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Refinements of Hermite-Hadamard inequality
for trigonometrically p-convex functions

HUSEYIN BUuDAK*

ABSTRACT. In this study, we obtain some refinemen mite-Hadamard
type inequalities for trigonometrically p-convex m

1. INTRODUCTI

The inequalities discovered by C. Hermite and J¥Hadamard for convex
functions are considerable significant in the literature (see, e.g., [5], [15],
[17, p. 137]). These inequalities state t f f4I — R is a convex function
on the interval I of real numbers and af& € 1 h a < b, then

b
" () <t Fl@)+1 )

f(x)dx < —————=.
2

Both inequalities hold in the rev&&Q@@d direction if f is concave. We note
that Hermite-Hadamard inequality m& be regarded as a refinement of the
concept of convexity and it s easily from Jensen’s inequality.

Over the last twenty y merous studies have focused on to es-
tablish generalization of th uality (1) and to obtain new bounds for left
hand side and right hagd side ohe inequality (1).

The following Le will be very useful when we prove the main theo-
rems.

Lemma 1.1 (|20, 21|). Let f : [a,b] — R be a convex function and h be

defined by
t a+b t
3) (5 )

Then h is cgnvez, increasing on [0,b — a] and for all t € [0,b — al,

f(a)+ f(b)
> < h(t) < —
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In [6], Dragomir obtained following important inequalities which refines
the first inequality of (1).

Theorem 1.1. Let f : [a,b] — R be a convex on [a,b] and f € L [a,b].

Then H is convez, increasing on [0,1] and for all t € [0, 1], have
b 1 /
@ () =HO) < H@) < H() =
2 b—a
where
1 b
Ht) = f<ta:+(1—ta+

Moreover, Yang and Hong [22] prove the followin®esult which refines the

second inequality of (1).

Theorem 1.2. Let f : — R be @convdon [a,b] and f € Ly [a,b].
Then P is conver, mcreasmg on [0,1] Itelo, 1 we have

fla)+ £(b)

)

(3)

where

() (55 )

For the some refinements of the inequalities (1), please refer to [12], [13],
[20], [21].

The definiti riganometrically p-convex functions is given as follows:
Deﬁnltlon 1.1 A function f : I — R is said to be trigonometrically
p—conve r any arbltrary closed subinterval [a,b] of I such that 0 <

sin [p (b — z)] sin [p (z — a)]
< (a) + —————f(b)
sin [p (b — a)] sin [p (b — a)]

for all x € [a,b]. For the z = (1 — t)a + tb, t € [0, 1], then the condition (4)
becomes

(5)  F((1—t)a+) < Snled =000

sin[p (b — a)]

sin [pt (b — a)]
sin [p (b — a)]

(a) + f(0).
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If the inequality (4) holds with “>”, then the function will be called
trigonometrically p-concave on I.

For some properties and results concerning the class of trigonometrically
p-convex functions, see (1], [2]-[4], [8]-[11], [14], [16], [18], [19]).

The following Hermite-Hadamard inequality for trigono sally p-convex
function is proved by S.S. Dragomir in [7].

Theorem 1.3. Suppose that f : I — R is trigonometrically nvex on 1.
Then for any a,b € I with0 <b—a < %, we have
(6)

) (552) o[22 < e = ST ]

Theorem 1.4. Suppose that f : I — R is trigonometrically p-convex on I.
Then for any a,b € I with 0 < b — a < Zgmpe have

(7)
(55) < [l o 0 )

v

RESuULTS

The following theorem r the first inequality in (6).

Theorem 2.1. Sup that f : [a,b] — R is a positive function with 0 <
b—a < %, then A otonically increasing on [0,1] and we have the
following refinement inequallty

2 a+ —a) . _
pf< . : }_A1(0)§A1(t)§/\1(1)—/f($)dw,

where

x f (ta:—i—(l—t)a;_b) dx.
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Proof. By using the change of variable, we obtain

atb

Ai(t) = % a/2 [cos (W) + cos (W)}

From Lemma 1.1, w&hav = % [f (‘IT‘H’ — %) + f (aTb + %)] is increasing
on [0,b — a]. Since

is nonnegati [0,b—a] with0<b—a < %, thus Ay (t) is increasing
t, using the facts that

no - NEE)! / oo (252) o (2252

() )

i]
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)]
and

/ e
we obtain the desired result.
Remark 2.1. For p — 0 we observe that
L2 [p
lim — sin
p—0p
and
lim A
lim () = m +(

Thus, refinement of Hermite- Hadarnard uality (2) follows from Theorem
2.1 in the limit p — 0.

The following theorem refines the seco

Theorem 2.2. Suppose that f : — R isa posztwe functzon with 0 <
b—a < % then As is monoton asing on | and we have the
followmg refinement inequality

/f Ydz = A2 (0 A 1)—ptan[

quality in (

where

Ly ()) () (7) )

Proof. By chance iable, we have

D [ [+ (P st (2]

f <<1—2H> a+ <12_t) 33) dx
/” ot (P12t (22 0)]

o~

_l’_
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()0 ()

1 t(b—a— t
= [2+tan2 (p(;u))—i—taHQ pru

It follows that from Lemma 1.1 th
and k(t) = b—a—(1—t)u are igcreasing ®n

k() = f (a+ (54) u)

) =3[ (%32 —3) + f (52 +35)]
[0 ,b] and [0, 1] respectlvely Thus,

t
2 + tan? > + tan? <p2u>
is non negative for b] With 0 <b—a <7, then we deduce that Ay is
monotonically increasing |. Using the facts that

a—l—x i f<:c+b> ] /f

1—|—tan p(b;$)>+1+tan2 (’Mﬂdm

2
b]
a

()
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CESUNWLIEE]
P 2
then one can obtain the required result. O

Remark 2.2. For p — 0 we observe that
p—0p
and
lim Ay(t) =
p—0
b
1 1+1¢

1—
= () (5)
Thus, refinement of Hermite-Hadamard inequality follows from Theorem

2.2 in the limit p — 0.

The following theorem refines the ﬁr@my in
Theorem 2.3. Suppose that f : o positive function with 0 <

b—a < ; then As is monotomcally increasing on [0,1] and we have the
following refinement inequality

(8)

)

f(a;b 0) < As(fgms As(1 f ) sin (m—a;b)]dzc,
where
b b
C ,ot(x ot (1—t)a—2i_ )da:.

Proof. By using the change of variable and by using the fact that secx is is
an even functiogy wgobtain
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b—a

ptu] at+b ut
/sec[ f( 5 +2>du
0
_ ptu] [ a+b ut @ uf
b—a/ [ ] 2 +f 2

% [ a+b t

on [0,b — a] . Since sec [p;u] is nonnegatlve for u € 1th 0<b—a <
%, thus A(t) is increasing on [0, 1]. This completes th

Remark 2.3. If we choose p = 1 in Theore , then the inequality (8
reduces to the inequality (2).

The following theorem refines the seco

From Lemma 1.1, we have h(t) = | is increasing

inequality in (

Theorem 2.4. Suppose that f : [a,b]

b—a < I, then Ay is monotonically @

following refinement inequality

0 I [,V-Qb)wdx
N

where
b

positive function with 0 <
n [0,1] and we have the

() (7))o

Proof. Theorem 2.4 can be proven similar to Theorem 2.2. The detail is
omitted. O
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Remark 2.4. If we choose p = 1 in Theorem 2.4, then the inequality (9)
reduces to the inequality (3).
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