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Existence of positive periodic solutions for
third-order nonlinear delay differential equations

with variable coefficients

Abdelouaheb Ardjouni∗, Ahcene Djoudi

Abstract. In this paper, the following third-order nonlinear delay dif-
ferential equation with periodic coefficients

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t)

= f
(
t, x(t), x(t− τ(t))

)
+

d

dt
g
(
t, x(t− τ(t))

)
,

is considered. By employing Green’s function and Krasnoselskii’s fixed
point theorem, we state and prove the existence of positive periodic
solutions to the third-order nonlinear delay differential equation.

1. Introduction

Third order differential equations arise from in a variety of different areas
of applied mathematics and physics, as the deflection of a curved beam
having a constant or varying cross section, three layer beam, electromagnetic
waves or gravity driven flows and so on [24, 29].

Delay differential equations have received increasing attention during re-
cent years since these equations have been proved to be valuable tools in the
modeling of many phenomena in various fields of science and engineering,
see the monograph [12, 26] and the papers [1]-[23], [25] [27]-[29], [31]-[34]
and the references therein.

The second order nonlinear delay differential equation with periodic coef-
ficients

x′′(t) + p(t)x′(t) + q(t)x(t) =

= f
(
t, x(t), x(t− τ(t))

)
+
d

dt
g
(
t, x(t− τ(t))

)
,
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18 Third-order nonlinear delay differential equations

has been investigated in [9]. By using Krasnoselskii’s fixed point theorem and
the contraction mapping principle, Ardjouni and Djoudi obtained existence
and uniqueness of periodic solutions.

In [29], Ren, Siegmund and Chen discussed the existence of positive peri-
odic solutions for the third-order differential equation

x′′′ (t) + p (t)x′′ (t) + q (t)x′ (t) + r (t)x (t) = g (t, x (t)) .

By employing the fixed point index, the authors obtained existence results
for positive periodic solutions.

Inspired and motivated by the works mentioned above and the papers
[1]-[23], [25], [27]-[29], [31]-[34] and the references therein, we concentrate
on the existence of positive periodic solutions for the third-order nonlinear
delay differential equation

(1)
x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t)

= f (t, x (t) , x(t− τ(t))) + d

dt
g (t, x (t− τ (t))) ,

where p, q, r, τ are continuous real-valued functions. The functions g :
R×R→ R and f : R×R×R→ R are continuous in their respective argu-
ments. To show the existence of positive periodic solutions, we transform (1)
into an integral equation and then use Krasnoselskii’s fixed point theorem.
The obtained integral equation splits in the sum of two mappings, one is a
contraction and the other is compact.

The organization of this paper is as follows. In section 2, we introduce
some notations and lemmas, and state some preliminary results needed in
later section, then we give the Green’s function of (1), which plays an impor-
tant role in this paper. In section 3, we present our main results on existence
of positive periodic solutions of (1).

We state Krasnoselskii’s fixed point theorem which enables us to prove
the existence of positive periodic solutions to (1). For its proof we refer the
reader to [30].

Theorem 1.1 (Krasnoselskii). Let M be a closed convex nonempty subset
of a Banach space (B, ‖.‖). Suppose that H1 and H2 map M into B such
that

(i) x, y ∈M, implies H1x+H2y ∈M,
(ii) H1 is compact and continuous,
(iii) H2 is a contraction mapping.

Then there exists z ∈M with z = H1z +H2z.

In this paper, we give the assumptions as follows that will be used in the
main results.
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(h1) There exist differentiable positive T -periodic functions a1 and a2 and
a positive real constant ρ such that a1(t) + ρ = p(t),

a′1 (t) + a2 (t) + ρa1(t) = q (t) ,
a′2 (t) + ρa2(t) = r (t) .

(h2) p, q, r, τ ∈ C (R,R+) are T -periodic functions with τ (t) ≥ τ∗ > 0
and ∫ T

0
p(s)ds > ρT,

∫ T

0
q(s)ds > 0.

(h3) The functions g (t, x) and f(t, x, y) are continuous T -periodic in t
and continuous in x and in x and y, respectively.

2. Green’s function of third-order differential equation

For T > 0, let PT be the set of all continuous scalar functions x, periodic
in t of period T . Then (PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]
|x(t)| .

We consider

(2) x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = h (t) ,

where h is a continuous T -periodic function. Obviously, by the condition
(h1), (2) is transformed into{

y′(t) + ρy(t) = h(t),
x′′(t) + a1(t)x

′(t) + a2(t)x(t) = y(t).

Lemma 2.1 ([7]). If y, h ∈ PT , then y is a solution of equation

y′(t) + ρy(t) = h(t),

if only if

(3) y(t) =

∫ t+T

t
G1(t, s)h(s)ds,

where

(4) G1(t, s) =
exp (ρ (s− t))
exp (ρT )− 1

.

Corollary 2.1. Green function G1 satisfies the following properties

G1(t+ T, s+ T ) = G1(t, s), G1(t, t+ T ) = G1(t, t) exp (ρT ) ,

G1 (t+ T, s) = G1(t, s) exp (−ρT ) , G1(t, s+ T ) = G1(t, s) exp (ρT ) ,

∂

∂t
G1(t, s) = −ρG1(t, s),
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∂

∂s
G1(t, s) = ρG1(t, s),

and
m1 ≤ G1(t, s) ≤M1,

where

m1 =
1

exp (ρT )− 1
, M1 =

exp (ρT )

exp (ρT )− 1
.

Lemma 2.2 ([28]). Suppose that (h1) and (h2) hold and

(5)

R1

[
exp

(
T∫
0

a1(v)dv

)
− 1

]
Q1T

≥ 1,

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp
(∫ T

0 a1(v)dv
)

exp
(∫ T

0 a1(v)dv
)
− 1

a2 (s) ds

∣∣∣∣∣∣ ,
Q1 =

(
1 + exp

(∫ T

0
a1(v)dv

))2

R2
1.

Then there are continuous T -periodic functions a and b such that

b(t) > 0,

∫ T

0
a(v)dv > 0,

and
a(t) + b(t) = a1(t), b

′(t) + a(t)b(t) = a2(t), for t ∈ R.

Lemma 2.3 ([32]). Suppose the conditions of Lemma 2.2 hold and y ∈ PT .
Then the equation

x′′(t) + a1(t)x
′(t) + a2(t)x(t) = y(t),

has a T periodic solution. Moreover, the periodic solution can be expressed
by

(6) x(t) =

∫ t+T

t
G2(t, s)y(s)ds,

where

G2(t, s) =

∫ s
t exp

[∫ v
t b(u)du+

∫ s
v a(u)du

]
dv[

exp
(∫ T

0 a(v)dv
)
− 1
] [

exp
(∫ T

0 b(v)dv
)
− 1
]

+

∫ t+T
s exp

[∫ v
t b(u)du+

∫ s+T
v a(u)du

]
dv[

exp
(∫ T

0 a(v)dv
)
− 1
] [

exp
(∫ T

0 b(v)dv
)
− 1
] .(7)
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Corollary 2.2. Green’s function G2 satisfies the following proprieties

G2(t+ T, s+ T ) = G2(t, s), G2(t, t+ T ) = G2(t, t),

G2(t+ T, s) = exp

(
−
∫ T

0
b(v)dv

)
×
[
G2 (t, s) +

∫ t+T

t
E (t, u)F (u, s) du

]
,

∂

∂t
G2(t, s) = −b(t)G2(t, s) + F (t, s) ,

∂

∂s
G2(t, s) = a(t)G2(t, s)− E (t, s) ,

where

E (t, s) =
exp

(∫ s
t b(v)dv

)
exp

(∫ T
0 b(v)dv

)
− 1

, F (t, s) =
exp

(∫ s
t a (v) dv

)
exp

(∫ T
0 a (v) dv

)
− 1

.

Lemma 2.4 ([28]). Let A =
∫ T
0 a1(v)dv, B = T 2 exp

(
1
T

∫ T
0 ln (a2(v)) dv

)
.

If

(8) A2 ≥ 4B,

then

min

{∫ T

0
a(v)dv,

∫ T

0
b(v)dv

}
≥ 1

2

(
A−

√
A2 − 4B

)
= l,

max

{∫ T

0
a(v)dv,

∫ T

0
b(v)dv

}
≤ 1

2

(
A+

√
A2 − 4B

)
= L.

Corollary 2.3. Functions G2, E and F satisfy

m2 ≤ G2(t, s) ≤M2,

E (t, s) ≤ eL

el − 1
,

F (t, s) ≤ eL,

where

m2 =
T

(exp (L)− 1)2
, M2 =

T exp
(∫ T

0 a1 (v) dv
)

(exp (l)− 1)2
.

Lemma 2.5 ([15]). Suppose the conditions of Lemma 2.2 hold and h ∈ PT .
Then the equation

x′′′(t) + p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = h (t) ,
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has a T -periodic solution. Moreover, the periodic solution can be expressed
by

(9) x(t) =

∫ t+T

t
G(t, s)h(s)ds,

where

(10) G (t, s) =

∫ t+T

t
G2 (t, σ)G1 (σ, s) dσ.

Corollary 2.4. Green’s function G satisfies the following properties

G(t+ T, s+ T ) = G(t, s), G (t, t+ T ) = G (t, t) exp (ρT ) ,

∂

∂t
G(t, s) = (exp (−ρT )− 1)G1 (t, t)G2 (t, s)

− b (t)G (t, s) +

∫ t+T

t
F (t, σ)G1 (σ, s) dσ,

∂

∂s
G(t, s) = ρG (t, s) ,

and
m ≤ G(t, s) ≤M,

where

m =
T 2

(exp (l)− 1)2 (exp (ρT )− 1)
, M =

T 2 exp
(
ρT +

∫ T
0 a (v) dv

)
(exp (l)− 1)2 (exp (ρT )− 1)

.

3. Main Results

In this section we will study the existence of positive periodic solutions of
(1).

Lemma 3.1. Suppose (h1) − (h3) and (5) hold. The function x ∈ PT is a
solution of (1) if and only if

x (t) = (exp (ρT )− 1)G (t, t) g (t, x (t− τ (t)))

+

∫ t+T

t
G (t, s) {f (s, x (s) , x (s− τ (s)))− ρg (s, x (s− τ (s)))} ds.(11)

Proof. Let x ∈ PT be a solution of (1). From Lemma 2.5, we have

x (t) =

∫ t+T

t
G (t, s)

[
f (s, x (s) , x (s− τ (s))) + ∂

∂s
g (s, x (s− τ (s)))

]
ds

=

∫ t+T

t
G (t, s) f (s, x (s) , x (s− τ (s))) ds

+

∫ t+T

t
G (t, s)

∂

∂s
g (s, x (s− τ (s))) ds.(12)
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Performing an integration by parts, we get∫ t+T

t
G (t, s)

∂

∂s
g (s, x (s− τ (s))) ds

= G (t, s) g (s, x (s− τ (s)))|t+T
t −

∫ t+T

t

[
∂

∂s
G (t, s)

]
g (s, x (s− τ (s))) ds

= (exp (ρT )− 1)G (t, t) g (t, x (t− τ (t)))

− ρ
∫ t+T

t
G (t, s) g (s, x (s− τ (s))) ds.

(13)

We obtain (11) by substituting (13) in (12). Since each step is reversible,
the converse follows easily. This completes the proof. �

Define the mapping H : PT → PT by

(Hϕ) (t)

=

∫ t+T

t
G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))− ρg (s, ϕ (s− τ (s)))} ds

+ (exp (ρT )− 1)G (t, t) g (t, ϕ (t− τ (t))) .(14)

Note that to apply Krasnoselskii’s fixed point theorem we need to construct
two mappings, one is a contraction and the other is compact. Therefore, we
express (14) as

(Hϕ) (t) = (H1ϕ) (t) + (H2ϕ) (t) .

where H1, H2 : PT → PT are given by

(H1ϕ) (t)

=

∫ t+T

t
G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))− ρg (s, ϕ (s− τ (s)))} ds,(15)

and

(16) (H2ϕ) (t) = (exp (ρT )− 1)G (t, t) g (t, ϕ (t− τ (t))) .

To simplify notations, we introduce the constants

(17) β = max
t∈[0,T ]

{b(t)} , δ = exp (L)

exp (l)− 1
, γ = exp (ρT )− 1.

In this section we obtain the existence of a positive periodic solution of
(1) by considering the two cases; g (t, x) ≥ 0 and g (t, x) ≤ 0 for all t ∈ R.
For a non-negative constant K and a positive constant L we define the set

D = {ϕ ∈ PT : K ≤ ϕ ≤ L} ,

which is a closed convex and bounded subset of the Banach space PT . We
assume that the function g (t, x) is locally Lipschitz continuous in x. That
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is, there exists a positive constant k such that

(18) |g (t, x)− g (t, y)| ≤ k ‖x− y‖ , for all t ∈ [0, T ] , x, y ∈ D.
In case g (t, x) ≥ 0, we assume that there exist a nonnegative constant k1

and a positive constant k1 such that

(19) k1x ≤ g (t, x) ≤ k2x, for all t ∈ [0, T ] , x ∈ D,

(20) k2Mγ < 1,

and for all t ∈ [0, T ] , x, y ∈ D

(21)
K (1− k1mγ)

mT
≤ f (t, x, y)− ρg (t, y) ≤ L (1− k2Mγ)

MT
.

Lemma 3.2. Suppose (h1)− (h3), (5), (8) and (19)-(21) hold. Then H1 :
D→ PT is compact.

Proof. Let H1 be defined by (15). Obviously, H1ϕ is continuous and it is
easy to show that (H1ϕ) (t+ T ) = (H1ϕ) (t). For t ∈ [0, T ] and for ϕ ∈ D,
we have

|(H1ϕ) (t)|

=

∣∣∣∣∫ t+T

t
G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))− ρg (s, ϕ (s− τ (s)))} ds

∣∣∣∣
≤MT

L (1− k2Mγ)

MT
= L (1− k2Mγ) .

Thus from the estimation of |(H1ϕ) (t)| we have

‖H1ϕ‖ ≤ L (1− k2Mγ) .

This shows that H1 (D) is uniformly bounded.
To show that H1 (D) is equicontinuous, let ϕn ∈ D, where n is a posi-

tive integer. Next we calculate d
dt (H1ϕn) (t) and show that it is uniformly

bounded. By using (h1), (h2) and (h3) we obtain by taking the derivative
in (15) that

d

dt
(H1ϕn) (t)

=

∫ t+T

t
[(exp (−ρT )− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s)

+

∫ t+T

t
F (t, σ)G1 (σ, s) dσ

]
× [f (s, ϕn (s) , ϕn (s− τ (s)))− ρg (s, ϕn (s− τ (s)))] ds.

Consequently, by invoking (17) and (21), we obtain∣∣∣∣ ddt (H1ϕn) (t)

∣∣∣∣ ≤
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≤ [(1− exp (−ρT ))M1M2 +Mβ +M1δT ]
L (1− k2Mγ)

M
≤ D,

for some positive constant D. Hence the sequence (H1ϕn) is equicontin-
uous. The Ascoli-Arzela theorem implies that a subsequence (H1ϕnk

) of
(H1ϕn) converges uniformly to a continuous T -periodic function. Thus H1

is continuous and H1 (D) is contained in a compact subset of D. �

Lemma 3.3. Suppose that (18) holds. If H2 is given by (16) with

(22) kγM < 1,

then H2 : D→ PT is a contraction.

Proof. Let H2 be defined by (16). It is easy to show that (H2ϕ) (t+ T ) =
(H2ϕ) (t). Let ϕ,ψ ∈ D, we have

‖H2ϕ−H2ψ‖ = sup
t∈[0,T ]

|(H2ϕ) (t)− (H2ψ) (t)| ≤ kγM ‖ϕ− ψ‖ .

Hence H2 : D→ PT is a contraction by (22). �

Theorem 3.1. Suppose that conditions (h1)− (h3), (5), (8) and (18)-(22)
hold. Then equation (1) has a positive T -periodic solution x in the subset D.

Proof. By Lemma 3.2, the operatorH1 : D→ PT is compact and continuous.
Also, from Lemma 3.3, the operatorH2 : D→ PT is a contraction. Moreover,
if ϕ,ψ ∈ D, we see that

(H2ψ) (t) + (H1ϕ) (t)

= γG (t, t) g (t, ϕ (t− τ (t)))

+

∫ t+T

t
G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))− ρg (s, ϕ (s− τ (s)))} ds

≤ k2MγL+ L (1− k2Mγ) = L.

On the other hand

(H2ψ) (t) + (H1ϕ) (t)

= γG (t, t) g (t, ϕ (t− τ (t)))

+

∫ t+T

t
G (t, s) {f (s, ϕ (s) , ϕ (s− τ (s)))− ρg (s, ϕ (s− τ (s)))} ds

≥ k1mγK+K (1− k1mγ) = K.

This shows that H2ψ + H1ϕ ∈ D. Clearly, all the Hypotheses of Theorem
1.1, are satisfied. Thus there exists a fixed point x ∈ D such that x =
H1ψ+H2ϕ. By Lemma 3.1 this fixed point is a solution of (1) and the proof
is complete. �
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In the case g (t, x) ≤ 0, we substitute conditions (19)-(21) with the follow-
ing conditions respectively. We assume that there exist a negative constant
k3 and a non-positive constant k4 such that

(23) k3x ≤ g (t, x) ≤ k4x, for all t ∈ [0, T ] , x ∈ D,

(24) −k3Mγ < 1,

and for all t ∈ [0, T ] , x, y ∈ D

(25)
K− k3MγL

mT
≤ f (t, x, y)− ρg (t, y) ≤ L− k4mγK

MT
.

Theorem 3.2. Suppose that conditions (h1)−(h3), (5), (8), (18) and (22)-
(25) hold. Then equation (1) has a positive T -periodic solution x in the
subset D.

The proof follows along the lines of Theorem 3.1, and hence we omit it.
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