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Some common fixed point theorems on partial
metric spaces satisfying implicit relation

G. S. Saluja

Abstract. The aim of this article is to prove some fixed point and
common fixed point theorems on partial metric spaces satisfying implicit
relation. Our results extend and generalize several results from the
existing literature.

1. Introduction and Preliminaries

The well known Banach contraction principle is the most celebrated result
in fixed point theory and its applications. Banach contraction principle
guarantees that any contraction map on complete metric space has a unique
fixed point. In 1969, Kannan [15] was the first, who gave a new contractive
condition for which a map need not be continuous even if it has fixed point in
complete metric space. In 1972, Chatterjae [13] also generalized the Banach
contraction condition and obtained a fixed point result. The well-known
Banach contraction theorem [8] is stated as follows.

Theorem 1. Let (X, d) be a complete metric space and let T : X → X be a
mapping satisfying the contractive condition

d(T (x), T (y)) ≤ αd(x, y)(1)

for all x, y ∈ X, where α ∈ [0, 1) is a constant. Then T has a unique fixed
point in X and that point can be obtained as a limit of repeated iteration of
the mapping at any point of X.

A new space called a partial metric space (PMS) has been introduced
by Matthews ([24, 25]). After introducing partial metric space, Matthews
[25] also proved the partial metric version of the Banach fixed point theo-
rem which is an analogous of Banach contraction principle, this makes the
partial metric space relevant in fixed point theory. In 1999, Heckmann [14]

2010 Mathematics Subject Classification. Primary: 47H10, 54H25.
Key words and phrases. Fixed point, common fixed point, implicit relation, partial

metric space.
Full paper. Received 4 November 2019, accepted 27 January 2020, available online 29

February 2020.

c©2020 Mathematica Moravica
29



30 Some common fixed point theorems on partial metric spaces. . .

established some results using a generalization of the partial metric func-
tion called a weak partial metric function. In 2004, Oltra and Valero [29]
also generalized the Matthews’s fixed point theorem in a complete partial
metric space in the sense of O’Neill. Then many authors gave some gen-
eralizations of the results of Matthews and proved some fixed point the-
orems on this space (see, e.g., [1, 2, 3, 4, 5, 16, 17, 18, 20, 29, 39], see,
also [11, 12, 28, 34, 35, 37]). Also, the concept of PMS provide to study
denotational semantics of dataflow networks [24, 25, 38, 40].

In 2016, Kir and Kiziltunc introduced the concept of TF contractive map-
pings in partial metric space and established a generalization of Banach’s,
Kannan’s and Chatterjae’s fixed point theorems for the concept of partial
metric space.

The study of common fixed point theorems using implicit relations was
introduced by V. Popa [31] in 1999. Later on various authors used implicit
relations and proved fixed point and common fixed point theorems in differ-
ent spaces (see, e.g., [7, 9, 10, 23, 27, 30, 32, 33, 36] and many others).

The definition of a partial metric space is given by Matthews (see [24]) as
follows.

Definition 1 ([24]). Let X be a nonempty set and let p : X ×X → R+ be
a function satisfy:
(pm1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(pm2) p(x, x) ≤ p(x, y),
(pm3) p(x, y) = p(y, x),
(pm4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z),
for all x, y, z ∈ X. Then p is called partial metric on X and the pair (X, p)
is called partial metric space.

It is clear that if p(x, y) = 0, then from (pm1) and (pm2) we obtain x = y.
But if x = y, p(x, y) may not be zero. Various applications of this space has
been extensively investigated by many authors (see [22], [39] for details).

Example 1 ([6]). Let X = R+ and p : X × X → R+ given by p(x, y) =
max{x, y} for all x, y ∈ R+. Then (R+, p) is a partial metric space.

Example 2 ([6]). Let X = {[a, b] : a, b ∈ R, a ≤ b}. Then p
(

[a, b], [c, d]
)

=

max{b, d} −min{a, c} defines a partial metric p on X.

Remark 1 ([19]). Let (X, p) be a partial metric space.
(1) The function dp : X × X → R+ defined as dp(x, y) = 2p(x, y) −

p(x, x) − p(y, y) is a (usual) metric on X and (X, dp) is a (usual)
metric space.

(2) The function dq : X ×X → R+ defined as dq(x, y) = max{p(x, y)−
p(x, x), p(x, y) − p(y, y)} is a (usual) metric on X and (X, dq) is a
(usual) metric space.
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Note that each partial metric p on X generates a T0 topology τp on X,
whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0} where
Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

On a partial metric space the notions of convergence, the Cauchy se-
quence, completeness and continuity are defined as follows [24].

Definition 2 ([24]). Let (X, p) be a partial metric space. Then:
(a1) a sequence {xn} in (X, p) is said to be convergent to a point x ∈ X

if and only if p(x, x) = limn→∞ p(xn, x),
(a2) a sequence {xn} is called a Cauchy sequence if limm,n→∞ p(xm, xn)

exists and finite,
(a3) (X, p) is said to be complete if every Cauchy sequence {xn} in X

converges to a point x ∈ X with respect to τp.
Furthermore,

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(xn, x) = p(x, x).

(a4) A mapping F : X → X is said to be continuous at x0 ∈ X if for every
ε > 0, there exists δ > 0 such that F

(
Bp(x0, δ)

)
⊂ Bp

(
F (x0), ε

)
.

Definition 3 ([26]). Let (X, p) be a partial metric space. Then:
(b1) a sequence {xn} in (X, p) is called 0-Cauchy if limm,n→∞ p(xm, xn) =

0,
(b2) (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in

X converges to a point x ∈ X, such that p(x, x) = 0.

Lemma 1 ([24, 25]). Let (X, p) be a partial metric space. Then:
(c1) a sequence {xn} in (X, p) is a Cauchy sequence if and only if it is a

Cauchy sequence in the metric space (X, dp),
(c2) (X, p) is complete if and only if the metric space (X, dp) is complete,

(c3) a subset E of a partial metric space (X, p) is closed if a sequence
{xn} in E such that {xn} converges to some x ∈ X, then x ∈ E.

Lemma 2 ([2]). Assume that xn → z as n → ∞ in a partial metric space
(X, p) such that p(z, z) = 0. Then limn→∞ p(xn, y) = p(z, y) for every
y ∈ X.

Now, we introduce an implicit relation to investigate some fixed point and
common fixed point theorems in partial metric spaces.

Definition 4 (Implicit Relation). Let Ψ be the family of all real valued
continuous functions ψ : R3

+ → R+ non-decreasing in the first argument for
three variables. For some µ ∈ [0, 1), we consider the following conditions.

(Ir1) For x, y ∈ R+, if y ≤ ψ(x, x+y2 , x+y2 ), then y ≤ µ x,
(Ir2) For x ∈ R+, if y ≤ ψ(y, 0, y), then y = 0 since µ ∈ [0, 1),
(Ir3) For x ∈ R+, if y ≤ ψ(0, y2 ,

y
2 ), then y = 0.
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The purpose of this paper is to establish some fixed point and common
fixed point theorems in the setting of partial metric spaces satisfying implicit
relation. Our results extend and generalize several results from the existing
literature.

2. Main Results

In this section we shall prove some fixed point and common fixed point
theorems using implicit relation in the framework of partial metric spaces.

Theorem 2. Let (X, p) be a complete partial metric space and let T : X →
X be a mapping satisfying the inequality

p(Tx, Ty) ≤ ψ
{
p(x, y),

1

2
[p(x, Tx) + p(y, Ty)],

1

2
[p(x, Ty) + p(y, Tx)]

}
,(2)

for all x, y ∈ X and some ψ ∈ Ψ. If ψ satisfies the conditions (Ir1), (Ir2)
and (Ir3), then T has a unique fixed point in X.

Proof. For each x0 ∈ X and n ∈ N, put xn+1 = Txn. It follows from (2)
and (pm4) that

p(xn, xn+1) = p(Txn−1, Txn)

≤ ψ
{
p(xn−1, xn),

1

2
[p(xn−1, Txn−1) + p(xn, Txn)],

1

2
[p(xn−1, Txn) + p(xn, Txn−1)]

}
≤ ψ

{
p(xn−1, xn),

1

2
[p(xn−1, xn) + p(xn, xn+1)],

1

2
[p(xn−1, xn+1) + p(xn, xn)]

}
≤ ψ

{
p(xn−1, xn),

1

2
[p(xn−1, xn) + p(xn, xn+1)],

1

2
[p(xn−1, xn) + p(xn, xn+1)− p(xn, xn)]

}
≤ ψ

{
p(xn−1, xn),

1

2
[p(xn−1, xn) + p(xn, xn+1)],

1

2
[p(xn−1, xn) + p(xn, xn+1)]

}
(3)

Since ψ satisfies the condition (Ir1), there exists µ ∈ [0, 1) such that

p(xn, xn+1) ≤ µ p(xn−1, xn) ≤ µnp(x0, x1).(4)

Set Fn = p(xn, xn+1) and Fn−1 = p(xn−1, xn), then from (4), we obtain

Fn ≤ µ Fn−1 ≤ µ2Fn−2 ≤ · · · ≤ µnF0.



G. S. Saluja 33

Now we show that {xn} is a Cauchy sequence in X. Let m,n > 0 with
m > n, then by using (pm4) and equation (4), we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+m−1, xm)

−p(xn+1, xn+1)− p(xn+2, xn+2)− · · · − p(xn+m−1, xn+m−1)
≤ µnp(x0, x1) + µn+1p(x0, x1) + · · ·+ µn+m−1p(x0, x1)

= µn[p(x0, x1) + µp(x0, x1) + · · ·+ µm−1p(x0, x1)]

= µn[1 + µ+ · · ·+ µm−1]F0

≤ µn
(1− µm−1

1− µ

)
F0.

Taking n,m → ∞ in the above inequality, we get p(xn, xm) → 0 since
0 < µ < 1, hence {xn} is a Cauchy sequence in X. Thus by Lemma 1 this
sequence will also Cauchy in (X, dp). In addition, since (X, p) is complete,
(X, dp) is also complete. Thus there exists u ∈ X such that xn → u as
n→∞. Moreover by Lemma 1,

p(u, u) = lim
n→∞

p(u, xn) = lim
n,m→∞

p(xn, xm) = 0,(5)

implies

lim
n→∞

dp(u, xn) = 0.(6)

Now, we show that u is a fixed point of T . Notice that due to (5), we have
p(u, u) = 0. By using inequality (2), we get

p(xn+1, Tu) = p(Txn, Tu)

≤ ψ
{
p(xn, u),

1

2
[p(xn, Txn) + p(u, Tu)],

1

2
[p(xn, Tu) + p(u, Txn)]

}
= ψ

{
p(xn, z),

1

2
[p(xn, xn+1) + p(u, Tu)],

1

2
[p(xn, Tu) + p(u, xn+1)]

}
.

Note that ψ ∈ Ψ, then taking the limit as n→∞ and using (5) and Lemma
2, we get

p(u, Tu) ≤ ψ
{

0,
1

2
p(u, Tu),

1

2
p(u, Tu)

}
.

Since ψ satisfies the condition (Ir3), then p(u, Tu) = 0. This shows that
u = Tu. Thus u is a fixed point of T .

Now to show that the fixed point of T is unique. Let u1, u2 be fixed points
of T with u1 6= u2. We shall prove that u1 = u2. It follows from equation
(2) and (5) that

p(u1, u2) = p(Tu1, Tu2)
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≤ ψ
{
p(u1, u2),

1

2
[p(u1, Tu1) + p(u2, Tu2)],

1

2
[p(u1, Tu2) + p(u2, Tu1)]

}
= ψ

{
p(u1, u2),

1

2
[p(u1, u1) + p(u2, u2)],

1

2
[p(u1, u2) + p(u2, u1)]

}
= ψ

{
p(u1, u2), 0, p(u1, u2)

}
.

Since ψ satisfies the condition (Ir2), then we get

p(u1, u2) ≤ µ p(u1, u2)

⇒ p(u1, u2) = 0, since 0 < µ < 1.

This shows that u1 = u2. Thus the fixed point of T is unique. This completes
the proof. �

Theorem 3. Let F and G be two mappings on a complete partial metric
space (X, p) and

p(Fx,Gy) ≤ ψ
{
p(x, y),

1

2
[p(x, Fx) + p(y,Gy)],

1

2
[p(x,Gy) + p(y, Fx)]

}
(7)

for all x, y ∈ X and some ψ ∈ Ψ. Then F and G have a unique common
fixed point in X.

Proof. For each x0 ∈ X. Put x2n+1 = Fx2n and x2n+2 = Gx2n+1 for
n = 0, 1, 2, . . . . It follows from (7), (pm4) and Lemma 1 that

p(x2n+1, x2n) = p(Fx2n, Gx2n−1)

≤ ψ
{
p(x2n, x2n−1),

1

2
[p(x2n, Fx2n) + p(x2n−1, Gx2n−1)],

1

2
[p(x2n, Gx2n−1) + p(x2n−1, Fx2n)]

}
= ψ

{
p(x2n, x2n−1),

1

2
[p(x2n, x2n+1) + p(x2n−1, x2n)],

1

2
[p(x2n, x2n) + p(x2n−1, x2n+1)]

}
≤ ψ

{
p(x2n, x2n−1),

1

2
[p(x2n, x2n+1) + p(x2n−1, x2n)],

1

2
[p(x2n−1, x2n) + p(x2n, x2n+1)− p(x2n, x2n)]

}
≤ ψ

{
p(x2n, x2n−1),

1

2
[p(x2n, x2n+1) + p(x2n−1, x2n)],
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1

2
[p(x2n−1, x2n) + p(x2n, x2n+1)]

}
.(8)

Since ψ satisfies the condition (Ir1), there exists µ ∈ [0, 1) such that

p(x2n+1, x2n) ≤ µp(x2n, x2n−1) ≤ µ2np(x1, x0).(9)

Now we show that {xn} is a Cauchy sequence in X. Let m,n > 0 with
m > n, then by using (pm4) and equation (9), we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+m−1, xm)

−p(xn+1, xn+1)− p(xn+2, xn+2)− · · · − p(xn+m−1, xn+m−1)
≤ µnp(x0, x1) + µn+1p(x0, x1) + · · ·+ µn+m−1p(x0, x1)

= µn[p(x0, x1) + µ(x0, x1) + · · ·+ µm−1p(x0, x1)]

= µn[1 + µ+ · · ·+ µm−1]p(x0, x1)

≤ µn
(1− µm−1

1− µ

)
p(x0, x1).

Taking n,m → ∞ in the above inequality, we get p(xn, xm) → 0 since
0 < µ < 1, hence {xn} is a Cauchy sequence in X. Thus by Lemma 1 this
sequence will also Cauchy in (X, dp). In addition, since (X, p) is complete,
(X, dp) is also complete. Thus there exists v ∈ X such that xn → v as
n→∞. Moreover by Lemma 1,

p(v, v) = lim
n→∞

p(v, xn) = lim
n,m→∞

p(xn, xm) = 0,(10)

implies

lim
n→∞

dp(v, xn) = 0.(11)

Now we have to prove that v is a common fixed point of F and G. For this,
consider

p(x2n+1, Fv) = p(Fx2n, Fv)

≤ ψ
{
p(x2n, v),

1

2
[p(x2n, Fx2n) + p(v, Fv)],

1

2
[p(x2n, Fv) + p(v, Fx2n)]

}
= ψ

{
p(x2n, v),

1

2
[p(x2n, x2n+1) + p(v, Fv)],

1

2
[p(x2n, Fv) + p(v, x2n+1)]

}
.

Note that ψ ∈ Ψ, then using (10), Lemma 2 and taking the limit as n→∞,
we get

p(v, Fv) ≤ ψ
(

0, 0,
p(v, Fv)

2
,
p(v, Fv)

2

)
.
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Since ψ satisfies the condition (Ir3), then p(v, Fv) = 0. This shows that
v = Fv for all v ∈ X. Similarly, we can show that v = Gv. Thus v is a
common fixed point of F and G.

Now to show that the common fixed point of F and G is unique. For this,
let v′ be another common fixed point of F and G, that is, Fv′ = Gv′ = v′

with v′ 6= v. Then we have to show that v = v′. It follows from equation
(7) and (10) that

p(v, v′) = p(Fv,Gv′)

≤ ψ
{
p(v, v′),

1

2
[p(v, Fv) + p(v′, Gv′)],

1

2
[p(v,Gv′) + p(v′, Fv)]

}
= ψ

{
p(v, v′),

1

2
[p(v, v) + p(v′, v′)],

1

2
[p(v, v′) + p(v′, v)]

}
= ψ

{
p(v, v′), 0, p(v, v′)

}
.

Since ψ satisfies the condition (Ir2), then we get

p(v, v′) ≤ µ p(v, v′)

⇒ p(v, v′) = 0, since 0 < µ < 1.

Thus, we get v = v′. This shows that v is the unique common fixed point
of F and G. This completes the proof. �

Theorem 4. Let F1 and F2 be two continuous mappings on a complete
partial metric space (X, p) and

p(Fm1 x, F
n
2 y) ≤ ψ

{
p(x, y),

1

2
[p(x, Fm1 x) + p(y, Fn2 y)],

1

2
[p(x, Fn2 y) + p(y, Fm1 x)]

}
(12)

for all x, y ∈ X, where m and n are some integers and some ψ ∈ Ψ. Then
F1 and F2 have a unique common fixed point in X.

Proof. Since Fm1 and Fn2 satisfy the conditions of Theorem 3. So Fm1 and
Fn2 have a unique common fixed point. Let z be the common fixed point.
Then, we have

Fm1 z = z ⇒ F1(F
m
1 z) = F1z

⇒ Fm1 (F1z) = F1z.

If F1z = r0, then Fm1 r0 = r0. So, F1z is a fixed point of Fm1 . Similarly,
F2(F

n
2 z) = F2z. Now, using equation (12) and Lemma 1, we obtain

p(z, F1z) = p(Fm1 z, F
m
1 (F1z))
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≤ ψ
{
p(z, F1z),

1

2
[p(z, Fm1 z) + p(F1z, F

m
1 (F1z))],

1

2
[p(z, Fm1 (F1z)) + p(F1z, F

m
1 z)]

}
= ψ

{
p(z, F1z),

1

2
[p(z, z) + p(F1z, F1z)],

1

2
[p(z, F1z) + p(F1z, z)]

}
= ψ

{
p(z, F1z), 0, p(z, F1z)

}
.

Since ψ satisfies the condition (Ir2), then we get

p(z, F1z) ≤ µ p(z, F1z)

⇒ p(z, F1z) = 0, since 0 < µ < 1.

Thus, we have z = F1z for all z ∈ X. Similarly, we can show that z = F2z.
This shows that z is a common fixed point of F1 and F2. For uniqueness of
z, let z′ 6= z be another common fixed point of F1 and F2. Then clearly z′
is also a common fixed point of Fm1 and Fn2 which implies z′ = z. Hence F1

and F2 have a unique common fixed point. This completes the proof. �

Theorem 5. Let {Uα} be a family of continuous mappings on a complete
partial metric space (X, p) satisfying

p(Uαx, Uβy) ≤ ψ
{
p(x, y),

1

2
[p(x, Uαx) + p(y, Uβy)],

1

2
[p(x, Uβy) + p(y, Uαx)]

)
(13)

for α, β ∈ Ψ with α 6= β and x, y ∈ X. Then there exists a unique z ∈ X
satisfying Uαz = z for all α ∈ Ψ.

Proof. For x0 ∈ X, we define a sequence as follows:

x2n+1 = Uαx2n, x2n+2 = Uβx2n+1, n = 0, 1, 2, . . . .

It follows from (13), (pm4) and Lemma 1 that

p(x2n+1, x2n) = p(Uαx2n, Uβx2n−1)

≤ ψ
{
p(x2n, x2n−1),

1

2
[p(x2n, Uαx2n) + p(x2n−1, Uβx2n−1)],

1

2
[p(x2n, Uβx2n−1) + p(x2n−1, Uαx2n)]

}
= ψ

{
p(x2n, x2n−1),

1

2
[p(x2n, x2n+1) + p(x2n−1, x2n)],

1

2
[p(x2n, x2n) + p(x2n−1, x2n+1)]

}
≤ ψ

{
p(x2n, x2n−1),

1

2
[p(x2n, x2n+1) + p(x2n−1, x2n)],
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1

2
[p(x2n−1, x2n) + p(x2n, x2n+1)− p(x2n, x2n)]

}
≤ ψ

{
p(x2n, x2n−1),

1

2
[p(x2n, x2n+1) + p(x2n−1, x2n)],

1

2
[p(x2n−1, x2n) + p(x2n, x2n+1)]

}
.(14)

Since ψ satisfies the condition (Ir1), there exists µ ∈ (0, 1) such that

p(x2n+1, x2n) ≤ µp(x2n, x2n−1) ≤ µ2np(x1, x0).(15)

Now we show that {xn} is a Cauchy sequence in X. Let m,n > 0 with
m > n, then by using (pm4) and equation (15), we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+m−1, xm)

−p(xn+1, xn+1)− p(xn+2, xn+2)− · · · − p(xn+m−1, xn+m−1)
≤ µnp(x0, x1) + µn+1p(x0, x1) + · · ·+ µn+m−1p(x0, x1)

= µn[p(x0, x1) + µp(x0, x1) + · · ·+ µm−1p(x0, x1)]

= µn[1 + µ+ · · ·+ µm−1]p(x0, x1)

≤ µn
(1− µm−1

1− µ

)
p(x0, x1).

Taking n,m → ∞ in the above inequality, we get p(xn, xm) → 0 since
0 < µ < 1, hence {xn} is a Cauchy sequence in X. Thus by Lemma 1 this
sequence will also Cauchy in (X, dp). In addition, since (X, p) is complete,
(X, dp) is also complete. Thus there exists r ∈ X such that xn → r as
n→∞. Moreover by Lemma 1,

p(r, r) = lim
n→∞

p(r, xn) = lim
n,m→∞

p(xn, xm) = 0,(16)

implies

lim
n→∞

dp(r, xn) = 0.(17)

By the continuity of Uα and Uβ , it is clear that Uαr = Uβr = r. Therefore
r is a common fixed point of Uα for all α ∈ Ψ.

In order to prove the uniqueness, let us take another common fixed point
r′ of Uα and Uβ where r 6= r′. Then from equation (13) and (16), we obtain

p(r, r′) = p(Uαr, Uβr
′)

≤ ψ
{
p(r, r′),

1

2
[p(r, Fαr) + p(r′, Uβr

′)],

1

2
[p(r, Uβr

′) + p(r′, Uαr)]
}

= ψ
{
p(r, r′),

1

2
[p(r, r) + p(r′, r′)],

1

2
[p(r, r′) + p(r′, r)]

}
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= ψ
{
p(r, r′), 0, p(r, r′)

}
.

Since ψ satisfies the condition (Ir2), then we get

p(r, r′) ≤ µ p(r, r′)

⇒ p(r, r′) = 0, since 0 < µ < 1.

Thus, we get r = r′ for all r ∈ X. This shows that r is a unique common
fixed point of Uα for all α ∈ Ψ. This completes the proof. �

Next, we give an analogues of fixed point theorems in metric spaces for
partial metric spaces by combining Theorem 1 with ψ ∈ Ψ and ψ satisfies
conditions (Ir1), (Ir2) and (Ir3). The following corollary is an analogues
of Banach’s contraction principle.

Corollary 2.1. Let (X, p) be a complete partial metric space. Suppose that
the mapping T : X → X satisfies the following condition:

p(Tx, Ty) ≤ f p(x, y)

for all x, y ∈ X, where f ∈ [0, 1) is a constant. Then T has a unique fixed
point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2 with ψ(v1, v2, v3) = fv1 for
some f ∈ [0, 1) and all v1, v2, v3 ∈ R+. This completes the proof. �

The following corollary is an analogues of R. Kannan’s result in [15].

Corollary 2.2. Let (X, p) be a complete partial metric space. Suppose that
the mapping T : X → X satisfies the following condition:

p(Tx, Ty) ≤ g [p(x, Tx) + p(y, Ty)]

for all x, y ∈ X, where g ∈ [0, 12) is a constant. Then T has a unique fixed
point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2 with ψ(v1, v2, v3) = gv2 for
some g ∈ [0, 1) and all v1, v2, v3 ∈ R+. Indeed, ψ is continuous. First, we
have ψ(x, x+y2 , x+y2 ) = g

(
x+y
2

)
. So, if y ≤ ψ(x, x+y2 , x+y2 ), then y ≤

(
g

2−g

)
x

with
(

g
2−g

)
< 1. Thus, T satisfies the condition (Ir1).

Next, if y ≤ ψ(y, 0, y) = g.0 = 0, then y = 0. Thus, T satisfies the
condition (Ir2).

Finally, if y ≤ ψ(0, y2 ,
y
2 ) = g

(
y
2

)
= 0, then y = 0 since g < 1

2 < 1. Thus,
T satisfies the condition (Ir3). �

The following corollary is an analogues of S. K. Chatterjae’s result in [13].

Corollary 2.3. Let (X, p) be a complete partial metric space. Suppose that
the mapping T : X → X satisfies the following condition:

p(Tx, Ty) ≤ h [p(x, Ty) + p(y, Tx)]
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for all x, y ∈ X, where h ∈ [0, 12) is a constant. Then T has a unique fixed
point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2 with ψ(v1, v2, v3) = hv3 for
some h ∈ [0, 1) and all v1, v2, v3 ∈ R+. Indeed, ψ is continuous. First, we
have ψ(x, x+y2 , x+y2 ) = h

(
x+y
2

)
. So, if y ≤ ψ(x, x+y2 , x+y2 ), then y ≤

(
h

2−h

)
x

with
(

h
2−h

)
< 1. Thus, T satisfies the condition (Ir1).

Next, if y ≤ ψ(y, 0, y) = h.0 = 0, then y = 0. Thus, T satisfies the
condition (Ir2).

Finally, if y ≤ ψ(0, y2 ,
y
2 ) = h

(
y
2

)
= 0, then y = 0 since h < 1

2 < 1. Thus,
T satisfies the condition (Ir3). �

Example 3. Let X = [0, 1]. Define p : X×X → R+ as p(x, y) = max{x, y}
with T : X → X by T (x) = x

4 . Clearly (X, p) is a partial metric space.
Now, let x ≤ y. Then choose x = 1

2 and y = 1, we have p(Tx, Ty) = y
4 ,

p(x, y) = y, p(x, Tx) = x, p(y, Ty) = y, p(x, Ty) = x, p(y, Tx) = y.
(i) Now, we consider

p(Tx, Ty) =
y

4
≤ fy,

or f ≥ 1
4 . If take 0 ≤ f < 1, then T satisfies all the conditions of

Corollary 2.1. Hence by application of Corollary 2.1, T has a unique
fixed point. Here it is seen that 0 ∈ X is the unique fixed point of
T .

(ii) Now, we consider

p(Tx, Ty) =
y

4
≤ g(x+ y),

putting x = 1
2 and y = 1 in the above inequality, we get

1

4
≤ 3

2
g,

or g ≥ 1
6 . If take 0 ≤ g < 1

2 , then T satisfies all the conditions of
Corollary 2.2. Hence by application of Corollary 2.2, T has a unique
fixed point and the unique fixed point T is 0 ∈ X.

(iii) Now, we consider

p(Tx, Ty) =
y

4
≤ h(x+ y),

putting x = 1
2 and y = 1 in the above inequality, we get

1

4
≤ 3

2
h,

or h ≥ 1
6 . If take 0 ≤ h < 1

2 , then T satisfies all the conditions of
Corollary 2.3. Hence by application of Corollary 2.3, T has a unique
fixed point and it is 0 ∈ X.
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3. Conclusion

In this article, we prove some fixed point and common fixed point the-
orems satisfying the implicit relation in the framework of complete partial
metric spaces. Our results extend, unify and generalize several results from
the existing literature in the context of partial metric spaces.
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