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Property of growth determined by
the spectrum of operator associated to
Timoshenko system with memory

RONALDO RIBEIRO ALVES, JAIME E. MUNOZ RIVERA,
CARLOS A. RAPOSO

ABSTRACT. In this manuscript we prove the property of growth deter-
mined by spectrum of the linear operator associated with the Timo-
shenko system with two histories.

1. INTRODUCTION

This work deals with the property of growth determined by spectrum of
the linear operator associated with the Timoshenko system with two his-
tories. Timoshenko model has been considered with several beam models,
we cite for instance [5, 6, 11, 12, 15, 16]. We will use standard notation of
Sobolev spaces and theory of semigroups as in [1, 7, 8, 9]. Let A be the
infinitesimal generator of the Cp-semigroup e4* on a Banach space X. As
usual, we define the type or growth order of the semigroup by

: At wt . nfled!]]
wo(A) =inf{lw e R : [[e?f]| < Me ,fora110§t<oo}:%r>1£f

and the spectral bound by
we(A) =sup{Re X : A€ o(A4)},

where 0(A) denotes the spectrum of A. When X has finite dimension, it is
well known that

(1.1) we(A) = wo(A).

In the infinite dimensional case, in general, the above equality (1.1) may
not hold. From the Hille-Yosida Theorem we see that

Wqs (A) S wo(A) .
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76 PROPERTY OF GROWTH DETERMINED BY THE SPECTRUM

We notice that wg(A) describes the growth order of ef. From definition
of wo(A) if w > wp(A) then there exists a constant M > 1 such that

]| < e,

The condition (1.1) is important because it gives a practical criterion for
exponential stability of e?. The exponential stability of e?? is equivalent to
the condition that wg(A) < 0. If —co < wp(A) < 0, then the Cp-semigroup
et has exponential stability. In fact, for 0 < € < |wo(A)|, we have

wo(A) + € > In|[ed|[t = o+t < 1At for all ¢ > N,.

Using the continuity of the operator e??

we obtain M, > 0 such that

on the compact interval [0, N],

||6At|| S Mee(wo(A)+E)t7 for all ¢ > 0’

and choosing —p = wg(A) + € < 0, follows the exponential stability of e4?.
In this direction the exponential stability of e?? is completely determined
by the spectrum of A and the condition (1.1) is namely of the spectrum
determined growth assumption.
We use the following result duo to M. Renardy for Hilbert spaces.

Theorem 1.1. Let H be a Hilbert space and A = Ag + B the infinitesimal
generator of the Co-semigroup on H where Ag is normal and B is bounded.
Suppose that there exist M > 0 and n € N verifying:

(1) If X € 0(Ap) and |A| > M —1 then X is a isolated eigenvalue of finite
multiplicity;

(2) If|z| > M then that the number of eigenvalues of Ay in the unit disk
centered in z (containing multiplicities) does not exceed n.

In this conditions we have
we(A) = wo(A).
Proof. See, [10, 13, 14]. O

In this work we study the Timoshenko system with two histories

(12) P1PtH — Sx = 0, in (0, l) X (O,t),
(1.3) pathye — My +S =0, in (0,1) x (0,1),
(1) S=rlpatv)= [ b= 9)pa V) s)ds
(1.5) M = by, — /_ g(t — )z (z, s)ds,

with initial conditions

(p(.T,O) = ‘100(37)7 ‘;Ot(l'ao) = ‘Pl(:p)a @Z}(%O) = ¢0(m)7 ¢t($70) = 7111(93)
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We consider Dirichlet-Neumann boundary condition given by

(1.6) ©(0,t) = p(l,t) = 1¥.(0,t) = ¥x(l,t) =0, t > 0.

This manuscript is organized as follows. In the Section 2 we present the
preliminary results, Section 3 we prove the existence of solution, Section 4
deals with the property of growth determined for spectrum and finally in
the Section 5 we calculate the type of Cp-semigroup.

2. PRELIMINAR RESULTS
We denote H a Hilbert space and
A:D(A)CcH—H

the infinitesimal generator of the Cy-semigroup of contractions S(t) = e“t.

Then U(t) = S(t)Up is solution of the equation
U — AU =0, U(0)="U,,
that can be extended to
Uy — AU, =0, U(0)= Uy, U1(0) = Uj.
For this, is equivalent to prove that the operator
A = < 8 i )
generates a Cp-semigroup of contractions in the space
H1={(U,V)e DA) x H;, AU -V € D(A)},

provided the inner product

Ul U2
(2)-(12)), = 0hvims v —v, a2 —vay,
Hi
+ (A%U — AV, A2U7% — AV,

with norm

I(v)

In the Hilbert space H; we take the domain of A;, as
D(A) ={U=(UV)€eH; (UV)eD(A*) xD(A)}.

= V7 + |AU = Vi + |1A°U — AV |3

2
Hi

We have the following result.

Lemma 2.1. The operator A1 is the infinitesimal generator of a Co-semigroup
of contractions on Hi.
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Proof. D(A;) is a closed and dense space on H;. We will show that Rt C
p(Ay). For F = (Fy, F») € Hi, we will prove that there exists a unique
solution U € D(A;) such that

MU —AU=F.
In terms of its components we get
(2.1) AU -V = Fy,
(2.2) AV — AV = Fs.

As A is infinitesimal generator of a Cy-semigroup of contractions, we have
that for all F» € H there exists a unique solution V' € D(A) such that

AV — AV = F,.
Then,
(2.3) V=0 -A)"FK
and .
M —A)7Y <=,
I =47 < 5

Replacing (2.3) into (2.1) we find
N — (M- A 'Ry = Py
Applying (A — A) in the above equation we have

1 1
AU — AU = Fy + {Fy — L AF) € D(A).

Since A is generator infinitesimal of a Cy-semigroup, we have that U €
D(A?). Using (2.1) and (2.2) we have

MU — AV = AR,
AV — AV = F.
Taking the difference of these equations
MAU - V) = AF, — F>.

Similarly,

MAU — AV) = A’Fy — AF,.
Getting the norms, follows
(24) MAU -V|| < ||AR — B, AU - AV| < ||A’F, — AR
Making the inner product of (2.2) with V' we obtain

AV = (AV, V) = (B, V).
As (AV,V) <0 for all V € D(A), by Holder’s inequality, follows
(2.5) AV < [ F2]l-



R. R. Awves, J. E. M. Rivera, C. A. Raposo 79

From (2.4)-(2.5) we get

Nul? < |1F112,
that implies
_ 1
IO =AY <
By Theorem of Hille-Yosida the conclusion hold. O

We can extend this result to
Uie — AUy = 0, U(O) = Uy, Ut(o) = U, Utt(o) = Us.
Then, the operator
0 I O
0 0 I
0 0 A

generates a Cp-semigroup of contractions in the space

Ho = {(U,V,W) € D(A%) x D(A) x H; AU —V € D(A*); AV — W € D(A)},

Az =

with inner product

Ut U2
< Vi) v > = (WL Wy
w w ”
+ > (AU - ATV AU - ATV
j=1

2
+ > (AVI - AW AV - AW
j=1

and domain
D(As) ={U = (U, V., W)€ Hy (U V,W)eD(A*) x D(A*) x D(A)} .
Now consider the following result.

Lemma 2.2. Let A be the infinitesimal generator of a Cy-semigroup of
contractions, then

Ay =

o O O
S O M

0
1
A
verifies

p(Az2) = p(A) U{0}.



80 PROPERTY OF GROWTH DETERMINED BY THE SPECTRUM

Proof. Suppose A € p(A) then exist a unique solution of the resolvent equa-
tion

AU — AU = F,
where F' € H. We shall that A\ € p(Az). Consider the problem
X — AU = F.
We have
(2.6) N -V = F € DA%,
(2.7) AV-W = F, € DA,
(2.8) AW —AW = F € H.

By the hypothesis there exists a unique W € D(A) solution of (2.8). So
(2.7) can be written as

AV — (M- A7y =F,
and then
MM — AW = (M — A)Fy, + F3 € D(A).

Using the hypothesis again found that there is a unique V' € D(A?) such
that

AV =F,+ (M - A)"'F; € D(A).
Substituting in (2.6) and multiplying by A we get
MU - F,— (M- A7 By =) F, € D(A?%).
From where follows
N — AU — (M — A)Fy — F3 = A\ — A)F; € D(A?).
Thus
N(\U — AU) = N2Fy + \Fy — MAF, — AF>, + F3 € D(A?).

Follows that U € D(A3) and show A € p(As). Reciprocally, take A €
p(As2), then we have for all F € Hy that there exists a unique U € D(A)
verifying (2.6)-(2.8). In particular, from (2.8) we have that for all F3 € H
there exists a unique W € D(A). So we concludes that A € p(A). O

As a consequence of the previous lemmas we have the following theorem

Theorem 2.1. Suppose that A is a normal operator for which there exist
M > 0 and an integer n verifying:

(1) If X € 0(Ap) and |A| > M — 1, then X is an isolated eigenvalue of
finite multiplicity, and

(2) If |z| > M, then the number of eigenvalues Aqy into of unit disc
centered in z (containing multiplicities) does not exceed n.
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With this conditions the operator A defined by

0 I 0
A=10 0 I
0 0 A

is a normal operator which also satisfies the properties (1) and (2).

Proof. As A is self-adjoint an normal, we have that A* = A, and in particular

A is normal. Moreover, the spectra of A and A are equal out of a unit ball

and the result follows. O
3. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we show the existence, regularity and uniqueness of solu-
tion to the problem (1.2)-(1.6). We remember that, Dafermos |2, 3|, Fabrizio
[4], introduced the memory spaces by the new variables n and v,

nsts) = W) — (ot —s),  vlats) = oo, t) — pla,t - 3),
that satisfies
ne(@,t,s) = Yu(x,t) — Yu(x,t = 5), ns(z,t,8) = Pu(x,t = ),
vi(x,t,8) = () — pe(x,t — 8), vs(z,t,s) = oz, t —s).
Summing we find the equations
Ne+ns = Ye(x,t), v+ vs = @i, 1).
From definitions of n and v, we obtain the news boundary conditions
n(xz,t,0) =0 =v(x,t,0), forall ¢t >0,z e (0,]).
Moreover, follows that
n(z,0,s) = ¥(x,0) — P(z, —s) = Yo(x) — Yn(z, —s) == no(x, s),
v(z,0,s) = o(z,0) — p(z,—s) = po(x) — en(x, —s) := vy(z, s).
We denote by LZ(O, o0; H(0,1)) the space of square integrable functions
with weight g and values into Hg(0,1), by

+o0 l
L2(0, 00 HL(0.1)) = {f c Hg(o,m;/o u(s)/o o, 5) P dz ds < oo}.

This space with the inner product

+o0 l
Ry = [ 0o [ foles)acta, ) dods

is a Hilbert space.
Making change of variables and using the equation, we found

t 00
/ gt — 7)Yy (z, T)dT = /0 9(T)ge(x, t —T)dT

—00
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_ /O " (Ve 7) dr + /O " o) dritns

and

[ ne=nert e i = [+ )alo t =) ar

From similar way

[ R e /Omhm(wn)(x, r)dr

The system (1.2)-(1.3) can be rewritten as

g = (5= [ wyar) o+ 0)e = [ W)+ ot 1) =0,

I=KQ

pot— (o= [ oty ) eact (= [~ hiryar) e 0)

-~

:=bg =Ko
- /OO 9(T)Naz(z, T)dT + /OO h(T)(vy +n)(z, 7)dT = 0.
0 0

Then, the system (1.2)-(1.6) can be seen as

(3.1) prpw — Sy = 0, 1in (0,1) x (0,1),
(3.2) p2th — Mz + S = 0, in (0,1) x (0,1),
(3.3) vi+vs = @, in (0,1) x (0,1),
(3.4) ne+mns = v in (0,1) x (0,¢),
where

S = ralie+ )+ [ )0+ ), 9 ds
and

M = by, + /Ooog(s)nsc(xa 3) ds.
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In this way, we have the initial conditions
p(x,0) = @o(x), pi(x,0) = p1(z),
(3.5) b(x,0) = o(@), bi(,0) =t (2),
v(z,0,s) =vy(z,s), n(x,0,s) =no(z,s),

and boundary conditions

0(0,1) = ¢(l,t) = ¥z(0,t) = ¢u(l,t) =0,
v(0,t,0) = v(l,t,0) = n(0,¢,0) = n(l,t,0) = 0.

Consider ® = ¢; and U = 9. Let U = (p, ®,v,%, ¥,1)T be a vector, so
we have the model (3.1)-(3.6), can be written as U; = AU with
i P

(3.6)

AU = )

%wm - HO (‘Pz +9)+ o2 fg $)Naa(s) ds — ?12 h(s)(ve +n)(s)ds
U —ns J

where UO = ((7007 ¥1, V0o, 7/)07 ¢17 770)T-
We introduce the spaces

L3(0,1) = {f € L*(0,1); f2(0) = fo(1) = 0}, H[*(0,1) = H™(0,1)NLZ(0,1).
The phase space V is given by

V= [H} x L2)(0,1) x L3 (0, s0: H} (0,1)) x [H! x L2](0, 1) x (LENL2) (0, 003 H{ (0, 1),

where inner product for UJ = (@7, &7, 13 47, W p)T | j = 1,2 given by

l . l _
<U1,U2> = pl/ <I>1(I>2dx+p2/ o2 dy
0 0
l L
+ o [+ ONEF P o+ [ wliEdo
0 0

l 00
o [T e0d oz P s da
// (s)nin2ds dz,
with induced norm

l
3 = / [plrcbﬁ+p2|wr2+nor¢z+¢12+bo|¢w|2
0

+/ h(s)\yx—I—nlzds—i-/ g(s)]ng;]st] dr.
0 0
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Let S be the set bellow
{mo«omww [r)wern () ds € H0.0: b+ [glsints) ds € 120 z>}.
0 0

From the above definitions, we introduce the domain of A by
D(A) = [H?(0,1) N Hy(0,1)] x Hy(0,1) x HE(0,00; Hy(0,1))
x H}(0,1) x H}(0,1) x (Hy N Hy)(0,00; Hy(0,1)) N S.
We define the energy associated with the system (3.1)-(3.6) by

1

l
E(t) == 2/ |:Pl|90t|2 + palte|® + Kolpz + 1| + bolthe|® +
0

[T hm s [ ool ds]
0 0

In the sequel we have two important propositions.
Proposition 3.1. The operator A is dissipative.
Proof.

(AU U)y = Iio/((px—Fw <I>d:c+// V(e +n)z(x, 8)ds @ dw

+bo/ z/Jm\I/dx—f@o/(SOw-i-w)\Ild:r

// 8) Nz (w, 5) ds W dx
/ / Y(ve +n)(z, s)ds VU dx

l
+/£0/0(®x+\11)(g0x+1/1)dx+b0/0 U4, de

I poo
+ / / h(s)(®y — Vsg + ¥ — 1) (Vg + 1) ds dx
0 Jo

l 00
+ / / 9(8)(Vy — Nsz )Tz ds d.
0 JO

Using boundary conditions (3.6) we obtain

00 l 00 l
(AU, U)y = —/h(s)/(ux+17)s(ux+17)dwds—/g(s)/ Nsa Tz A ds
0 0 0 0
! [e’e) 0o
= —1/ {h(s)\ux—i—m2 —/ h/(S)I/x-i-?ﬂQdS] dx
2 /o 0 0

4 | |~ [l ds]

0




R. R. Awves, J. E. M. Rivera, C. A. Raposo 85

Taking the real part we get

1 00 l 1 00 l
Re(AU, Uy = 2/0 h’(s)/o Ve + |2 da ds +2/0 g'(s)/o a2 da ds.
O

Then A is dissipative.
Proposition 3.2. 0 € p(A), the resolvent set of A.
Proof. The resolvent equation AU — AU = F, with A = 0 leads to

(3.7) -® = f' € Hy(0,1),

(38)  —rolps+¥)a— /0 " h(s) (e + m)als) ds = puf? € L2(0,1),
(39) - + Vg = f3 € L}2L(07 003 H3(07 l))7

(3.10) —V = f* e HI(0,0);

o0

bothratro(pe i)~ /0 9(5)1ax (s)dst /0 h(s) (vatn)(s)ds = paf® € L2(0,1),

(3.11) —U 15 = f° € (Lj N L3)(0, 005 Hy (0,1)).

From (3.7) and (3.10) follows, respectively, ® € HJ(0,1) and ¥ € H}(0,1).
From (3.9), we have v; € L2 (0, 00; H}(0,1)) and then v € H}(0, 0o; H}(0,1)).

Similarly, from (3.11), we have 1, € (Lj N L2)(0,00; Hg(0,1)) and then
n € (Hj N Hy)(0,00; H(0,1)).

From (3.8) we have ko(pz + %) + [;° h(s)(ve +n)(s)ds € H*(0,1) and
then byt + [~ g(s)n(s) ds € HZ(0,1).

Therefore, from definition of D(A), follows that U € D(A) and then
0 € p(A). O

The existence of solution is given by the following theorem.

Theorem 3.1. For memory h(t) and g(t) as

2 2

h(t) = Zuie*%t and g(t) = Z vje %,

i=1 j=1
where pi, vj, vi, 0; > 0 and Uy € D(A), then, there is a unique solution
of system (8.1)-(3.4) with initial conditions (3.5) and boundary conditions
(3.6) satisfying U € C(R*T; D(A)). Moreover, if Uy € D(A™), then U €
C"F(R*; D(A¥)), k=0,1,...,n.

Proof. By definition, A is a linear operator with dense domain D(.A) in the
Hilbert space V. As A is dissipative and 0 € p(.A), the resolvent set of A,
by Lummer-Phillips Theorem, (see [8], theorem 1.2.4), A is the infinitesimal
generator of a Co-semigroup of contractions e“** on V. Then, defining U (t) =
eAt Uy as a direct consequence of semigroup theory, (see [9]), we have that
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U(t) is the unique solution of (3.1)-(3.4) in the class U € C(R'; D(A)).
Moreover, if Uy € D(A"), then U € C"*(R*; D(A*)), k=0,1,...,n. O

4. PROPERTY OF GROWTH DETERMINED BY SPECTRUM

In this section we prove the property of growth determined by the spec-
trum of the operator analyzing the memory in three different situations.

4.1. Linear stability when h(t) = pe™ "%, u, v > 0. Consider the Timo-
shenko system with memory on the cutting

pros — Sz = 0, 1in (0,1) x (0,1),
potby — My +S = 0, in (0,1) x (0,t),

where .

s:nwfwm—/ Wt — 5)(gs + ) (2, 5)ds

and
M = by,
Then, we have in (0,1) x (0,t)
t
p1p1e — Kz +1)e + / h(t — s)(pz +1)z(s)ds =0,

(4.1) -

pwwmw+m%+w—/ Bt — )(a + )(s)ds = 0,

with the initial conditions i
(4.2)
90(1;70) = SO[)(:L’), Sot(xvo) = Qol(x)v ¢($70) = ¢0($)7 wt(:I;)O) = wl(‘r)v

and boundary conditions

(4.3) ©(0,t) = p(l,t) = ¥:(0,) = ¥u(l,t) = 0.
Ma‘king U= (907 Pt lb; wb )T7 we get
Pt Pt . 0
v=| | = o (Pa +1b)e s or (P +)a ’
Py , Uy X 0
=AgU Z:h;:‘llU

where h x f denotes the convolution of the type ffoo h(t —s)f(s)ds.
So, we have
U =AU — h+ A41U.

Deriving we have

Uy = AoUt —h' % AU = AoUt + ’7h * A1 U.
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Then, we obtain
Utt = .AOUt + B,
where B = —yU; + v AgU.

Theorem 4.1. The system (4.1)-(4.3) verifies the property of growth deter-
mined by spectrum.

Proof. In this case we consider the infinitesimal generator for the Timo-
shenko system,

(4.4) prow — k(s + )z = 0,
(4.5) p2hu — bag + K(0z +9) = 0,
then,
0 I 0 0 o
Ao = ;1063 8 p%oax ? U= fbt
_p% . 0 p%ag - ;—21 0 Py

Note that A is a normal operator. So, the problem (4.4)-(4.5) can be
rewrite as

U — AU = 0.
Therefore, the model associate with the Cauchy problem (4.1)-(4.3) is
defined by

Z/lt - .AZ/[ = .7:,
where
0 I O 0 U
A= 0 0 I , F = 0 , U= U,
0 0 Ag By U

As Ag is normal, from Theorem 2.1 follows that A is a normal operator
that verifies the conditions (1) and (2).

The continuity of B; is made through derived inequalities. Using the
Theorem 1.1 the result follows. g

4.2. Linear stability when g(t) = ve™%

memory on the flexor moment

, v, 6 > 0. Consider the system

prew — Sy = 0, 1in (0,1) x (0,1),
potu — My + 5 0, in (0,1) x (0,t),

where
S = ’%(Qox + 1/})
and

t
M = by, — / g(t — 8)(z, s)ds.

—00
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In (0,1) x (0,t), the moment like this form

P1Ptt — 5(9030 + w)x = 0,

(4.6)
t
,02wtt - bwaﬁx + / g(t - S)wxx(s)ds + K“((Pm + 77/}) = 07 in (07 l) X (Oa t)'

The initial con:ﬁtions are given by
(4.7)
90(1"’0) = QOD(I)’ QDt(.’L‘,O) = Qol(x)v w(%o) = ¢0($)= ¢t(=’75,0) = 1/11(93),

and the boundary conditions type Dirichlet-Neumann are
0(0,t) = p(l,t) = ¥,(0,t) = ¥y(l,t) = 0.
Making U= (Soa Pts T,Z), wb )T , We have

Pt Pt 0
K
Pt 2z + V) 0
! Uy (o g% . 0
:ZX()U 3:g*»A2U

where g * f denotes the convolution ffoo g(t —s)f(s)ds.

So we have

U = AU — g x AsU.
Deriving,
Uy = AUy — gl x AU = AgUy; + dg * AsU.
So, we obtain
Uy = AUy — 60U + 0 AQU.

Consider C' = —6U; + 6 AU .

Theorem 4.2. The system (4.6)-(4.7) verifies the property of linear stability.

Proof. In this case, we consider the infinitesimal generate as

(4.8) prow — k(P + 1)z =0,
(4.9) p2bu — bbgy + Koz +90) =0,
then
0 0 0 ©
Ao = anz 8 anx | v- v
A8, 0 2871 0 U

Note that A4¢ is a normal operator. So, the problem (4.8)-(4.9) can be
rewrite as

U — AoU = 0.
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Then, the associated Cauchy problem (4.6)-(4.7) is defined by

U — AU =g,
where
0 I O 0 U
A= 0 0 I , G = 0o |, U=\ U
0 0 A Cy Ut

As Ag is normal, from Theorem 2.1 follows that A is a normal operator
that verifies the conditions (1) and (2).

The continuity of C; is made through derivative inequalities. By Theorem
1.1, the result follows. O

4.3. Linear Stability when h(t) = pe™" and g(t) = ve™%, u, v, v, § > 0.
Now consider the case with two memory

P1Ptt — Sa; = O, in (O,Z) X (O,t),
p2it — My + S = 0, in (Oa l) X (Oa t)7

where
t

S = K{pa + 1) — / Bt — 8)(ga + )z, 5)ds

—00

and

t
M = b, — / ot — 8)bu(a, 5)ds.

—0o0
In (0,1) x (0,t) the model now is

(4.10)  prpu — (e +9)a + / h(t — s)(¢e +¥)z(s)ds = 0,

—00

t

(4.11) P2ttt — bs + / g(t — $)thaa(s)ds

—0o0
t

e+ 0) = [ b= 9)ea +¥)(s)ds =0,

— 00

The initial conditions are given by
(4.12)

QO(I',O) = 900(1’), gOt($,0) = 901('7})7 ¢($a0) = ¢O(x)v ¢t(3370) = wl(l‘),

and boundary conditions type Dirichlet-Neumann are

(4'13) 90(0>t) = Sp(l’t) = ¢x(0at) = wz(lat) =0.
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Making U= (807 Pt 1/)7 %; )T , We obtain

Pt 0 0
2z + V) i(Spac + )z 0
_ p1 _ p1 _
Ut ¢t h * 0 g * 1 0 s
p%wxm - p%(SO:v + 1) p%(‘ﬂm + 1) p?wmx
=AU ::h;;hU =g+ AU

where h * f and g * f denote the convolutions

t t
/ h(t — s)f(s)ds and / g(t — s)f(s)ds.
So, we have
(4.14) Uy = AU — h x A U — g * AsU.
After to derive we obtain
Uy = AgU; — b« AU — gl * AU = AgU; + vh * AU + 5g * AsU.

Now defining the operator £ : H — H, where H are Hilbert spaces, given
by

L) =1"+(r+0)f +rdf.
Clearly we have
L(h(t)) =0 and L(g(t)) =0.
Applying £ in the equation (4.14), we have
L(U) = ALU) — L(h) x A U — L(g) * AsU.
So, we have
Uit + (7 + 0) Uy + v6U = AgUy + (v + ) AgUy + v0. AU,
then
Ui = AoUy — (v + 0)Uye — v6Uy + (v + 0) AU + 79 ApU.
Now consider D = —(y + 0)Uy — y0U; + (v + 0) AU + vd AgU.
Theorem 4.3. The system (4.10)-(4.13) verifies the linear stability.

Proof. For this case we consider the following infinitesimal generator

(4.15) p1ou — K(pe + 1)z = 0,
(416) ptht_blbxx'i_’{(@x"i_qb) = 0’
then
0 I 0 0 0
59, 0 292-£1 0 i
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Note that A is a normal operator. So, the problem (4.15)-(4.16) can be
rewrite as

— AU = 0.
Hence the model associated to Cauchy problem (4.10)-(4.13) is defined by
- AU =T,
where
0 I O 0 U
A= 0 0 I , J=1 0 |, U=\ U,
0 0 A D Uy

As Ay is normal, from Theorem 2.1 follows that A is a normal operator
that verifies the conditions (1) and (2).

The continuity of D is made through derivative inequalities. By Theorem
1.1 we obtain the result. 0

5. CALCULATION OF wy(.A)

In this section we will calculate the polynomial whose roots give us the
estimate of wy(.A). Denote, as in Section 4.1, the operator A given by

o -
8+ )+ 7 TR0+ 1)) d
D — vy
AU =
1\
b 1OO
Fg¢zz*%(¢z+w)+p§bfg(5)nzz dS*ffh (ve +n)(s)ds
L U —n, i

We denote by V' the space
V=[HyxL?)(0,1)x L (0, 00; Hg (0,1)) x [H} x L7](0,1) x (L;NLZ)(0, 003 Hg (0,1)),
where
L3(0,1) = {f € L*(0,1); f-(0) = fo(I) = 0}, H*(0,1) = H™(0,1) N L(0,1)
and

+00 l
L7,(0,00; Hy(0,1)) = {f € Hy(0,1); /0 u(S)/O |fo(, 8)|? do ds < oo},

with induced norm

l
ol = | [plr<b|2+p2|\lf|2+nom+w|2+bo|wx\2
0

+/ h(s)\u$+n|2ds+/ g(s)]nzlzds} dr.
0 0
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The domain D(A) of A is given by
D(A) = [H*(0,1) N Hy(0,1)] x H§(0,1) x HL(0, 00; H(0,1))
x H}(0,1) x H}(0,1) x (Hj N H})(0,00; Hy(0,1)) NS,
where S is the set bellow

{ﬂo(sox+¢)+ /Oﬁ?sxumxs) ds € H'(0,0); botst /0§?s>n<s> ds € H2(0, w}.

The resolvent equation

AU — AU = F,
in terms of the scalar components, is given by
(5.1) Ap—® = f' e Hy(0,1),

(5.2) A1 ® — ko(pz + 1)z — /OOO h(s)(ve 4+ n)z ds = 2 € L?(0,1),

(5.3) M —® + v, = f3 € L2(0,00; H3(0,1)),
(5.4) M — W = fte HL(0,1),
)\p2\lj - bO";Z)x:E + HO(SO:B + 'QZJ)

o B /0;?5)779090(5) ds + /Og()s)(’/x +n)(s)ds = f5 € LE(O, D,

(5.6) A=W+, = % e (L3 N L3)(0,00; Hy (0,1)).

We must find the elements of the spectrum of operator. It’s simple verifies
that A € o(A) if and only if

AU — AU = 0.
From (5.1)-(5.6) for f* =0, for all i = {1,...,6}, we find
d=XAp and U =Xy,

then
(5.7) Np1p — ko(ps +)e — /OOO h(s)(ve + ) ds =0,
(5.8) AV —Ap + v, =0,
N2 p21h — botae + Ko(pz + 1)
(5.9)

-/ " G(5)1ax (s) ds + / " h(s)(ve £ 1) (s)ds = 0,
0 0

(5.10) AN — A +ns = 0.
Solving the equations (5.8) and (5.10), we have
Vs +Av=Ap and ns+ An = A\,
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that is
(], = XM and  [eMn], = e
From where follows that

6)\81/:/ e op(z,t)dr  and e)‘sn:/ N i (x, t) dr.
0 0

Calculating the integrals, we have
S

o(x,t) = (M —1)p and e n=eM
0

S

0

v=(1- e My e n=(1- e_AS)w.
Replacing v and 7 in (5.7) and (5.9), we obtain

(5.11) Xprg — role + ¥)e — (9n + 1) /0 h(s)(1— e ) ds = 0
and

>\202¢ — bors + K?O(‘-Px + ¢) - 77/}%23/0 g(s)(l - e_AS) ds +

(5.12) +(pz + 1) /000 h(s)(1 —e ) ds = 0.

Suppose h(t) = pe 7" and g(t) = 0.
In this case, the equations (5.11)-(5.12) remain

(5.13) Xprg — ole + ¥)e — (9n + 1) /O B(s)(1— e ™) ds = 0
and

(5.14)

[e.9]

A2 potp — bothza + Ko(pe + ¥) + (9o + 1) /Oh(s)(l — e M) ds = 0.

Differentiating (5.14) in relation x, we have

)\202@% - bowzx:c + 50(80:1: + '¢)m + ((Px
. ooh 1—e™)ds=0.
) /0 (5)(1 — &) ds
From (5.13), follows
(516)  Folpe + V) + (gn + V) /0 h(s)(1— e ) ds = \2pro.

Replacing (5.16) in (5.15), we obtain
(517) )\2P27;Z)z - bwamx + )\2/)1()0 = 0.

(5.15)

Y(z,t) = (€ — 1.



94 PROPERTY OF GROWTH DETERMINED BY THE SPECTRUM

By outer side, using the boundary conditions (4.12), we obtain ¢ and 1)
of type

o(x,t) = eMsin(Fz) and ¥(z,t) = M cos(Fx),
where 7 is such that 4 = nw, n € N.
Estimating the derivatives of ¢, we get

Yy = _37903 Yz = _A'YJ2¢ and Yygp = 771390'
Replacing in (5.17) and, simplifying by ¢ # 0, follows that
X (p1 = p27) — bo7® = 0.
Let P;(\) be the polynomial of degree 2 given by

nm TL37T3
Pi()\) = )\2<p1 P > —bo—z—n €N,

l

We consider
o(A) ={A e C/P(\) = 0}.
Solving P;(\) = 0, we obtain

b 3.3
)\2 = 20774—7('7 n € N.
12(lp1 — pan)
So,
bon3m3
Ao [Ty
1?(lp1 — panm)

Then

wo(A) =sup{ReX; A € o(A)}.

Suppose g(t) = ve % and h(t) = 0.
Now, the equations (5.11)-(5.12) remain

(5.18) Np1p — ko(pz +)e =0
and
N path = bythee + Ko(Pr + ©) — e /OOO g(s)(1—e ) ds =0.
Differentiating the last equation in relation x, we get
N oty — bothasa + Ko(r + ¥)a
“ees [ o)1= ) ds =0,
From (5.18), follows that
(5.20) Ko(r +1)e = N p1ep.

(5.19)
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Replacing (5.20) in (5.19), we get
o0

(5-21> )‘2p2¢z - bo%m + A2p190 - wata:a: /9(3)(1 - 6_)\5) ds = 0.
0
Moreover, using boundary conditions (4.12) we get ¢ and 1 type
o(x,t) = eMsin(Fz) and Y(x,t) = M cos(Fx),

where 7 is such that ¥l = nmw, n € N.
From estimate of derived v, we have

% = _ig% wa:ac = —521/}7 wa:acz = :74390'
Using the dissipative mechanism g(t) = ve™%, where v, § > 0, replacing
in (5.21) and simplifying by ¢ # 0, follows that

N (p1 — po) — o — 7y'3y/ e*‘;s(l —e ) ds = 0.
0

Calculating the integral, we obtain
—ds —(64+A)s oo
N2(p1 — poF) — b3 — A3, € €
(p1 = p27) — b0y =75 V[ iy Y

Consider the polynomial P,(\) of degree 2 given by

. a1 1
Py(\) = X2(p1 — paiy) — bo° — ’YSV< )

=0.

0

S Y
Proceeding as before, we get
o(A) ={r e C/P()) = 0},
and solving P»(A) = 0, we obtain
wo(A) =sup{ReX; A € o(A)}.

6. CONCLUSION

The property of growth determined by spectrum wq,(A) = wp(A) gives
an important information, that is, the best constant for the exponential
stability is the upper bound of the spectrum of operator A. In this sense, we
prove that the Timoshenko system with memory acting on both, bending
moment and shear force, is exponentially stable with optimal rate.
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