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The influence of θ-function
to the class of MWP operators

Ishak Altun, Gonca Durmaz

Abstract. In this work, taking into account the θ-function, we present
a general class of multivalued weakly Picard operators on complete met-
ric space. We also provide an example showing that it includes some
earlier classes as properly.

1. Introduction

One of the most important concept of metric fixed point theory is Mul-
tivalued Weakly Picard (shortly MWP) operator introduced by Rus [21] in
1991. Let (X, d) be a metric space and P(X) be the family of all nonempty
subsets of X. A multivalued mapping T : X → P(X) is Multivalued Weakly
Picard operator if there exists a sequence {xn} inX such that xn+1 ∈ Txn for
any initial point x0, which converges to a fixed point of T . We shall denote
the class of all MWP operators onX byMWP(X). There are a lot of papers
and results about MWP operators in the literature (see [17, 18, 19, 20]).

For the sake of completeness we recall some important concepts and re-
sults about multivalued mappings.

Let (X, d) be a metric space. We denote by CB(X) the family of all
nonempty closed and bounded subsets of X and by K(X) the family of all
nonempty compact subsets of X. Let H be the Pompeiu-Hausdorff metric
(see [2, 11]) with respect to d, that is,

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
,

for every A,B ∈ CB(X), where D(x,A) = inf {d(x, y) : y ∈ A}. In 1969,
Nadler [17] initiated the idea for multivalued contraction mapping and ex-
tended the Banach contraction principle to multivalued mappings and proved
the following:
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Theorem 1. Let (X, d) be a complete metric space and T : X → CB(X) be
multivalued mapping. If T is a multivalued contraction, that is, there exists
λ ∈ [0, 1) such that

H(Tx, Ty) ≤ λd(x, y),

for all x, y ∈ X, then there exists z ∈ X such that z ∈ Tz.

Later on, several researches were conducted on a variety of generalizations,
extensions and applications of this result of Nadler (see [3, 8, 9, 13, 14, 16]).
Furthermore, Berinde and Berinde [1] introduced the concepts of multivalued
almost contraction and multivalued nonlinear almost contraction as follows:
Let (X, d) be a metric space and T : X → CB(X) be a mapping. Then,

(i) T is said to be a multivalued almost contraction if there exist two
constants λ ∈ (0, 1) and L ≥ 1 such that

H(Tx, Ty) ≤ λd(x, y) + LD(y, Tx),

for all x, y ∈ X. We will denote the class of multivalued almost contractions
on X byMA(X).

(ii) T is said to be a multivalued nonlinear almost contraction if there
exists a constant L ≥ 0 and a function ϕ : [0,∞)→ [0, 1) satisfying

(1) lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0,

such that

(2) H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + LD(y, Tx),

for all x, y ∈ X. We denote the class of all multivalued nonlinear almost
contractions on X byMNA(X).

A function ϕ : [0,∞)→ [0, 1) satisfying (1) is called Mizoguchi-Takahashi
function ( as shortMT -function [7, 8, 22]) in the literature. Let’s note, by
the symmetry property of the metric, the above contractive conditions im-
plicitly includes their dual ones. If L = 0, then (2) turns to the famous
Mizoguchi-Takahashi [16] contractive condition, which includes the multi-
valued contraction in sense of Nadler [17]. If we examine the proofs of
Theorem 3 and Theorem 4 of [1], we can infer the following:

Theorem 2. If (X, d) is a complete metric space, then

MA(X) ⊆MNA(X) ⊆MWP(X).

On the other hand, Jleli and Samet [12] presented an interesting gener-
alization of the Banach contraction principle. They introduced a new type
of contractive condition, which we shall call it as θ-contraction. Now, we
recall basic definitions, relevant notions and some related results concerning
θ-contraction. Let θ : (0,∞)→ (1,∞) be a function. Next we will consider
the following properties for θ:

(θ1) θ is nondecreasing;
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(θ2) For each sequence {tn} ⊂ (0,∞) , limn→∞ θ(tn) = 1 and limn→∞ tn =
0+ are equivalent;

(θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)−1
tr = l;

(θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.
We denote by Θ and Ω be the set of all functions θ satisfying (θ1)-(θ3)

and (θ1)-(θ4), respectively. It is clear that Ω ⊂ Θ. Some examples of the
functions belonging Ω are θ1(t) = e

√
t and θ2(t) = e

√
tet . If we define

θ3(t) =

{
e
√
t, t < 1,

9, t ≥ 1,

then, we can see θ3 ∈ Θ\Ω. Note that, if a function θ satisfies (θ1), then it
satisfies (θ4) if and only if it is right continuous.

By considering the conditions (θ1)-(θ3), Jleli and Samet [12] introduced
the concept of θ-contraction, which is more general than Banach contraction.
Let (X, d) be a metric space and θ ∈ Θ. A mapping T : X → X is said to
be a θ-contraction if there exists a constant k ∈ [0, 1) such that

(3) θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k ,

for all x, y ∈ X with d(Tx, Ty) > 0. As a real generalization of Banach
contraction principle, Jleli and Samet proved that every θ-contraction on
a complete metric space has a unique fixed point. In addition, from (θ1)
and (3), it is easy to concluded that every θ-contraction T is a contractive
mapping, i.e., d(Tx, Ty) < d(x, y) for all x, y ∈ X with Tx 6= Ty. Thus,
every θ-contraction mapping on a metric space is continuous.

Afterwards, many researches were conducted on a variety of generaliza-
tions, extensions and applications of the result of Jleli and Samet (See
[4, 5, 6, 10, 15]). Hançer et al. [10] also extended the concept of θ-contraction
to multivalued case. Moreover in these directions, Durmaz and Altun [5] and
Mınak and Altun [15] presented the following concepts: Let (X, d) be a met-
ric space and T : X → CB(X) be given a mapping. Then,

(i) T is said to be a multivalued almost θ-contraction with θ ∈ Θ [5] if
there exist two constants k ∈ (0, 1) and λ ≥ 0 such that

θ(H(Tx, Ty)) ≤ [θ(d(x, y) + λD(y, Tx))]k ,

for all x, y ∈ X with H(Tx, Ty) > 0.
(ii) T is said to be a multivalued nonlinear θ-contraction with θ ∈ Θ [15]

if there exists a function k : (0,∞)→ [0, 1) such that

lim sup
t→s+

k(t) < 1, ∀s ≥ 0,

satisfying
θ(H(Tx, Ty)) ≤ [θ(d(x, y))]k(d(x,y)),

for all x, y ∈ X with H(Tx, Ty) > 0.
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We shall denote the class of all multivalued almost θ-contractions with
θ ∈ Θ (resp. θ ∈ Ω) on X byMAΘ(X) (resp. MAΩ(X)) and the class of
all multivalued nonlinear θ-contractions with θ ∈ Θ (resp. θ ∈ Ω) on X by
MNΘ(X) (resp. MNΩ(X)). If we examine the proof of Theorem 2.1 in
[5] and the proof of Theorem 8 in [15], we can infer the following theorems,
respectively:

Theorem 3. If (X, d) is a complete metric space, then

MAΩ(X) ⊆MWP(X).

Theorem 4. If (X, d) is a complete metric space, then

MNΩ(X) ⊆MWP(X).

We can see from the above definitions and theorems that if (X, d) is a
metric space, then

MA(X) ⊆MAΩ(X) ⊆MAΘ(X)

and
MN (X) ⊆MNΩ(X) ⊆MNΘ(X)

and further if (X, d) is complete metric space, then

MAΩ(X) ∪MNΩ(X) ⊆MWP(X).

However, Example 1 of [15] shows that, even if (X, d) is a complete metric
space, then

MAΘ(X) "MWP(X) andMNΘ(X) "MWP(X).

In this paper, we present a general class of MWP operators on a complete
metric space (X, d) which includes the classes MNA(X), MAΩ(X) and
MNΩ(X).

2. The results

Definition 1. Let (X, d) be a metric space, T : X → CB(X) be a mapping.
We say that T is a multivalued nonlinear almost θ-contraction with θ ∈ Θ
if there exists a constant λ ≥ 0 and a function k : (0,∞)→ [0, 1) such that

lim sup
t→s+

k(t) < 1, ∀s ≥ 0,

satisfying

(4) θ(H(Tx, Ty)) ≤ [θ(d(x, y) + λD(y, Tx))]k(d(x,y)),

for all x, y ∈ X with H(Tx, Ty) > 0.

We shall denote the class of all multivalued nonlinear almost θ-contractions
with θ ∈ Θ (resp. θ ∈ Ω) on X by MNAΘ(X) (resp. MNAΩ(X)). It is
clear that

MAΘ(X) ∪MNΘ(X) ∪MNA(X) ⊆MNAΘ(X).
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Now we give our main result, which presents a general class of MWP
operators on complete metric space.

Theorem 5. If (X, d) is a complete metric space, then MNAΩ(X) ⊆
MWP(X).

Proof. Let (X, d) be a complete metric space and T ∈ MNAΩ(X). Define
a set X∗ = {x ∈ X : D(x, Tx) > 0}. Let x0 ∈ X\X∗ be an arbitrary point,
then x0 is a fixed point of T and also the sequence {xn} = {x0, x0, x0, . . . }
converges to x0 which satisfies xn+1 ∈ Txn. Now let x0 ∈ X∗ and choose
x1 ∈ Tx0. If x1 ∈ X\X∗, then x1 is a fixed point of T and so we can
construct a Picard sequence which converges to x1. Suppose x1 ∈ X∗, then
we have 0 < D(x1, Tx1) ≤ H(Tx0, Tx1) and so from (θ1), we obtain

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1)).

From (4), we can write that

(5)

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1))

≤ [θ(d(x0, x1) + λD(x1, Tx0))]k(d(x0,x1))

= [θ(d(x0, x1))]k(d(x0,x1)) .

From (θ4), we can write

θ(D(x1, Tx1)) = inf
y∈Tx1

θ(d(x1, y))

and so from (5) we have

(6)
inf

y∈Tx1
θ(d(x1, y)) ≤ [θ(d(x0, x1))]k(d(x0,x1))

< [θ(d(x0, x1))]
k(d(x0,x1))

2 .

Then, from (6) there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ [θ(d(x0, x1))]
k(d(x0,x1))

2 .

If x2 ∈ X\X∗, then x2 is a fixed point of T . Otherwise, by the same way,
we can find x3 ∈ Tx2 such that

θ(d(x2, x3)) ≤ [θ(d(x1, x2))]
k(d(x1,x2))

2 .

Therefore, continuing recursively, we can obtain a sequence {xn} in X∗ such
that xn+1 ∈ Txn and

(7) θ(d(xn, xn+1)) ≤ [θ(d(xn−1, xn))]
kd(xn−1,xn)

2

for all n ∈ N. Thus the sequence {d(xn, xn+1)} is decreasing and hence con-
vergent. From (7), there exists b ∈ (0, 1) and n0 ∈ N such that k(d(xn, xn+1))
< b for all n ≥ n0. Thus, we obtain for all n ≥ n0 the following inequalities:
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1 < θ(d(xn, xn+1))

≤ [θ(d(xn−1, xn))]k(d(xn−1,xn))

≤ [θ(d(xn−2, xn−1))]k(d(xn−1,xn))k(d(xn−1,xn))

...

≤ [θ(d(x0, x1))]k(d(x0,x1))···k(d(xn−1,xn))k(d(xn−1,xn))

= [θ(d(x0, x1))]k(d(x0,x1))···k(d(xn0−1,xn0 ))k(d(xn0 ,xn0+1))···k(d(xn−1,xn))k(d(xn−1,xn))

≤ [θ(d(x0, x1))]k(d(xn0 ,xn0+1))···k(d(xn−1,xn))k(d(xn−1,xn))

≤ [θ(d(x0, x1))]b
(n−n0)

.

Thus, we obtain

(8) 1 < θ(d(xn, xn+1)) ≤ [θ(d(x0, x1))]b
(n−n0)

for all n ≥ n0. Letting n→∞ in (8), we obtain

(9) lim
n→∞

θ(d(xn, xn+1)) = 1.

From (θ2), limn→∞ d(xn, xn+1) = 0+ and so from (θ3) there exist r ∈ (0, 1)
and l ∈ (0,∞] such that

lim
n→∞

θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
= l.

Suppose that l <∞. In this case, let B = l
2 > 0. From the definition of the

limit, there exists n0 ∈ N such that, for all n ≥ n0,∣∣∣∣θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
− l
∣∣∣∣ ≤ B.

This implies that, for all n ≥ n0,
θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
≥ l −B = B.

Then, for all n ≥ n0,

n [d(xn, xn+1)]r ≤ An [θ(d(xn, xn+1))− 1] ,

where A = 1/B.
Suppose now that l = ∞. Let B > 0 be an arbitrary positive number.

From the definition of the limit, there exists n0 ∈ N such that, for all n ≥ n0,
θ(d(xn, xn+1))− 1

[d(xn, xn+1)]r
≥ B.

This implies that, for all n ≥ n0,

n [d(xn, xn+1)]r ≤ An [θ(d(xn, xn+1))− 1] ,

where A = 1/B.
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Thus, in all cases, there exist A > 0 and n0 ∈ N such that, for all n ≥ n0,

n [d(xn, xn+1)]r ≤ An [θ(d(xn, xn+1))− 1] .

Using (8), we obtain, for all n ≥ n0,

n [d(xn, xn+1)]r ≤ An
[
[θ(d(x0, x1))]b

(n−n0) − 1
]
.

Letting n→∞ in the above inequality, we obtain

lim
n→∞

n [d(xn, xn+1)]r = 0.

Thus, there exits n1 ∈ N such that n [d(xn, xn+1)]r ≤ 1 for all n ≥ n1. So,
we have, for all n ≥ n1

(10) d(xn, xn+1) ≤ 1

n1/r
.

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such
that m > n ≥ n1. Using the triangular inequality for the metric and from
(10), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=
m−1∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

1

i1/r
.

By the convergence of the series
∞∑
i=1

1
i1/r

, letting to limit n → ∞, we get

d(xn, xm)→ 0. This yields that {xn} is a Cauchy sequence in (X, d). Since
(X, d) is a complete metric space, the sequence {xn} converges to some point
z ∈ X. From (θ1) and (4), for all x, y ∈ X with H(Tx, Ty) > 0, we get

H(Tx, Ty) < d(x, y) + λD(y, Tx),

and so
H(Tx, Ty) ≤ d(x, y) + λD(y, Tx),

for all x, y ∈ X. Then

D(xn+1, T z) ≤ H(Txn, T z)

≤ d(xn, z) + λD(z, Txn)

≤ d(xn, z) + λd(z, xn+1).

Passing to limit n→∞ in the above, we obtain D(z, Tz) = 0. Thus, we get
z ∈ Tz. Therefore T ∈ MWP(X). �

Now, we give a significant example showing that T ∈ MWP(X), since
T ∈ MNAΩ(X) when (X, d) is a complete metric space. However, T /∈
MNA(X) ∪MNΩ(X).
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Example 1. Consider the complete metric space (X, d), where X = { 1
2n :

n ∈ N} ∪ {0} and

d(x, y) =

{
0, x = y,

max {x, y} , x 6= y.

Define a mapping T : X → CB(X) by

Tx =

{
{x} , x ∈ {0, 1}{

1
2n+1 ,

1
2n+2 , · · ·

}
, x = 1

2n , n ∈ N, n > 1.

We claim that T ∈ MNAΩ(X) with θ(t) = e
√
tet , λ = 1

2 and k : (0,∞) →
[0, 1) defined by

k(t) =

{
e−

1
2n+2 , if t = 1

2n for n ∈ N,

0, otherwise.

It is clear that lim supt→s+ k(t) = 0 < 1 for all s ∈ [0,∞). Observe that
taking θ(t) = e

√
tet and λ = 1

2 the contractive condition (4) turns to

(11)
H(Tx, Ty)eH(Tx,Ty)−d(x,y)−λmin{d(y,Tx),d(x,Ty)}

d(x, y) + λmin {d(y, Tx), d(x, Ty)}
≤ [k(d(x, y))]2 .

for all x, y ∈ X with H(Tx, Ty) > 0. Now we consider the following cases:
for the brevity we will assign the left side of (11) as A(x, y). Also without
lost of generality we assume x > y in all cases.

Case 1. Let x = 1
2n and y = 1

2m with m > n > 1, then

A(x, y) =
1

2n+1

1
2n

e−
1

2n+1 =
1

2
e−

1
2n+1 ≤ k2(

1

2n
) = k2(d(x, y)),

Case 2. Let x = 1
n , n > 1 and y = 0, then

A(x, y) =
1

2n+1

1
2n

e−
1

2n+1 =
1

2
e−

1
2n+1 ≤ k2(

1

2n
) = k2(d(x, y)),

Case 3. Let x = 1 and y = 0, then

A(x, y) =
1

1 + 1
2

e−
1
2 =

2

3
e−

1
2 ≤ e−

1
2 = k2(1) = k2(d(x, y)).

Case 4. If x = 1
n , n > 1 and y = 1, then

A(x, y) =
1

1 + 1
2

e−
1
2 =

2

3
e−

1
2 ≤ e−

1
2 = k2(1) = k2(d(x, y)).

This shows that T ∈ MNAΩ(X). Also since (X, d) is complete metric
space, then by Theorem 5, T ∈MWP(X).
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On the other hand, since H(T0, T1) = 1 = d(0, 1), then for all θ ∈ Ω and
for all k : (0,∞)→ [0, 1) satisfying inequality (1), we have

θ(H(T0, T1)) = θ(1) > θ(1)k(1) = θ(d(0, 1))k(d(0,1)).

Therefore, T /∈MNΩ(X).

The following result is interested in the mapping T : X → K(X). Here,
we can remove the condition (θ4) on the function θ. For this, we will use
that if A is compact subset of a metric space (X, d), then for every x ∈ X
there exists a ∈ A such that d(x, a) = d(x,A).

Theorem 6. Let (X, d) be a complete metric space and T : X → K(X) be
a mapping. If T ∈MNAΘ(X), then T ∈MWP(X).

Proof. As in proof of Theorem 5, we get

(12)

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1))

≤ [θ(d(x0, x1) + λD(x1, Tx0))]k(d(x0,x1))

≤ [θ(d(x1, x0))]k(d(x0,x1)) .

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = d(x1, Tx1).
From (12),

(13)

θ(d(x1, x2)) ≤ θ(H(Tx0, Tx1))

≤ [θ(d(x0, x1) + λD(x1, Tx0))]k(d(x0,x1))

< [θ(d(x1, x0))]k(d(x0,x1)) .

By induction, we obtain a sequence {xn} in X∗ with the property that
xn+1 ∈ Txn, and

θ(d(xn, xn+1)) ≤ [θ(d(xn−1, xn))]k(d(xn−1,xn)) < θ(d(xn−1, xn)),

for all n ∈ N.
The rest of the proof can be completed as in the proof of Theorem 5. �
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