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Property of growth determined by
the spectrum of operator associated to

Timoshenko system with memory

Ronaldo Ribeiro Alves, Jaime E. Muñoz Rivera,
Carlos A. Raposo

Abstract. In this manuscript we prove the property of growth deter-
mined by spectrum of the linear operator associated with the Timo-
shenko system with two histories.

1. Introduction

This work deals with the property of growth determined by spectrum of
the linear operator associated with the Timoshenko system with two his-
tories. Timoshenko model has been considered with several beam models,
we cite for instance [5, 6, 11, 12, 15, 16]. We will use standard notation of
Sobolev spaces and theory of semigroups as in [1, 7, 8, 9]. Let A be the
infinitesimal generator of the C0-semigroup eA t on a Banach space X. As
usual, we define the type or growth order of the semigroup by

w0(A) = inf{w ∈ R : ||eA t|| ≤M ew t, for all 0 ≤ t <∞} = inf
t>0

ln ||eA t||
t

and the spectral bound by

wσ(A) = sup{Reλ : λ ∈ σ(A)},
where σ(A) denotes the spectrum of A. When X has finite dimension, it is
well known that

wσ(A) = w0(A).(1.1)

In the infinite dimensional case, in general, the above equality (1.1) may
not hold. From the Hille-Yosida Theorem we see that

wσ(A) ≤ w0(A).
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76 Property of growth determined by the spectrum

We notice that w0(A) describes the growth order of eA t. From definition
of w0(A) if w > w0(A) then there exists a constant M ≥ 1 such that

||eA t|| ≤M ew t.

The condition (1.1) is important because it gives a practical criterion for
exponential stability of eA t. The exponential stability of eA t is equivalent to
the condition that w0(A) < 0. If −∞ < w0(A) < 0, then the C0-semigroup
eA t has exponential stability. In fact, for 0 < ε < |w0(A)|, we have

w0(A) + ε > ln ||eA t||t⇒ e(w0(A)+ε) t ≤ ||eA t||, for all t > Nε.

Using the continuity of the operator eA t on the compact interval [0, Nε],
we obtain Mε > 0 such that

||eA t|| ≤Mεe
(w0(A)+ε) t, for all t > 0,

and choosing −µ = w0(A) + ε < 0, follows the exponential stability of eA t.
In this direction the exponential stability of eA t is completely determined

by the spectrum of A and the condition (1.1) is namely of the spectrum
determined growth assumption.

We use the following result duo to M. Renardy for Hilbert spaces.

Theorem 1.1. Let H be a Hilbert space and A = A0 + B the infinitesimal
generator of the C0-semigroup on H where A0 is normal and B is bounded.
Suppose that there exist M > 0 and n ∈ N verifying:

(1) If λ ∈ σ(A0) and |λ| > M−1 then λ is a isolated eigenvalue of finite
multiplicity;

(2) If |z| > M then that the number of eigenvalues of A0 in the unit disk
centered in z (containing multiplicities) does not exceed n.

In this conditions we have

wσ(A) = w0(A).

Proof. See, [10, 13, 14]. �

In this work we study the Timoshenko system with two histories

ρ1ϕtt − Sx = 0, in (0, l)× (0, t),(1.2)
ρ2ψtt −Mx + S = 0, in (0, l)× (0, t),(1.3)

S = κ(ϕx + ψ)−
∫ t

−∞
h(t− s)(ϕx + ψ)(x, s)ds,(1.4)

M = bψx −
∫ t

−∞
g(t− s)ψx(x, s)ds,(1.5)

with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x).
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We consider Dirichlet-Neumann boundary condition given by

(1.6) ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = 0, t > 0.

This manuscript is organized as follows. In the Section 2 we present the
preliminary results, Section 3 we prove the existence of solution, Section 4
deals with the property of growth determined for spectrum and finally in
the Section 5 we calculate the type of C0-semigroup.

2. Preliminar results

We denote H a Hilbert space and

A : D(A) ⊂ H → H

the infinitesimal generator of the C0-semigroup of contractions S(t) = eAt.
Then U(t) = S(t)U0 is solution of the equation

Ut −AU = 0, U(0) = U0,

that can be extended to

Utt −AUt = 0, U(0) = U0, U1(0) = U1.

For this, is equivalent to prove that the operator

A1 =

(
0 I
0 A

)
generates a C0-semigroup of contractions in the space

H1 = {(U, V ) ∈ D(A)×H; AU − V ∈ D(A)} ,

provided the inner product〈(
U1

V 1

)
,

(
U2

V 2

)〉
H1

= (V 1, V 2)H + (AU1 − V 1, AU2 − V 2)H

+ (A2U1 −AV 1, A2U2 −AV 2)H ,

with norm∥∥∥∥( U
V

)∥∥∥∥2
H1

= ‖V ‖2H + ‖AU − V ‖2H + ‖A2U −AV ‖2H .

In the Hilbert space H1 we take the domain of A1, as

D(A1) =
{
U = (U, V ) ∈ H1; (U, V ) ∈ D(A2)×D(A)

}
.

We have the following result.

Lemma 2.1. The operator A1 is the infinitesimal generator of a C0-semigroup
of contractions on H1.
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Proof. D(A1) is a closed and dense space on H1. We will show that R+ ⊂
ρ(A1). For F = (F1, F2) ∈ H1, we will prove that there exists a unique
solution U ∈ D(A1) such that

λU −A1U = F .

In terms of its components we get

λU − V = F1,(2.1)
λV −AV = F2.(2.2)

As A is infinitesimal generator of a C0-semigroup of contractions, we have
that for all F2 ∈ H there exists a unique solution V ∈ D(A) such that

λV −AV = F2.

Then,

(2.3) V = (λI −A)−1F2

and
‖(λI −A)−1‖ ≤ 1

λ
.

Replacing (2.3) into (2.1) we find

λU − (λI −A)−1F2 = F1.

Applying (λI −A) in the above equation we have

λU −AU = F1 +
1

λ
F2 −

1

λ
AF1 ∈ D(A).

Since A is generator infinitesimal of a C0-semigroup, we have that U ∈
D(A2). Using (2.1) and (2.2) we have

λAU −AV = AF1,

λV −AV = F2.

Taking the difference of these equations

λ(AU − V ) = AF1 − F2.

Similarly,
λ(A2U −AV ) = A2F1 −AF2.

Getting the norms, follows

(2.4) λ‖AU − V ‖ ≤ ‖AF1 − F2‖, λ‖A2U −AV ‖ ≤ ‖A2F1 −AF2‖.

Making the inner product of (2.2) with V we obtain

λ‖V ‖2 − 〈AV, V 〉 = 〈F2, V 〉.

As 〈AV, V 〉 ≤ 0 for all V ∈ D(A), by Holder’s inequality, follows

(2.5) λ‖V ‖ ≤ ‖F2‖.
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From (2.4)-(2.5) we get

λ2‖U‖2 ≤ ‖F‖2,

that implies

‖(λI −A)−1‖ ≤ 1

λ
.

By Theorem of Hille-Yosida the conclusion hold. �

We can extend this result to

Uttt −AUtt = 0, U(0) = U0, Ut(0) = U1, Utt(0) = U2.

Then, the operator

A2 =

 0 I 0
0 0 I
0 0 A


generates a C0-semigroup of contractions in the space

H2 =
{

(U, V,W ) ∈ D(A2)×D(A)×H;AU − V ∈ D(A2);AV −W ∈ D(A)
}
,

with inner product〈 U1

V 1

W 1

 ,

 U2

V 2

W 2

〉
H2

= (W 1, W 2)H

+
3∑
j=1

(AjU1 −Aj−1V 1, AjU2 −Aj−1V 2)H

+

2∑
j=1

(AjV 1 −Aj−1W 1, AjV 2 −Aj−1W 2)H

and domain

D(A2) =
{
U = (U, V, W ) ∈ H2; (U, V, W ) ∈ D(A3)×D(A2)×D(A)

}
.

Now consider the following result.

Lemma 2.2. Let A be the infinitesimal generator of a C0-semigroup of
contractions, then

A2 =

 0 I 0
0 0 I
0 0 A


verifies

ρ(A2) = ρ(A) ∪ {0} .
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Proof. Suppose λ ∈ ρ(A) then exist a unique solution of the resolvent equa-
tion

λU −AU = F,

where F ∈ H. We shall that λ ∈ ρ(A2). Consider the problem

λU −A2U = F .

We have

λU − V = F1 ∈ D(A2),(2.6)
λV −W = F2 ∈ D(A),(2.7)

λW −AW = F3 ∈ H.(2.8)

By the hypothesis there exists a unique W ∈ D(A) solution of (2.8). So
(2.7) can be written as

λV − (λI −A)−1F3 = F2,

and then
λ(λI −A)V = (λI −A)F2 + F3 ∈ D(A).

Using the hypothesis again found that there is a unique V ∈ D(A2) such
that

λV = F2 + (λI −A)−1F3 ∈ D(A).

Substituting in (2.6) and multiplying by λ we get

λ2U − F2 − (λI −A)−1F3 = λF1 ∈ D(A2).

From where follows

λ2(λI −A)U − (λI −A)F2 − F3 = λ(λI −A)F1 ∈ D(A2).

Thus

λ2(λU −AU) = λ2F1 + λF2 − λAF1 −AF2 + F3 ∈ D(A2).

Follows that U ∈ D(A3) and show λ ∈ ρ(A2). Reciprocally, take λ ∈
ρ(A2), then we have for all F ∈ H2 that there exists a unique U ∈ D(A)
verifying (2.6)-(2.8). In particular, from (2.8) we have that for all F3 ∈ H
there exists a unique W ∈ D(A). So we concludes that λ ∈ ρ(A). �

As a consequence of the previous lemmas we have the following theorem

Theorem 2.1. Suppose that A is a normal operator for which there exist
M > 0 and an integer n verifying:

(1) If λ ∈ σ(A0) and |λ| > M − 1, then λ is an isolated eigenvalue of
finite multiplicity, and

(2) If |z| > M , then the number of eigenvalues A0 into of unit disc
centered in z (containing multiplicities) does not exceed n.
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With this conditions the operator A defined by

A =

 0 I 0
0 0 I
0 0 A


is a normal operator which also satisfies the properties (1) and (2).

Proof. AsA is self-adjoint an normal, we have thatA∗ = A, and in particular
A is normal. Moreover, the spectra of A and A are equal out of a unit ball
and the result follows. �

3. Existence and uniqueness of solution

In this section, we show the existence, regularity and uniqueness of solu-
tion to the problem (1.2)-(1.6). We remember that, Dafermos [2, 3], Fabrizio
[4], introduced the memory spaces by the new variables η and ν,

η(x, t, s) = ψ(x, t)− ψ(x, t− s), ν(x, t, s) = ϕ(x, t)− ϕ(x, t− s),
that satisfies

ηt(x, t, s) = ψt(x, t)− ψt(x, t− s), ηs(x, t, s) = ψt(x, t− s),
νt(x, t, s) = ϕt(x, t)− ϕt(x, t− s), νs(x, t, s) = ϕt(x, t− s).

Summing we find the equations

ηt + ηs = ψt(x, t), νt + νs = ϕt(x, t).

From definitions of η and ν, we obtain the news boundary conditions

η(x, t, 0) = 0 = ν(x, t, 0), for all t ≥ 0, x ∈ (0, l).

Moreover, follows that

η(x, 0, s) = ψ(x, 0) − ψ(x,−s) = ψ0(x)− ψh(x,−s) := η0(x, s),

ν(x, 0, s) = ϕ(x, 0) − ϕ(x,−s) = ϕ0(x)− ϕh(x,−s) := ν0(x, s).

We denote by L2
µ(0,∞;H1

0 (0, l)) the space of square integrable functions
with weight µ and values into H1

0 (0, l), by

L2
µ(0,∞;H1

0 (0, l)) =

{
f ∈ H1

0 (0, l);

∫ +∞

0
µ(s)

∫ l

0
|fx(x, s)|2 dx ds <∞

}
.

This space with the inner product

(f, g)L2
µ

=

∫ +∞

0
µ(s)

∫ l

0
fx(x, s)gx(x, s) dx ds

is a Hilbert space.
Making change of variables and using the equation, we found∫ t

−∞
g(t− τ)ψxx(x, τ) dτ =

∫ ∞
0

g(τ)ψxx(x, t− τ) dτ
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= −
∫ ∞
0

g(τ)ηxx(x, τ) dτ +

∫ ∞
0

g(τ) dτψxx

and∫ t

−∞
h(t− τ)(ϕx + ψ)x(x, τ) dτ =

∫ ∞
0

h(τ)(ϕx + ψ)x(x, t− τ) dτ

= −
∫ ∞
0

h(τ)(νx + η)x(x, τ) dτ

+

∫ ∞
0

h(τ) dτ(ϕx + ψ)x.

From similar way∫ t

−∞
h(t− τ)(ϕx + ψ)(x, τ) dτ = −

∫ ∞
0

h(τ)(νx + η)(x, τ) dτ

+

∫ ∞
0

h(τ) dτ(ϕx + ψ).

The system (1.2)-(1.3) can be rewritten as

ρ1ϕtt −
(
κ−

∫ ∞
0

h(τ) dτ

)
︸ ︷︷ ︸

:=κ0

(ϕx + ψ)x −
∫ ∞
0

h(τ)(νx + η)x(x, τ) dτ = 0,

ρ2ψtt −
(
b−

∫ ∞
0

g(τ) dτ

)
︸ ︷︷ ︸

:=b0

ψxx +

(
κ−

∫ ∞
0

h(τ) dτ

)
︸ ︷︷ ︸

:=κ0

(ϕx + ψ)

−
∫ ∞
0

g(τ)ηxx(x, τ) dτ +

∫ ∞
0

h(τ)(νx + η)(x, τ) dτ = 0.

Then, the system (1.2)-(1.6) can be seen as

ρ1ϕtt − Sx = 0, in (0, l)× (0, t),(3.1)
ρ2ψtt −Mx + S = 0, in (0, l)× (0, t),(3.2)

νt + νs = ϕt, in (0, l)× (0, t),(3.3)
ηt + ηs = ψt, in (0, l)× (0, t),(3.4)

where

S = κ0(ϕx + ψ) +

∫ ∞
0

h(s)(νx + η)(x, s) ds

and

M = b0ψx +

∫ ∞
0

g(s)ηx(x, s) ds.
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In this way, we have the initial conditions

(3.5)

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

ν(x, 0, s) = ν0(x, s), η(x, 0, s) = η0(x, s),

and boundary conditions

(3.6)
ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = 0,

ν(0, t, 0) = ν(l, t, 0) = η(0, t, 0) = η(l, t, 0) = 0.

Consider Φ = ϕt and Ψ = ψt. Let U = (ϕ,Φ, ν, ψ,Ψ, η)T be a vector, so
we have the model (3.1)-(3.6), can be written as Ut = AU with

AU =



Φ

κ0
ρ1

(ϕx + ψ)x + 1
ρ1

∞∫
0

h(s)(νx + η)x(s) ds

Φ− νs
Ψ

b0
ρ2
ψxx − κ0

ρ2
(ϕx + ψ) + 1

ρ2

∞∫
0

g(s)ηxx(s) ds− 1
ρ2

∞∫
0

h(s)(νx + η)(s) ds

Ψ− ηs


,

where U0 = (ϕ0, ϕ1, ν0, ψ0, ψ1, η0)
T .

We introduce the spaces

L2
∗(0, l) = {f ∈ L2(0, l); fx(0) = fx(l) = 0}, Hm

∗ (0, l) = Hm(0, l)∩L2
∗(0, l).

The phase space V is given by

V=[H1
0×L2](0, l)×L2

h(0,∞;H1
0 (0, l))×[H1

∗×L2
∗](0, l)×(L2

h∩L2
g)(0,∞;H1

0 (0, l)),

where inner product for U j = (ϕj ,Φj , νj , ψj ,Ψj , ηj)T , j = 1, 2 given by〈
U1, U2

〉
= ρ1

∫ l

0
Φ1Φ2 dx+ ρ2

∫ l

0
Ψ1Ψ2 dx

+ κ0

∫ l

0
(ϕ1

x + ψ1)(ϕ2
x + ψ2) dx+ b0

∫ l

0
ψ1
xψ

2
x dx

+

∫ l

0

∫ ∞
0

h(s)(ν1x + η1)(ν2x + η2) ds dx

+

∫ l

0

∫ ∞
0

g(s)η1xη
2
x ds dx,

with induced norm

‖U‖2V =

∫ l

0

[
ρ1|Φ|2 + ρ2|Ψ|2 + κ0|ϕx + ψ|2 + b0|ψx|2

+

∫ ∞
0

h(s)|νx + η|2 ds+

∫ ∞
0

g(s)|ηx|2 ds
]
dx.
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Let S be the set bellow{
κ0(ϕx+ψ)+

∫ ∞
0
h(s)(νx+η)(s) ds ∈ H1(0, l); b0ψ+

∫ ∞
0
g(s)η(s) ds ∈ H2

∗ (0, l)

}
.

From the above definitions, we introduce the domain of A by

D(A) = [H2(0, l) ∩H1
0 (0, l)]×H1

0 (0, l)×H1
h(0,∞;H1

0 (0, l))

×H1
∗ (0, l)×H1

∗ (0, l)× (H1
h ∩H1

g )(0,∞;H1
0 (0, l)) ∩ S.

We define the energy associated with the system (3.1)-(3.6) by

E(t) :=
1

2

∫ l

0

[
ρ1|ϕt|2 + ρ2|ψt|2 + κ0|ϕx + ψ|2 + b0|ψx|2 +

+

∫ ∞
0

h(s)|νx + η|2 ds+

∫ ∞
0

g(s)|ηx|2 ds
]
dx.

In the sequel we have two important propositions.

Proposition 3.1. The operator A is dissipative.

Proof.

〈AU,U〉V = κ0

∫ l

0
(ϕx + ψ)xΦ dx+

∫ l

0

∫ ∞
0

h(s)(νx + η)x(x, s) dsΦ dx

+ b0

∫ l

0
ψxxΨ dx− κ0

∫ l

0
(ϕx + ψ)Ψ dx

+

∫ l

0

∫ ∞
0

g(s)ηxx(x, s) dsΨ dx

−
∫ l

0

∫ ∞
0

h(s)(νx + η)(x, s) dsΨ dx

+κ0

∫ l

0
(Φx + Ψ)(ϕx + ψ) dx+ b0

∫ l

0
Ψxψx dx

+

∫ l

0

∫ ∞
0

h(s)(Φx − νsx + Ψ− ηs)(νx + η) ds dx

+

∫ l

0

∫ ∞
0

g(s)(Ψx − ηsx)ηx ds dx.

Using boundary conditions (3.6) we obtain

〈AU,U〉V = −
∫ ∞
0
h(s)

∫ l

0
(νx + η)s(νx + η) dx ds−

∫ ∞
0
g(s)

∫ l

0
ηsxηx dx ds

= −1

2

∫ l

0

[
h(s)|νx + η|2

∣∣∣∣∞
0

−
∫ ∞
0

h′(s)|νx + η|2 ds
]
dx

−1

2

∫ l

0

[
g(s)|ηx|2

∣∣∣∣∞
0

−
∫ ∞
0

g′(s)|ηx|2 ds
]
dx.
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Taking the real part we get

Re〈AU,U〉V =
1

2

∫ ∞
0

h′(s)

∫ l

0
|νx + η|2 dx ds +

1

2

∫ ∞
0

g′(s)

∫ l

0
|ηx|2 dx ds.

Then A is dissipative. �

Proposition 3.2. 0 ∈ ρ(A), the resolvent set of A.

Proof. The resolvent equation λU −AU = F , with λ = 0 leads to

(3.7) −Φ = f1 ∈ H1
0 (0, l),

(3.8) −κ0(ϕx + ψ)x −
∫ ∞
0

h(s)(νx + η)x(s) ds = ρ1f
2 ∈ L2(0, l),

(3.9) −Φ + νs = f3 ∈ L2
h(0,∞;H1

0 (0, l)),

(3.10) −Ψ = f4 ∈ H1
∗ (0, l);

−b0ψxx+κ0(ϕx+ψ)−
∫ ∞
0
g(s)ηxx(s)ds+

∫ ∞
0
h(s)(νx+η)(s)ds = ρ2f

5 ∈ L2
∗(0, l),

(3.11) −Ψ + ηs = f6 ∈ (L2
h ∩ L2

g)(0,∞;H1
0 (0, l)).

From (3.7) and (3.10) follows, respectively, Φ ∈ H1
0 (0, l) and Ψ ∈ H1

∗ (0, l).
From (3.9), we have νs ∈ L2

h(0,∞;H1
0 (0, l)) and then ν ∈ H1

h(0,∞;H1
0 (0, l)).

Similarly, from (3.11), we have ηs ∈ (L2
h ∩ L2

g)(0,∞;H1
0 (0, l)) and then

η ∈ (H1
h ∩H1

g )(0,∞;H1
0 (0, l)).

From (3.8) we have κ0(ϕx + ψ) +
∫∞
0 h(s)(νx + η)(s) ds ∈ H1(0, l) and

then b0ψ +
∫∞
0 g(s)η(s) ds ∈ H2

∗ (0, l).
Therefore, from definition of D(A), follows that U ∈ D(A) and then

0 ∈ ρ(A). �

The existence of solution is given by the following theorem.

Theorem 3.1. For memory h(t) and g(t) as

h(t) =

2∑
i=1

µie
−γit and g(t) =

2∑
j=1

νje
−δjt,

where µi, νj , γi, δj > 0 and U0 ∈ D(A), then, there is a unique solution
of system (3.1)-(3.4) with initial conditions (3.5) and boundary conditions
(3.6) satisfying U ∈ C(R+;D(A)). Moreover, if U0 ∈ D(An), then U ∈
Cn−k(R+;D(Ak)), k = 0, 1, . . . , n.

Proof. By definition, A is a linear operator with dense domain D(A) in the
Hilbert space V. As A is dissipative and 0 ∈ ρ(A), the resolvent set of A,
by Lummer-Phillips Theorem, (see [8], theorem 1.2.4), A is the infinitesimal
generator of a C0-semigroup of contractions eA t on V. Then, defining U(t) =
eA t U0 as a direct consequence of semigroup theory, (see [9]), we have that
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U(t) is the unique solution of (3.1)-(3.4) in the class U ∈ C(R+;D(A)).
Moreover, if U0 ∈ D(An), then U ∈ Cn−k(R+;D(Ak)), k = 0, 1, . . . , n. �

4. Property of growth determined by spectrum

In this section we prove the property of growth determined by the spec-
trum of the operator analyzing the memory in three different situations.

4.1. Linear stability when h(t) = µe−γt, µ, γ > 0. Consider the Timo-
shenko system with memory on the cutting

ρ1ϕtt − Sx = 0, in (0, l)× (0, t),

ρ2ψtt −Mx + S = 0, in (0, l)× (0, t),

where

S = κ(ϕx + ψ)−
∫ t

−∞
h(t− s)(ϕx + ψ)(x, s)ds

and
M = bψx.

Then, we have in (0, l)× (0, t)

ρ1ϕtt − κ(ϕx + ψ)x +

∫ t

−∞
h(t− s)(ϕx + ψ)x(s)ds = 0,

(4.1)

ρ2ψtt − bψxx + κ(ϕx + ψ)−
∫ t

−∞
h(t− s)(ϕx + ψ)(s)ds = 0,

with the initial conditions
(4.2)
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

and boundary conditions

(4.3) ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = 0.

Making U = (ϕ,ϕt, ψ, ψt, )
T , we get

Ut =


ϕt
ϕtt
ψt
ψtt

 =


ϕt

κ
ρ1

(ϕx + ψ)x
ψt

b
ρ2
ψxx − κ

ρ2
(ϕx + ψ)


︸ ︷︷ ︸

:=A0U

−h ∗


0

1
ρ1

(ϕx + ψ)x
0

1
ρ2

(ϕx + ψ)


︸ ︷︷ ︸

:=h∗A1U

,

where h ∗ f denotes the convolution of the type
∫ t
−∞ h(t− s)f(s)ds.

So, we have
Ut = A0U − h ∗ A1U.

Deriving we have

Utt = A0Ut − h′ ∗ A1U = A0Ut + γh ∗ A1U.
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Then, we obtain
Utt = A0Ut +B,

where B = −γUt + γA0U .

Theorem 4.1. The system (4.1)-(4.3) verifies the property of growth deter-
mined by spectrum.

Proof. In this case we consider the infinitesimal generator for the Timo-
shenko system,

ρ1ϕtt − κ(ϕx + ψ)x = 0,(4.4)
ρ2ψtt − bψxx + κ(ϕx + ψ) = 0,(4.5)

then,

A0 =


0 I 0 0
κ
ρ1
∂2x 0 κ

ρ1
∂x 0

0 0 0 I

− κ
ρ2
∂x 0 b

ρ2
∂2x − κ

ρ2
I 0

 , U =


ϕ
ϕt
ψ
ψt

 .

Note that A0 is a normal operator. So, the problem (4.4)-(4.5) can be
rewrite as

Ut −A0U = 0.

Therefore, the model associate with the Cauchy problem (4.1)-(4.3) is
defined by

Ut −AU = F ,
where

A =

 0 I 0
0 0 I
0 0 A0

 , F =

 0
0
Bt

 , U =

 U
Ut
Utt

 .

As A0 is normal, from Theorem 2.1 follows that A is a normal operator
that verifies the conditions (1) and (2).

The continuity of Bt is made through derived inequalities. Using the
Theorem 1.1 the result follows. �

4.2. Linear stability when g(t) = νe−δt , ν, δ > 0. Consider the system
memory on the flexor moment

ρ1ϕtt − Sx = 0, in (0, l)× (0, t),

ρ2ψtt −Mx + S = 0, in (0, l)× (0, t),

where
S = κ(ϕx + ψ)

and

M = bψx −
∫ t

−∞
g(t− s)ψx(x, s)ds.
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In (0, l)× (0, t), the moment like this form

ρ1ϕtt − κ(ϕx + ψ)x = 0,

(4.6)

ρ2ψtt − bψxx +

∫ t

−∞
g(t− s)ψxx(s)ds+ κ(ϕx + ψ) = 0, in (0, l)× (0, t).

The initial conditions are given by
(4.7)
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

and the boundary conditions type Dirichlet-Neumann are

ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = 0.

Making U = (ϕ,ϕt, ψ, ψt, )
T , we have

Ut =


ϕt
ϕtt
ψt
ψtt

 =


ϕt

κ
ρ1

(ϕx + ψ)x
ψt

b
ρ2
ψxx − κ

ρ2
(ϕx + ψ)


︸ ︷︷ ︸

:=A0U

− g ∗


0
0
0

1
ρ2
ψxx


︸ ︷︷ ︸

:=g∗A2U

,

where g ∗ f denotes the convolution
∫ t
−∞ g(t− s)f(s)ds.

So we have
Ut = A0U − g ∗ A2U.

Deriving,
Utt = A0Ut − g′ ∗ A2U = A0Ut + δg ∗ A2U.

So, we obtain
Utt = A0Ut − δUt + δA0U.

Consider C = −δUt + δA0U .

Theorem 4.2. The system (4.6)-(4.7) verifies the property of linear stability.

Proof. In this case, we consider the infinitesimal generate as

ρ1ϕtt − κ(ϕx + ψ)x = 0,(4.8)
ρ2ψtt − bψxx + κ(ϕx + ψ) = 0,(4.9)

then

A0 =


0 I 0 0
κ
ρ1
∂2x 0 κ

ρ1
∂x 0

0 0 0 I

− κ
ρ2
∂x 0 b

ρ2
∂2x − κ

ρ2
I 0

 , U =


ϕ
ϕt
ψ
ψt

 .

Note that A0 is a normal operator. So, the problem (4.8)-(4.9) can be
rewrite as

Ut −A0U = 0.
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Then, the associated Cauchy problem (4.6)-(4.7) is defined by

Ut −AU = G,

where

A =

 0 I 0
0 0 I
0 0 A0

 , G =

 0
0
Ct

 , U =

 U
Ut
Utt

 .

As A0 is normal, from Theorem 2.1 follows that A is a normal operator
that verifies the conditions (1) and (2).

The continuity of Ct is made through derivative inequalities. By Theorem
1.1, the result follows. �

4.3. Linear Stability when h(t) = µe−γt and g(t) = νe−δt, µ, ν, γ, δ > 0.
Now consider the case with two memory

ρ1ϕtt − Sx = 0, in (0, l)× (0, t),

ρ2ψtt −Mx + S = 0, in (0, l)× (0, t),

where

S = κ(ϕx + ψ)−
∫ t

−∞
h(t− s)(ϕx + ψ)(x, s)ds

and

M = bψx −
∫ t

−∞
g(t− s)ψx(x, s)ds.

In (0, l)× (0, t) the model now is

ρ1ϕtt − κ(ϕx + ψ)x +

∫ t

−∞
h(t− s)(ϕx + ψ)x(s)ds = 0,(4.10)

ρ2ψtt − bψxx +

∫ t

−∞
g(t− s)ψxx(s)ds(4.11)

+κ(ϕx + ψ)−
∫ t

−∞
h(t− s)(ϕx + ψ)(s)ds = 0.

The initial conditions are given by
(4.12)
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

and boundary conditions type Dirichlet-Neumann are

(4.13) ϕ(0, t) = ϕ(l, t) = ψx(0, t) = ψx(l, t) = 0.



90 Property of growth determined by the spectrum

Making U = (ϕ,ϕt, ψ, ψt, )
T , we obtain

Ut =


ϕt

κ
ρ1

(ϕx + ψ)x
ψt

b
ρ2
ψxx − κ

ρ2
(ϕx + ψ)


︸ ︷︷ ︸

:=A0U

−h ∗


0

1
ρ1

(ϕx + ψ)x
0

1
ρ2

(ϕx + ψ)


︸ ︷︷ ︸

:=h∗A1U

− g ∗


0
0
0

1
ρ2
ψxx


︸ ︷︷ ︸

:=g∗A2U

,

where h ∗ f and g ∗ f denote the convolutions∫ t

−∞
h(t− s)f(s)ds and

∫ t

−∞
g(t− s)f(s)ds.

So, we have

(4.14) Ut = A0U − h ∗ A1U − g ∗ A2U.

After to derive we obtain

Utt = A0Ut − h′ ∗ A1U − g′ ∗ A2U = A0Ut + γh ∗ A1U + δg ∗ A2U.

Now defining the operator L : H → H, where H are Hilbert spaces, given
by

L(f) = f ′′ + (γ + δ)f ′ + γδf.

Clearly we have
L(h(t)) = 0 and L(g(t)) = 0.

Applying L in the equation (4.14), we have

L(Ut) = A0L(U)− L(h) ∗ A1U − L(g) ∗ A2U.

So, we have

Uttt + (γ + δ)Utt + γδUt = A0Utt + (γ + δ)A0Ut + γδA0U,

then

Uttt = A0Utt − (γ + δ)Utt − γδUt + (γ + δ)A0Ut + γδA0U.

Now consider D = −(γ + δ)Utt − γδUt + (γ + δ)A0Ut + γδA0U.

Theorem 4.3. The system (4.10)-(4.13) verifies the linear stability.

Proof. For this case we consider the following infinitesimal generator

ρ1ϕtt − κ(ϕx + ψ)x = 0,(4.15)
ρ2ψtt − bψxx + κ(ϕx + ψ) = 0,(4.16)

then

A0 =


0 I 0 0
κ
ρ1
∂2x 0 κ

ρ1
∂x 0

0 0 0 I

− κ
ρ2
∂x 0 b

ρ2
∂2x − κ

ρ2
I 0

 , U =


ϕ
ϕt
ψ
ψt

 .
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Note that A0 is a normal operator. So, the problem (4.15)-(4.16) can be
rewrite as

Ut −A0U = 0.

Hence the model associated to Cauchy problem (4.10)-(4.13) is defined by

Ut −AU = J ,
where

A =

 0 I 0
0 0 I
0 0 A0

 , J =

 0
0
D

 , U =

 U
Ut
Utt

 .

As A0 is normal, from Theorem 2.1 follows that A is a normal operator
that verifies the conditions (1) and (2).

The continuity of D is made through derivative inequalities. By Theorem
1.1 we obtain the result. �

5. Calculation of ω0(A)

In this section we will calculate the polynomial whose roots give us the
estimate of ω0(A). Denote, as in Section 4.1, the operator A given by

AU =



Φ

κ0
ρ1

(ϕx + ψ)x + 1
ρ1

∞∫
0

h(s)(νx + η)x(s) ds

Φ− νs
Ψ

b0
ρ2
ψxx − κ0

ρ2
(ϕx + ψ) + 1

ρ2

∞∫
0

g(s)ηxx(s) ds− 1
ρ2

∞∫
0

h(s)(νx + η)(s) ds

Ψ− ηs


.

We denote by V the space

V=[H1
0×L2](0, l)×L2

h(0,∞;H1
0 (0, l))×[H1

∗×L2
∗](0, l)×(L2

h∩L2
g)(0,∞;H1

0 (0, l)),

where

L2
∗(0, l) = {f ∈ L2(0, l); fx(0) = fx(l) = 0}, Hm

∗ (0, l) = Hm(0, l) ∩ L2
∗(0, l)

and

L2
µ(0,∞;H1

0 (0, l)) =

{
f ∈ H1

0 (0, l);

∫ +∞

0
µ(s)

∫ l

0
|fx(x, s)|2 dx ds <∞

}
,

with induced norm

‖U‖2V =

∫ l

0

[
ρ1|Φ|2 + ρ2|Ψ|2 + κ0|ϕx + ψ|2 + b0|ψx|2

+

∫ ∞
0

h(s)|νx + η|2 ds+

∫ ∞
0

g(s)|ηx|2 ds
]
dx.
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The domain D(A) of A is given by

D(A) = [H2(0, l) ∩H1
0 (0, l)]×H1

0 (0, l)×H1
h(0,∞;H1

0 (0, l))

×H1
∗ (0, l)×H1

∗ (0, l)× (H1
h ∩H1

g )(0,∞;H1
0 (0, l)) ∩ S,

where S is the set bellow{
κ0(ϕx+ψ)+

∫ ∞
0
h(s)(νx+η)(s) ds ∈ H1(0, l); b0ψ+

∫ ∞
0
g(s)η(s) ds ∈ H2

∗ (0, l)

}
.

The resolvent equation
λU −AU = F,

in terms of the scalar components, is given by

(5.1) λϕ− Φ = f1 ∈ H1
0 (0, l),

(5.2) λρ1Φ− κ0(ϕx + ψ)x −
∫ ∞
0

h(s)(νx + η)x ds = f2 ∈ L2(0, l),

(5.3) λν − Φ + νs = f3 ∈ L2
h(0,∞;H1

0 (0, l)),

(5.4) λψ −Ψ = f4 ∈ H1
∗ (0, l),

(5.5)
λρ2Ψ− b0ψxx + κ0(ϕx + ψ)

−
∫ ∞
0
g(s)ηxx(s) ds+

∫ ∞
0
h(s)(νx + η)(s) ds = f5 ∈ L2

∗(0, l),

(5.6) λη −Ψ + ηs = f6 ∈ (L2
h ∩ L2

g)(0,∞;H1
0 (0, l)).

We must find the elements of the spectrum of operator. It’s simple verifies
that λ ∈ σ(A) if and only if

λU −AU = 0.

From (5.1)-(5.6) for f i = 0, for all i = {1, . . . , 6}, we find

Φ = λϕ and Ψ = λψ,

then

(5.7) λ2ρ1ϕ− κ0(ϕx + ψ)x −
∫ ∞
0

h(s)(νx + η)x ds = 0,

(5.8) λν − λϕ+ νs = 0,

(5.9)
λ2ρ2ψ − b0ψxx + κ0(ϕx + ψ)

−
∫ ∞
0

g(s)ηxx(s) ds+

∫ ∞
0

h(s)(νx + η)(s) ds = 0,

(5.10) λη − λψ + ηs = 0.

Solving the equations (5.8) and (5.10), we have

νs + λν = λϕ and ηs + λη = λψ,
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that is
[eλsν]s = λeλsϕ and [eλsη]s = λeλsψ.

From where follows that

eλsν =

∫ s

0
λeλτϕ(x, t) dτ and eλsη =

∫ s

0
λeλτψ(x, t) dτ.

Calculating the integrals, we have

eλsν = eλτ
∣∣∣∣s
0

ϕ(x, t) = (eλs − 1)ϕ and eλsη = eλτ
∣∣∣∣s
0

ψ(x, t) = (eλs − 1)ψ.

So,
ν = (1− e−λs)ϕ e η = (1− e−λs)ψ.

Replacing ν and η in (5.7) and (5.9), we obtain

λ2ρ1ϕ− κ0(ϕx + ψ)x − (ϕx + ψ)x

∫ ∞
0
h(s)(1− e−λs) ds = 0(5.11)

and

λ2ρ2ψ − b0ψxx + κ0(ϕx + ψ)− ψxx
∫ ∞
0

g(s)(1− e−λs) ds+

+(ϕx + ψ)

∫ ∞
0

h(s)(1− e−λs) ds = 0.(5.12)

Suppose h(t) = µe−γt and g(t) = 0.
In this case, the equations (5.11)-(5.12) remain

λ2ρ1ϕ− κ0(ϕx + ψ)x − (ϕx + ψ)x

∫ ∞
0
h(s)(1− e−λs) ds = 0(5.13)

and

(5.14)

λ2ρ2ψ − b0ψxx + κ0(ϕx + ψ) + (ϕx + ψ)

∫ ∞
0
h(s)(1− e−λs) ds = 0.

Differentiating (5.14) in relation x, we have

(5.15)
λ2ρ2ψx − b0ψxxx + κ0(ϕx + ψ)x + (ϕx

+ ψ)x

∫ ∞
0

h(s)(1− e−λs) ds = 0.

From (5.13), follows

(5.16) κ0(ϕx + ψ)x + (ϕx + ψ)x

∫ ∞
0

h(s)(1− e−λs) ds = λ2ρ1ϕ.

Replacing (5.16) in (5.15), we obtain

λ2ρ2ψx − b0ψxxx + λ2ρ1ϕ = 0.(5.17)



94 Property of growth determined by the spectrum

By outer side, using the boundary conditions (4.12), we obtain ϕ and ψ
of type

ϕ(x, t) = eλt sin(γ̃x) and ψ(x, t) = eλt cos(γ̃x),

where γ̃ is such that γ̃l = nπ, n ∈ N.
Estimating the derivatives of ψ, we get

ψx = −γ̃ϕ, ψxx = −γ̃2ψ and ψxxx = γ̃3ϕ.

Replacing in (5.17) and, simplifying by ϕ 6= 0, follows that

λ2(ρ1 − ρ2γ̃)− b0γ̃3 = 0.

Let P1(λ) be the polynomial of degree 2 given by

P1(λ) = λ2
(
ρ1 −

ρ2nπ

l

)
− b0

n3π3

l3
, n ∈ N.

We consider
σ(A) = {λ ∈ C/P1(λ) = 0}.

Solving P1(λ) = 0, we obtain

λ2 =
b0n

3π3

l2(lρ1 − ρ2nπ)
, n ∈ N.

So,

λ = ±i

√
b0n3π3

l2(lρ1 − ρ2nπ)
, n ∈ N.

Then
ω0(A) = sup{Re λ; λ ∈ σ(A)}.

Suppose g(t) = νe−δt and h(t) = 0.
Now, the equations (5.11)-(5.12) remain

λ2ρ1ϕ− κ0(ϕx + ψ)x = 0(5.18)

and

λ2ρ2ψ − b0ψxx + κ0(ϕx + ψ)− ψxx
∫ ∞
0

g(s)(1− e−λs) ds = 0.

Differentiating the last equation in relation x, we get

λ2ρ2ψx − b0ψxxx + κ0(ϕx + ψ)x

− ψxxx
∫ ∞
0

g(s)(1− e−λs) ds = 0.
(5.19)

From (5.18), follows that

(5.20) κ0(ϕx + ψ)x = λ2ρ1ϕ.
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Replacing (5.20) in (5.19), we get

λ2ρ2ψx − b0ψxxx + λ2ρ1ϕ− ψxxx
∫ ∞
0
g(s)(1− e−λs) ds = 0.(5.21)

Moreover, using boundary conditions (4.12) we get ϕ and ψ type

ϕ(x, t) = eλt sin(γ̃x) and ψ(x, t) = eλt cos(γ̃x),

where γ̃ is such that γ̃l = nπ, n ∈ N.
From estimate of derived ψ, we have

ψx = −γ̃ϕ, ψxx = −γ̃2ψ, ψxxx = γ̃3ϕ.

Using the dissipative mechanism g(t) = νe−δt, where ν, δ > 0, replacing
in (5.21) and simplifying by ϕ 6= 0, follows that

λ2(ρ1 − ρ2γ̃)− b0γ̃3 − γ̃3ν
∫ ∞
0

e−δs(1− e−λs) ds = 0.

Calculating the integral, we obtain

λ2(ρ1 − ρ2γ̃)− b0γ̃3 − γ̃3ν
[
e−δs

−δ
+
e−(δ+λ)s

−(δ + λ)

]∞
0

= 0.

Consider the polynomial P2(λ) of degree 2 given by

P2(λ) = λ2(ρ1 − ρ2γ̃)− b0γ̃3 − γ̃3ν
(

1

δ
+

1

δ + λ

)
.

Proceeding as before, we get

σ(A) = {λ ∈ C/P2(λ) = 0},
and solving P2(λ) = 0, we obtain

ω0(A) = sup{Re λ; λ ∈ σ(A)}.

6. Conclusion

The property of growth determined by spectrum wσ(A) = w0(A) gives
an important information, that is, the best constant for the exponential
stability is the upper bound of the spectrum of operator A. In this sense, we
prove that the Timoshenko system with memory acting on both, bending
moment and shear force, is exponentially stable with optimal rate.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] C. M. Dafermos, On abstract Volterra equation with applications to linear viscoelas-

ticity, Differential and Integral Equations, 7 (1970), 554–569.
[3] C. M. Dafermos, Asymptotic Stability in Viscoelasticity, Arch. Rat. Mech. Anal., 37

(1970), 297–308.
[4] M. Fabrizio, A. Morro, Mathematical problems in linear viscoelasticity, SIAM - Stud-

ies in Applied Mathematics, 12, Philadelphia, 1992.



96 Property of growth determined by the spectrum

[5] B. Feng, Ma Tu Fu, R. N. Monteiro, C. A. Raposo, Dynamics of Laminated Timo-
shenko Beams Journal of Dynamics and Differential Equations, 30 (2018), 1489–1507.

[6] S. A. Messaoudi, B. Said-Houari, Uniform decay in a Timoshenko-type system with
past history, J. Math. Anal. Appl., 360 (2009), 459–475.

[7] K. Liu, Z. Liu, On the type of C0-semigroups associated with the abstract linear
viscoelastic system, Z. Angew. Math. Phys., 47 (1996), 1–15.

[8] Z. Liu, S. Zheng, Semigroups associated with dissipative systems, Chapman &
Hall/CRC, 1999.

[9] A. Pazy, Semigroup of linear operators and applications to partial differential equa-
tions, Springer-Verlag, New York, 1983.

[10] J. Prüss, On the Spectrum of C0-Semigroups, Transaction of the American Mathe-
matical Society, 284 (1984), 847–857.

[11] C. A. Raposo, J. E. M. Rivera, R. R. Alves, Property of growth determined by spec-
trum of operator associated with the Timoshenko system with weakly dissipation Dif-
fer. Equ. Appl., 7 (2015), 385–400.

[12] C. A. Raposo, O. Vera Villagran, J. E. Munoz Rivera, M. Alves, Hybrid laminated
Timoshenko beam, J. Math. Phys., 58 (2017), 101512.

[13] M. Renardy, On the type of certain C0-semigroups, Comm. Part. Diff Eq., 18 (1993),
1299–1307.

[14] M. Renardy, On the linear stability of hiperbolic PDEs and viscoelastic flows, Z.
Angew. Math. Phys., 45 (1994), 854–865.

[15] E. Pişkin, H. Yüksekkaya, Non-existence of solutions for a Timoshenko equations
with weak dissipation, Mathematica Moravica, 22 (2018), 1–9.

[16] Q. P. Vua, J. M. Wang, G. Q. Xu, S. P. Yung, Spectral analysis and system of
fundamental solutions for Timoshenko beams, Appl. Math. Lett., 18 (2005), 127–
134.

Ronaldo Ribeiro Alves
Departament of Matematics
Federal University of São João del-Rey
36307-352, São João del-Rey, MG
Brazil
E-mail address: ronribal@ufsj.edu.br

Jaime E. Muñoz Rivera
Federal University of Rio de Janeiro

and National Laboratory for Scientific Computation
25651-075, Petrópols, MG
Brazil
E-mail address: rivera@lncc.br

Carlos A. Raposo
Doctoral Program, Federal University of Bahia

and Federal University of São João del-Rey
36307-352, São João del-Rey, MG
Brazil
E-mail address: raposo@ufsj.edu.br


