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On exponentially (hj, hs)-convex functions
and fractional integral inequalities related

MIGUEL VI1VAS-CORTEZ,
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SERCAN TURHAN

ABSTRACT. In this work the concept of exponentially (h1, h2)-convex
function is introduced and using it, the Hermite-Hadamard inequal-
ity and some bounds for the right side of this inequality, via Raina’s
fractional integral operator and generalized convex functions, are es-
tablished.

1. INTRODUCTION

In many practical investigations it is necessary to bound one quantity by
another. The classical inequalities are very useful for this purpose. An enor-
mous amount of efforts has been devoted to the extension of the classical
inequalities and to the applications of the same in diverse areas of science:
estimation of integrals, special functions of mathematical physics, electro-
static field and capacitance, signal analysis, dynamical system stability and
control and others.

One of the most discussed inequalities in recent work is the classic Hermite-
Hadamard inequality. In [7], J. Hadamard stated his famous inequality in
this way.

Theorem 1. Let f be a convex function over [a,b],a < b. If f is integrable
over [a,b], then

m (5 <5t [ r@ar < 1910,
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The subject of fractional calculus (that is, calculus of integrals and deriva-
tives of any arbitrary real or complex order) has gained considerable popula-
rity and importance during almost the past five decades or so, due mainly to
its demonstrated applications in numerous seemingly diverse and widespread
fields of science and engineering. It does indeed provide several potentially
useful tools for solving differential and integral equations, and various other
problems involving special functions of mathematical physics as well as their
extensions and generalizations in one and more variables.

The inequalities involving more general fractional integral operators have
also been considered in [2, 12, 16, 19]. Since work in this direction has
received a lot of attention, as evidenced in the work of S. Turhan et. al.
[13, 20] and J. E. Hernandez Hernandez and M. J. Vivas-Cortez [8, 9,
10, 21], in this work we establish a general expression of some Hermite-
Hadamard type inequa-lities by the introduction of the concept of expo-
nentially (hi, he)—convex function and using the Raina’s fractional integral
operator.

2. PRELIMINARIES

2.1. About Fractional Integral Operator. In [16], R. K. Raina intro-
duced a class of functions defined formally by

(2) ﬁm:ﬁ@mumzzrfwﬁ

where p, A > 0, |z| < R, ( R is the set of real numbers), o = (o(1),..,0(k),..)
is a bounded sequence of positive real numbers. Note that if we take in (2)
p=1,A=0and o(k) = (()x(B)x)/(7)k) for k =0,1,2,... , where a, § and
v are parameters which can take arbitrary real or complex values (provided
that v # 0, —1,—2,...), and the symbol (a); denote the quantity

(a+k:)

(@ =" =@+ Dalath=1), k=01,

and restrict its domain to |z| < 1 (with € C), then we have the classical
Hypergeometric Function, that is

o0

Fo(@) = Fla, f57:) Z kk, ,

k=0

also, if o(k) = (1,1,1,...) with p = a, (Re(a) > 0) , A = 1 and restricting
its domain to z € C in (2) then we have the classical Mitag-Leffler function

ZF ak—i—l

k=0
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When it is provided that the series converges uniformly then we can differen-
tiate term wise, also integrate, to obtain

dx pA—T

<d> xA_lng(wxp) )\ n— 1}'0 (wx”)
and
/ / PLFS (wtf)(d)" = A UFG L (waf).

Using (2), in [2], R. P. Agarwal et. al., defined the following left-sided
and right-sided fractional integral operators respectively, as follows

B (Torarad) @) = [ @ tP 7 F oo - 0Pl o0, (o> a)

and

b
@ (Tap-w®) (3?):/ (t =) Foa[w(t — o)l p(t)dt, (z <),

where A, p > 0, w € R and ¢ is such that the integral on the right side exits.
It is easy to verify that ‘7/;7/\ atrp and Jpcf)\’b_,wgo are bounded integral
operators on Ly(a,b),(1 < p < o00), if
M = F) \ 41 [w(b—a)’] < oo.

Indeed, for ¢ € L, ((a,b)) we have

Hja,)\,a—i—;wsoHp < WIH(PHP
and
HJU,)\,bf;w(pHp < Mm H@Hp

tell, = ([ \s@(x)lpdx>1/p.

Many useful fractional integral operators can be obtained by specializing
the coefficient o (k). By example, the classical Riemann-Liouville fractional
integrals I, and I;* of order «

where

(159) @) = 7y [ @=0" et @>aa>0
and
b
(I8 ¢) (x) = F(la) / (t—2)" p)dt,  (x<ba>0)

follow from (3) and (4) setting A = a,0(0) =1 and w = 0.
The Hermite-Hadamard integral inequality for the Raina’s fractional in-
tegral operator is established in [22] as follows.



48 ON EXPONENTIALLY (h1,h2)-CONVEXITY AND INTEGRAL INEQUALITIES

Theorem 2. Let A € RT,a,b € R,a < b and ¢ : [a,b] — R be a convex
function. Then

a0 (Tonarw?) O+ (T500m00) (@
¢< 2 >< p(b—a))‘}"" [wp(b—a)p]

pA+1

_ o)+ ()
- 2

2.2. About Generalized convexity. The well known concept of convex

function is due to W. Jensen and it is established as follow.

Definition 1. A function f: I C R — R is called convex on the interval I,
if the following inequality holds

flta+ (1 =1)b) <tf(a)+ (1 -1)f(b)
for all a,b € I and ¢ € [0,1].

From the work of S. S. Dragomir et. al. [5], we extract the following
definition.

Definition 2. Let f : I C R — R be a non-negative function where [ is an
interval. It is said that f belongs to the class P(I) or f is a P—convex if for
all a,b € I and ¢t € [0, 1] the following inequality holds

flta+ (1 =1)b) < fla) + f(b).

Also, H. Hudzik and L. Maligranda, in [11], disused about some properties
of the following generalized concept of convexity.

Definition 3. Let 0 < s < 1. A function f : Ry — R, where R, = [0, 00),
is said to be s-convex in the first sense if

flta+(1—=4)b) <t°f(a) + (1 —t%) f(b)
for all a,b € I and t € [0,1]. This is denoted by f € K!. A function
f Ry — R, is said to be s-convex in the second sense if
flta+ (1 =1)b) <t°f(a) + (1 = 1)° f(b)
for all a,b € I and t € [0,1]. This is denoted by f € K2.
The first class of functions in Definition 3 were introduced by Orlicz W.
in [15], and the second class by W. W. Breckner in [3].
G. Cristescu et. al., in [4], in order to study bounds of the second degree

cumulative frontier gaps of functions with generalized convexity functions,
introduced the so-called (hq, hy)—convex functions.

Definition 4. Let hy,he : [0,1] — R be two non-negative functions. A
function f: I — Ry is called an (hi, hg)— convex function if the inequality

f(ta+ (1 —1)b) < hi(t)f(a) + ha(t) f(b)
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holds for all a,b € I and ¢t € [0,1]. The functions that transform the
inequality in an equality is called (hj, ho)—affine function.

Remark 1. If h(t) = t and ha(t) = 1—t for all ¢t € [0, 1], then the (h1, he)—
convexity coincides with the classical convexity. If hi(t) = ha(t) = 1 for all
t € [0, 1] the it is obtained the P—convexity. If hi(t) = t* and ha(t) =1 —¢t*
for all t € [0,1], then we have the s—convexity in the first sense, and If
hi(t) = t* and ho(t) = (1 — t)® for all ¢ € [0,1], we get the s—convexity in
the second sense.

The exponentially convex functions are of interest for the development of
this work. In the works of T. Antczac [1] and S. S. Dragomir [6] introduce this
concept and find some results related to the Hermite-Hadamard inequality.

Definition 5. A positive function f : I — R is said to be an exponentially
convex function if the inequality

(U100 < 4of(@) | (1 — 1)ef®)
holds for all a,b € I and ¢t € [0, 1].

3. MAIN RESULTS

Definition 6. Let hi,hs : [0,1] — R be a two non negative functions.
A positive function f : I — R, where I is an interval include in R, is
called exponentially (h, ho) —convex if the following inequality holds for all
z,y € I and t € [0, 1]

e+ A=09) < by (1)@ + hy(t)elW).
Remark 2. Note that:

(1) If hy = hg = 1 then we have an exponentially P—convex function.

(2) If hi(t) =t and ho(t) = 1 —t for all t € [0,1] we obtain an exponen-
tially convex function.

(3) If hi(t) = t* and ho(t) =1 —¢t* for all ¢t € [0, 1] and some 0 < s < 1,
then we have the exponentially s—convexity in the first sense.

(4) If hy(t) = t* and ha(t) = (1—1t)® for all t € [0, 1] and some 0 < s < 1,
we get the exponentially s—convexity in the second sense.

First, we establish the Hermite-Hadamard inequality for exponentially
convex function using Raina’s fractional integral operator.

Theorem 3. Let \,p > 0,w € R, and 0 = {o(k)};—, a sequence of non-
negatives real numbers. Let f : [a,b] — R be an exponentially (h1, ha)— convex
function, then the following inequalities holds

(m1/2) (T50a”) 0) +h2(1/2) (T e’) (@)

ef(%‘-b) <
(b— a)’\ Fpatl [w(b—a)’]
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and
e (Brens?) 0+ () )
< (7@ 4 ) (1 (1) + 1 (h2))
where
I(hy) = /O PULE (b= a)f ] (Bt
and

1
I(hg):/o ATLFT S [w (b — a)f 7] ho(t)dt.

Proof. Note that
a+b tat+(1—t)b+th+(1—t)a
2 2

for any ¢ € [0, 1]. Consequently, using the exponentially (hj, he) —convexity
of f we have

“ tat+(1—t)b+tb+(1—t)a
ef(ib) = ef( 2 )

P
< hy(1/2)f Gt A8 o (g /) (1 —0a)
Multiplying by t)‘*lfg’ ) [w (b —a)”tP] in both sides of the above inequality
ef(aT%)tAflf;A [w (b —a)’t*]
< PUF w (b= @) 1] (I (1/2)e 00700 4 py(1/2)/ 0000 )

Integrating over ¢ € [0, 1] we have

a+b

() SE w0
< h1(1/2) /01 79—1f;;A [w (b — a)” t¢] e/ tat(1=0)) gy
N h2(1/2) /01 t/\_lj:;/\ [w (b _ a)ptp} ef(tb—&-(l—t)a)dt‘
With a convenient change of variable we have

1
(6) / A LFT ) [w (b — a)P 7] el et (=0h) gy
0
1 brp— g\ b—z\’
< o _ 4)\P f(=)
i) (ma) oo () [
1 b

_ /(b_x)k—l

(b—a)’

o [w (b — x)’] el @)
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and

1
(7) / LS w (b — a)P ] e/ D) gt

0
1 by —a\! x—a\’
< T _ P f(=)
<2 [ (578) #[ee-or (520) ]

By replacement of (6) and (7) in (5) we have
atb o
e/ (3 )]:p,)\-‘rl [w (b — a)’]
o f o f
o= (2D (Trarae’) 0+ 120172) (T e’) @)
For the right side of the proposed inequality we have
ef (=00 < ) (1)ef (@ 4 py(t)ef®)

e/ W+(1=0a) < b (1)el ®) 4 py(t)ed (@)
Multiplying by t’\_lfg)\ [w (b — a)” t*] both inequalities

<

t)\_lf;z)\ [w (b . a)p tp] ef(ta-&-(l—t)b)

<MUFS [w (b — a)’ ] (hl(t)ef(“) + hg(t)ef(b)) ,

tA_l.F;A [w (b o a)p t’o] ef(tb—l—(l—t)a)
< PLFY [w (b — ) 7] (hl(t)ef(b) + hg(t)ef(a)) .

Adding these inequalities and integrating over t € [0, 1] we obtain

1
/ t)\—l}-;)\ [w (b o a)p tp] (ef(ta—l—(l—t)b) + ef(tb-l—(l—t)a)) dt
0

1

< (ef (@ 4 ef(b)) ( /0 A LET [w (b — a)” 7] ha (t)dt
1

+ /0 ALF [w (b — a)f t7) hQ(t)dt> .

With the change of variable u = ta + (1 — ¢)b and v = tb + (1 — t)a in the
first integral of the above inequality it is obtained
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(b—la)A ((jpcfx,aJr,wef) (b) + (j’gA’b_’wef> (a)>

1
< () 4 ef®) < /0 PLFT [w (b — a)? 1) b (1)dt

+ /01 ALF [w (b — a)f t7) hQ(t)dt> ,
and letting
I(h) = / CPULET (b — ) 0] B ()t
and ’
I (hg) = /1 AT [w (b — a)’ 7] ho(t)dt
it is attained the desired reosult. O

Remark 3. Doing A = «, w =1 and o = (1,0,...), then from Theorem 3,
we obtain the Riemann-Liouville fractional integral version:

(o) < ((1/2) (Z2ieT) (6) + ha(1/2) (T3 eT) (a))
. (b—a)"T(a) T

and
(b—la)o‘ <<I§‘+ef) (b) + ( gief) (a)) < (ef(a) +ef(b)> (I (h1) + T (ha)),
where I (hy) and I (h;) take the form
_ L ! a—1 an — L ' a-1
T = 50 /0 (Bt and 1 () = o /0 19 g (1)t

additionally if hy(t) =t and h(t) = 1 — ¢ then
(e o (a+1) ((Z&ef) (b) + (T ef) (a)) - (ef(@) + /()
- 2(b—a)” - D(a+1) 7
and if we choose o = 1 then it is obtained
b
2¢/ (%) < 1/ FOdr < 2 (ef(a) + ef(b))
~p_al, <

making coincidence with Corollary 3.2 in [17]. If hy(t) = t® and he = (1—1)°
for ¢t € [0,1] and some s € (0,1] with A=a =1, w=1and 0 = (1,0,...)
we find coincidence with Corollary 1 obtained by S. Rashid et.al. in [18].

The following Lemma will be useful to establish some others inequalities
related with the right side of the Hermite-Hadamard inequality for exponen-
tially convex functions using the Raina’s fractional integral operator.
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Lemma 3.1. Let A\,p > 0,w € R, and 0 = {o(k)};—, a sequence of non-
negatives real numbers. Let f : [a,b] — R be a differentiable mapping on
(a,b) with a < b and X\ > 0. If ef € Ly ([a,b]) then the following equality for
the Raina’s fractional integral operator holds

(Trarwe’) O+ (Tirswe’ ) (@)

Foas1(w(b —a)?)
_ ( m(+bl— i ) (ef(a) +ef(b))

1
= /0 P F 1 (w(b — a)PtP)el Wt =00 ¢ (1 4 (1 — t)b)dt

- / PF 1 (w(b — a)P2)el (=000 p1(1 — tya + th)dt.

Proof. Using integration by parts it follows that

1
I = / P F 1 (w(b — a)t?)el (=00 f(4q 4 (1 — t)b)dt
0

P Fg (@b — a)pte)elterti-on |

a—2b
0
1 ! A1 o PP\ o f (ta+(1—1t)b)
_a—b/o T Foa(w(b —a)t’)e dt
Foy (w(b—a)P)el @ 1
_ _ p,A+1 o f
b—a " (b—a)* <‘7f’7*’a+%we ) ®)
and
I = / P F 1 (w(b — a)t?)el (D) £1((1 — t)a + th)dt
F(w(b— a)p)el®
N b—a
I N “t)a
o — /0 LS (w(b — a)Pt)e/ (17Dt 0) gy
Fo o (wb—a)P)el® 1
— pz)‘+1 _ g f
b—a (b—a) <‘7P7Avb*§w€ ) (a).
Subtracting Is from I; it is attained the desired result. (|

Theorem 4. Let \,p > 0,w € R, and o a sequence of non-negatives real
numbers. Let f : [a,b] — R be a differentiable mapping on (a,b) with
a < b, and exponentially (hy,hs)—convex. If el € Li([a,b]) and |f'| is



54 ON EXPONENTIALLY (h1,h2)-CONVEXITY AND INTEGRAL INEQUALITIES

(91, 92) —convex then the following inequality for the Raina’s fractional inte-
gral operator holds

(Trarwe”) 0+ (Tonp-e’ ) (a)
B (.F;;T,)\—l—l(w(b — a)p)) (ef(a) 4 ef(b)>

(b—a)t=A
< (@£ (@) + /O f' ) (I (h1, 91) + I (2, g2))
+ (D1 ®) + /O (@) (1T (R, g2) + T(ha2, 1)),

where
000 = [P Faia o~ @t s (0 )
I(h2, g2) = /01 P F 7 a1 (w(b — a)’t)ha(t)ga(t)dt,
I(h1,92) = /01 T 1 (w(b — a)’t?)ha (t)ga(t)dt,
I(h2, g1) = /01 P F7 a1 (w(b — a)’t7)ha(t) g1 (¢)dt.
Proof. Using the Lemma 3.1 and the triangular inequality we have
) |(Tirarwe’) O+ (Trsmwe’) (@

Foagr(w(b—a)?) a
_ < m(+bl— i ) (ef( ) 4 6f(b)>

1
< /0 T s (w(b — a)?t?)] e/ Cor =00 (g 4 (1 — t)b) | dt
+ / AF 1 (w(b — a)Pt?)|ef D0 £1((1 — t)a + tb)|dt.

Now, we discuse the integrals involve in (8) using the exponentially (hy, ha)—
convexity of f and the (g1, g2)—convexity of |f’|. First,

/ 1 P F s iq (w(b — a)Pt?) e/t =00 /(1 4 (1 — £)b)|dt
0
1
glgﬂ.axww—avww
(hl(t)ef @ 4 hy(t)e! “’)) (1) f' (@) + g2(8)| ' (b)]) dt

1
SAFﬁHM@—WﬂX
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(m (e’ g1 (1)1 £ (@) + ha(t)e! Vg ()| /(D)
R (el @ ga(0)] 1/ (0)| + ha(t)e! Dgi (1) 1 (a)] ) dt

@1 f'(a)] / 7 o (w(b — )Pt ha (£)gi (1)t
+ el (1) / PFS 1 (w(b — )12 ha(t)ga(t)dt
+ @ () / 7 1 (w(b — a)?t)ha (£)ga(t)dt

+ eSO f(a)| / PFS 1 (w(b — a)Pt7)ha(t) g (1)t

9) =D (@) (h1, g1) + T O (b)|I(h2, g2)
+e" @1 (0)|I(h1, g2) + e/ f (@) I (h2, 1),

where

(1, g1) = /0 PFS 1 (wlb— a)t?)hy (£)gs (£)dt,
I(ha g) = /O PF 1 (w(b — )t ha(t)gs (1),
(. g2) = /0 PF 3 (w(b — )Pty (g (1),

I(hs, 1) = /0 P o (w(b — a)t)ha(t)gn (£)dt.

Similarly, for the second integral we have

/ AFT y i (w(b— a)PtP)] e/ (A=0a+tb) (1 — t)q + tb)|dt

(10) < | (@)|1(ha, g2) + e O ' (O) |1 (hr, g1)
SOV ®)1(hz, g1) + 'O f (@) I (1, g2).
By replacement of (9) and (10) in (8) then it follows the result. O

Using the previous Theorem some Corollary is deduced.

Corollary 1. Let A\,p > 0,w € R, and 0 = {o(k)},—, a sequence of non-
negatives real numbers. Let f : [a,b] — R be a differentiable mapping on
(a,b) with a < b, and exponentially conver. If e/ € Ly ([a,b]) and |f'| is
a convex function then the following inequality for the Raina’s fractional
integral operator holds

‘(jf:)\,a-i-;wef) (b) + (j,fA’b_;wef) (a)
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B (.7'—;)\4-1(10(5 — a)p)) <€f(a) 4 ef(b))

(b—a)l—>
< (/£ (@) + O (0) ) F25L  (w(b — a)?)
+ (PO )] + O (@) ) FoZ, (w(b — a)?),
where )
Jl(k):m’ k=0,1,2
= o (k) 1,2, ..
2 (kp+A+3)(kp+A+2)

Proof. Letting hi(t) = g1(t) =t and ha(t) = g2(t) = 1 — ¢ for all t € [0, 1]
then

1
I(h1,91) = I(h2,92) = / A FT y 1 (w(b — a)Pt?)tdt
0

= o(k) k k /1k A2
— S S b— 4 thp+A+2 1y
;::()F(k:p—i—)\—i—l)w (b=a)y” |

= ]:;1/\4-1(“’(17 —a)’),

where
o(k)

A
k) = At

for k=0,1,2,...

Similarly

1
I(hl)92) = I(hQ)gl) = / t)\fg,)\+1(w(b - a)ptp)t(l — t)dt
0

N o (k) .
_ Zr()wk(b_a)kp/o tkp-i—)\-i-l(l_t)dt

— ko+A+1
= ]:;2)\+1(w(b —a)’)
where
o(k)

oa(k) = k=0,1,2,...

(kp+ X+ 3)(kp+A+2)
Making the corresponding substitutions in Theorem 4 it follows the desired
result. O

Corollary 2. Let \,p > 0,w € R, and 0 = {o(k)};_, a sequence of non-
negatives real numbers. Let f : [a,b] — R be a differentiable mapping on
(a,b) with a < b, and exponentially convex. If e/ € Ly ([a,b]) and |f'| is
convex and bounded by some M > 0, then the following inequality for the
Raina’s fractional integral operator holds

(Trare”) 0+ (Toap-we’ ) (@)
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B .7'—5,)\—&-1(?0([) — Cl)p) (ef(a) + ef(b)>
(b—a)l—>
< M(ef@ + /) F2 L (w(b — a)P),
where )
= —230 0 p=0,1,2,...
U( ) kp+ )\+ 2’ ) Y )
Proof. Noting that
o' (k) = o1(k)+ o2(k)
o (k)
= —— k=0,1,2,...
kp+)\+2’ 9 Ly &y
then, using Corollary 1 easily it finds the result. O

Corollary 3. Let \,p > 0,w € R, and o = {o(k)};2, a sequence of non-
negatives real numbers. Let f : [a,b] — R be a differentiable mapping on
(a,b) with a < b, and exponentially conver. If e/ € Ly ([a,b]) and |f'| is a
P—convex function then the following inequality for the Raina’s fractional

integral operator holds
(Torarae’) )+ (e’ ) (@)

Foap1(w(b—a)’) o
_ ( 07A(+b1_ = ) (ef( )+€f(b))

< F(w® = a)?) [ + O @) + 17 B))]

where
o(k)

"EY= —>"— k=0,1,2....
U() kp+A+1’ b B}

Proof. Following the same demonstration scheme used in the Corollary 1
with Letting hi(t) =t , ha(t) =1 —1t, gi(t) = g2(t) = 1, for all ¢ € [0,1]

then it is obtained that
I(h1,91) = I(h1,92)

1
= / AT s i1 (w(b — a)Pt?)tdt
0
= Fop(wlb—a)?),

where

o (k)

B = 2\
k) = o ata

k=0,1,2,...

and

1
I(h2, 91) = I(h2,92) = /0 T 1 (w(b—a)’t) (1—t)dt = Foat

(w(b—a)”),
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where

o(k)
(kp+X+2)(kp+A+1)

oo(k) = k=0,1,2,...

Note that

I(hi, 1) + I(ha,92) = Foiiy(w(b—a)’)+ F3 4 (w(b—a))

/

pat1(w(b—a)?),
where )
U/(k) = o1(k) +o2(k) = m7

The proof is complete. O

k=0,1,2,...

Corollary 4. Let A\,p > 0,w € R, and 0 = {o(k)};-, a sequence of non-
negatives real numbers. Let f : [a,b] — R be a differentiable mapping on
(a,b) with a < b, and exponentially conver. If e/ € Ly ([a,b]) and |f'| is a
s—convex function in the second sense then the following inequality for the
Raina’s fractional integral operator holds

‘(jpcfx,a+;wef ) (b) + (Jg Aﬁ_m,ef) (a)

Foap1(w(b—a)f) "
_ ( A(Zl— s ) (ef( )+ef(b)>
< (P11 (@) + SO F (b))%
(Foaii(wlb — a)?) + T(s + 2)F74 4 y(w(b — a)?)
+ (T ®B) + PO (a)])
(D(s + DFA L opalw(d —a)f) + F 55 (w(b — a)?)),

where
o)
Us;l,l(k) - kp+A—|-3—|—27
o1(k) = o(k)(kp+A+1),
oo(k) = o(k)(kp+X+2)(kp+A+1),
o(k)
con(k) = ’
0s2,1(k) (kp+AX+s+3)(kp+ A+ s+2)
fork:0,172,...

Proof. Letting hi(t) =t, ha(t) = (1 —t), g1(t) = t* and ga(t) = (1 — t)*® for
all t € [0,1] and some s € (0,1] then

I(hy, 1) = /t]:,\+1( (b— a)PtP)tsHat
0

. o(k) k k /1 kp+A
— T\ h— P thotAts+1 gy
ZiT(hp+A+1) " (b=a)” |
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Fo5h (w(b — a)P),

pA+1
where
o(k)

Y pp— ) —
7s1,1(k) kp+ A+ s+ 2

k=0,1,2,...,

I(ha,g2) = A ATy (w(b — a)t?) (1 — t)*dt

00 1
_ Z o(k) W (b — a)k:p/ oML gyt gy
=0 L'(kp 0

FA+1)
I TR (R S\ (R
kof‘(kp+)\+1) LCkp+X+s+4)

- (s—|—2)]:,‘071)\+s+4( w(b—a)?)
where

o1(k) =c(k)(kp+A+1), k=0,1,2,...,

I(h1,g2) ::‘A AT 1 (w(b — a)t?)t(1 — t)°dt

(k) k kp /1 kp+A+2
B A _ 1— )%
kEOF Y 1)w (b—a) ; t (1 —1t)°dt

7 piy— e Dlhp A£G+ D)
L(kp+A+1) Dkp+A+s+4)

I
Pﬂg

k=0
= T(s+1)F5 gpa(w(b—a)’)
where
oa(k) =c(k)(kp+AX+2)(kp+A+1), k=0,1,2,...,
and

I(ha,q1) = L;tfk+ﬁ w(b — a)PtP)(1 — t)tdt

_ i I“Uf;(k))wk(b —q)ke /01 AT — t)dt
k=0

+A+1
_ 53 o(k) Wb_me%p+A+s+$F@)
kZOI’(kzp—i—)\—i-l) Dkp+A+s+4)
= F5 (w(b— a))
where
o (k)

oso1(k) = k=0,1,2,...

(kp+A+s+3)(kp+A+s+2)
By replacement of these values in Theorem 4 it is attained the result. O
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Remark 4. Since in the preliminary section is mentioned the fact that from
the Raina’s fractional integral the fractional integrals of Riemann-Liouville
and the classic integral of Riemman can be deduced then the results found
in Theorem 4 and Corollaries 1,2, 3 and 4 are useful to express them in
terms of these integrals.

4. CONCLUSION

In the present work we established the Hermite-Hadamard inequality for
exponentially convex functions using the Raina’s fractional integral and from
this result we deduced some results found in [17, 18|. Also from Lemma 3.1
it was established a general theorem from which some fractional integral in-
equalities for exponentially convex functions, exponentially P—convex func-
tions and exponentially s—convex functions in the second sense were found.

The usefulness of the theorems presented and the proposed technique
can be applied to other types of generalized convex functions, for example,
MT —convex functions [14].
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