∞
Fxn = {t}

for some t ∈ X and lim
n→∞

(fFxn, Ffxn) = 0.

The example below shows that there exist sswc mappings which are not
weakly compatible.

Example 1. Let X = [0,∞) and d(x, y) = |x− y|. Define f : X → X and
F : X → CB(X ) by

fx = x2 and Fx =

{
[4, x+ 2], if x ∈ [2, 4] ∪ (9,∞),

{x+ 12}, if x ∈ [0, 2) ∪ (4, 9].
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We have fFx ∈ CB(X ). Consider the sequence {xn} in X defined by
xn = 2 + 1

n for n = 1, 2, . . . , we have

lim
n→∞

fxn = lim
n→∞

x2n = 4 = t,

lim
n→∞

Fxn = lim
n→∞

[4, xn + 2] = {4} = {t},

lim
n→∞

H(fFxn, Ffxn) = lim
n→∞

H([16, (xn + 2)2], {x2n + 12}) = 0,

therefore f and F are sswc.
On the other hand, we have fx ∈ Fx if and only if x ∈ [4, x + 2], but

Ff(x) 6= fF (x), therefore f and F are not weakly compatible.

In 1999, Pant [9] introduced the concept of reciprocally continuous single-
valued mappings as a generalization of continuous mappings: f and g are
reciprocally continuous if and only if lim

n→∞
fgxn = ft and lim

n→∞
gfxn = gt

whenever {xn} ⊂ X is such that lim
n→∞

fxn = lim
n→∞

gxn = t ∈ X .
In 2002, Singh and Mishra [12] introduced the concept of reciprocal con-

tinuity for single and multivalued mappings as follows.

Definition 2. The mappings F : X → CL(X ) and f : X → X are recip-
rocally continuous on X (resp., at t ∈ X ) if and only if fFx ∈ CL(X ) for
each x ∈ X ( resp., fFt ∈ CL(X )) and lim

n→∞
fFxn = fM , lim

n→∞
Ffxn = Ft

whenever {xn} is a sequence in X such that lim
n→∞

Fxn = M ∈ CL(X ),
lim
n→∞

fxn = t ∈M .

Motivated by Pant, Singh and Mishra, we give the following notion of
reciprocally continuous single and multivalued mappings which is different
from the above definition and represents our second objective.

Definition 3. Mappings f : X → X and F : X → CB(X ) are reciprocally
continuous if and only if lim

n→∞
fFxn = {ft} and lim

n→∞
Ffxn = Ft whenever

{xn} ⊂ X is a sequence such that lim
n→∞

fxn = t, lim
n→∞

Fxn = {t} for some
t ∈ X .

Our third objective here is to extend the concept of reciprocally continuous
mappings of Pant and the above one to the setting of single and multivalued
mappings.

Definition 4. Mappings f : X → X and F : X → CB(X ) are strictly
subreciprocally continuous (shortly ssrc) if and only if there exists a
sequence {xn} in X such that lim

n→∞
fxn = t, lim

n→∞
Fxn = {t} for some t ∈ X ,

lim
n→∞

fFxn = {ft} and lim
n→∞

Ffxn = Ft.

The next example shows that there exist ssrc mappings which are not
continuous.
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Example 2. Let X = R. Define f : X → X and F : X → CB(X ) by

fx =

{
x− 1, if x < 0,
x, if x ≥ 0,

Fx =

{
[x− 1,−1], if x < 0,

[0, x], if x ≥ 0.

It is clear to see that f and F are discontinuous at x = 0.
Consider the sequence {xn} in X defined by xn = 1

n for n = 1, 2, . . . We
have

lim
n→∞

fxn = lim
n→∞

xn = 0 = t,

lim
n→∞

Fxn = lim
n→∞

[0, xn] = {0} = {t},

lim
n→∞

fFxn = lim
n→∞

[0, xn] = {0} = {f(0)} = {f(t)},

lim
n→∞

Ffxn = lim
n→∞

[0, xn] = {0} = F (0) = F (t),

therefore f and F are ssrc.

Now, we are ready to present and prove our main result.

Theorem 1. Let (X , d) be a metric space. Let f , g : X → X and F ,
G : X → CB(X ) be single and multivalued mappings respectively such that
f and F as well as g and G are reciprocally continuous and sswc or ssrc and
compatible. Let ϕ : R6

+ → R be a lower semi continuous function satisfying:
(ϕ1): ϕ is nonincreasing in variables t5 and t6,
(ϕ2): ϕ(u, u, 0, 0, u, u) > 0 for all u > 0 and the inequality

(1)
ϕ
(
H(Fx,Gy), d(fx, gy), d(fx, Fx),

d(gy,Gy), d(fx,Gy), d(gy, Fx)
)
≤ 0,

for all x and y in X , then, f , g, F and G have a strict common fixed point
in X .

Proof. Since f and F as well as g and G are reciprocally continuous and sswc
or ssrc and compatible then, there exist two sequences {xn} and {yn} in X
such that lim

n→∞
fxn = t, lim

n→∞
Fxn = {t} for some t ∈ X , lim

n→∞
fFxn = {ft}

and lim
n→∞

Ffxn = Ft; lim
n→∞

gyn = z, lim
n→∞

Gyn = {z} for some z ∈ X ,
lim
n→∞

gGyn = {gz} and lim
n→∞

Ggyn = Gz.
First we prove that ft = gz. In fact, by (1) we have

ϕ
(
H(Ft,Gz), d(ft, gz), d(ft, F t),

d(gz,Gz), d(ft,Gz), d(gz, F t)
)
≤ 0.

Since Ft = {ft}, Gz = {gz} and ϕ is nonincreasing in t5 and t6, we get

ϕ
(
d(ft, gz), d(ft, gz), 0, 0, d(ft, gz), d(gz, ft)

)
≤ 0,

which is a contradiction with ϕ2. Then ft = gz.
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Now, we claim that t = ft, by (1) we have

ϕ
(
H(Fxn, Gz), d(fxn, gz), d(fxn, Fxn),

d(gz,Gz), d(fxn, Gz), d(gz, Fxn)
)
≤ 0.

Letting n tends to infinity and taking in account that ϕ is lower semi con-
tinuous, we get

ϕ(d(t, ft), d(t, ft), 0, 0, d(t, ft), d(ft, t)) ≤ 0,

which contradicts ϕ2. Then ft = t.
Next, we prove that z = t. Indeed, by (1) we have

ϕ
(
H(Fxn, Gyn), d(fxn, gyn), d(fxn, Fxn),

d(gyn, Gyn), d(fxn, Gyn), d(gyn, Fxn)
)
≤ 0.

When n tends to infinity, we get

ϕ
(
d(t, z), d(t, z), 0, 0, d(t, z), d(z, t)

)
≤ 0,

which contradicts (ϕ2), therefore z = t. Consequently, t is a strict common
fixed point of f , g, F and G. �

Corollary 1. Let (X , d) be a metric space. Let f , g : X → X and F ,
G : X → CB(X ) be single and multivalued mappings respectively such that
f and F as well as g and G are reciprocally continuous and sswc or ssrc and
compatible. Assume that

(2)
H(Fx,Gy) ≤ mmax

{
d(fx, gy), d(fx, Fx), d(gy,Gy),

1
2

(
(d(fx,Gy) + d(gy, Fx)

)}
,

where m ∈ (0, 1), or

H2(Fx,Gy) ≤ m2max
{
d2(fx, gy), d(fx, Fx)d(gy,Gy), d(fx,Gy)d(gy, Fx),

d(fx,Gy)d(fx, Fx), d(gy, Fx)d(gy,Gy)
}
,(3)

where m2 ∈ (0, 1), or

(4)
H2(Fx,Gy) +

H(Fx,Gy)

1 + d(fx,Gy)d(gy, Fx)
−

−[ad2(fx, gy) + bd2(fx, Fx) + cd2(gy,Gy)] ≤ 0,

where a, b, c > 0 and a+ b+ c < 1.
Then f , g, F and G have a strict common fixed point.
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Remark 1. (1) Our main result improves the main result of Popa [10].
(2) By the above corollary and (2) for f = g and F = G, we obtain an

extension of the main result of Kaneko and Sessa [8].
(3) The main result of Azam and Beg [3] follows from the above corollary

and (2), because

d(fx, gy) ≤ max
{
d(fx, gy), d(fx, Fx), d(gy,Gy),

1
2 [d(fx,Gy) + d(gy, Fx)]

}
.

(4) Also, our main result improves the main results of Aliouche and
Popa [2], Deshpande and Pathak [4] because, in our work, we have
not continuity, neither completeness nor inclusion, and we did not
impose a lot of conditions on the four mappings.

Example 3. Let X = [0, 2] endowed with the Euclidean metric, define
mappings f , g, F and G as follows:

fx =

{
1
2(x+ 1), 0 ≤ x ≤ 1,

0, 1 < x ≤ 2,
gx =

 x+ 1
2 , 0 ≤ x < 1,

1, x = 1,
2, 1 < x ≤ 2,

Fx =

{
[1, 2− x], 0 ≤ x ≤ 1,
{32}, 1 < x ≤ 2,

Gx =

{
{1}, 0 ≤ x ≤ 1
[0, 12 ], 1 < x ≤ 2.

We consider a sequence {xn} defined for each n ≥ 1 by xn = 1− 1
n , clearly

lim
n→∞

Fxn = {1} and lim
n→∞

fxn = 1, also we have

lim
n→∞

fFxn = {1} = f{1},

lim
n→∞

Ffxn = F1 = {1}.

Also, lim
n→∞

H(fFxn, Ffxn) = 0. Hence f and F are ssrc and compatible.

For g and G, consider a sequence {yn} defined by yn = 1
2(1− e

−n), for all
n ≥ 1. It is clear that

lim
n→∞

gyn = 1, lim
n→∞

Gyn = {1},

lim
n→∞

gGyn = g{1} = {1}, lim
n→∞

Ggyn = G1 = {1},

lim
n→∞

H(gGyn, Ggyn) = 0,

i.e., g and G are ssrc and compatible.
By taking m = 4

5 in corollary 1, we show that inequality (2) is satisfied.
We have the following cases:

(1) For x, y ∈ [0, 1], we have H(Fx,Gy) = 0, obviously inequality (2) is
satisfied.

(2) For x ∈ [0, 1] and y ∈ (1, 2], we have

H(Fx,Gy) = 1 ≤ 6

5
=

4

5
d(gy,Gy).
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(3) For x ∈ (1, 2] and y ∈ [0, 1], we have

H(Fx,Gy) =
1

2
≤ 6

5
=

4

5
d(fx, Fx).

(4) For x, y ∈ (1, 2], we have

H(Fx,Gy) = 1 ≤ 8

5
=

4

5
d(fx, gy),

then all hypotheses of corollary 1 are satisfied and the point 1 is a strict
common fixed point for f , g, F and G.

Corollary 2. Let f , g : X → X be single valued mappings and let F ,
G : X → CB(X ) be multivalued mappings on a metric space (X , d) such
that the pairs f and F as well as g and G are ssrc and compatible for all x,
y ∈ X . Then the pair of mappings (f, F ) and (g,G) has a strict coincidence
point. Moreover f , g, F and G have a strict common fixed point in X
provided that mappings satisfy

H(Fx,Gy) ≤ φ
(
d(fx, gy), d(fx, Fx), d(gy,Gy), d(fx,Gy), d(gy, Fx)

)
,

where φ : R5
+ → R+ is an upper semi continuous function such that φ(0) = 0

and φ(t, 0, 0, t, t) < t for each t > 0.

Proof. The proof follows immediately on taking

ϕ(t1, t2, t3, t4, t5, t6) = t1 − φ(t2, t3, t4, t5, t6)

in Theorem 1, where φ : R5
+ → R+ is an upper semi continuous function

such that φ(0) = 0 and φ(t, 0, 0, t, t) < t for each t > 0. �
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