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A note on the proofs of
generalized Radon inequality

Yongtao Li, Xian-Ming Gu∗, Jianci Xiao

Abstract. In this paper, we introduce and prove several generaliza-
tions of the Radon inequality. The proofs in the current paper unify
and also are simpler than those in early published work. Meanwhile,
we find and show the mathematical equivalences among the Bernoulli
inequality, the weighted AM-GM inequality, the Hölder inequality, the
weighted power mean inequality and the Minkowski inequality. Finally,
some applications involving the results proposed in this work are shown.

1. Introduction

The well-known Bergström inequality (see e.g. [1–3]) says that if xk, yk
are real numbers and yk > 0 for 1 ≤ k ≤ n, then

(1)
x21
y1

+
x22
y2

+ · · ·+ x2n
yn
≥ (x1 + x2 + · · ·+ xn)2

y1 + y2 + · · ·+ yn

and the equality holds if and only if x1y1 = x2
y2

= · · · = xn
yn
.

Some generalizations of the inequality (1) can be found in [4, 5]. Ac-
tually, the following Radon inequality (2) is just a direct consequence: If
b1, b2, . . . , bn are positive real numbers and a1, a2, . . . , an, m are nonnegative
real numbers, then

(2)
am+1
1

bm1
+
am+1
2

bm2
+ · · ·+ am+1

n

bmn
≥ (a1 + a2 + · · ·+ an)m+1

(b1 + b2 + · · ·+ bn)m
.

When m = 1, (2) reduces to (1). For more details on the Radon inequality
(2), the readers can refer to [6, pp. 1351] and [7,8,10]. In fact, it is not hard
to prove that (1) is equivalent to the Cauchy-Buniakovski-Schwarz inequality
(see [9, pp. 34-35, Theorem 1.6.1]) stated as follows: if a1, . . . , an, b1, . . . , bn
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are nonnegative real numbers, then
n∑
k=1

ak

n∑
k=1

bk ≥

(
n∑
k=1

√
akbk

)2

.

In [14, Theorem 1], Yang has given a generalization of the Radon inequal-
ity as follows: if a1, a2, . . . , an are nonnegative real numbers and b1, b2, . . . , bn
are positive real numbers, then for r ≥ 0, s ≥ 0 and r ≥ s+ 1,

(3)
ar1
bs1

+
ar2
bs2

+ · · ·+ arn
bsn
≥ (a1 + a2 + · · ·+ an)r

nr−s−1 (b1 + b2 + · · ·+ bn)s
.

The weighted power mean inequality (refer to [12, pp. 111-112, Theorem
10.5], [7, pp. 12-15] and [13] for details) is defined as follows: if x1, x2, . . . , xn
are nonnegative real numbers and p1, p2, . . . , pn are positive real numbers,
then for r ≥ s > 0, we have

(4)
(
p1x

r
1 + p2x

r
2 + · · ·+ pnx

r
n

p1 + p2 + · · ·+ pn

) 1
r

≥
(
p1x

s
1 + p2x

s
2 + · · ·+ pnx

s
n

p1 + p2 + · · ·+ pn

) 1
s

.

In the present paper, we give three concise proofs and some applications
of the generalized Radon inequality (3), and then present equivalence rela-
tions between the weighted power mean inequality and the Radon inequality.
Furthermore, we summarize the equivalences among the weighted AM-GM
inequality, the Hölder inequality, the weighted power mean inequality and
the Minkovski inequality.

2. Main results

In this section, we first give three different and concise methods for proving
the generalized Radon inequality (3). To read for convenience, the result
obtained by Yang [14] can be cited as the following theorem.

Theorem 2.1. If a1, a2, . . . , an are nonnegative real numbers and b1, b2, . . . ,bn
are positive real numbers, then for s ≥ 0 and r ≥ s+ 1,

(5)
ar1
bs1

+
ar2
bs2

+ · · ·+ arn
bsn
≥ (a1 + a2 + · · ·+ an)r

nr−s−1 (b1 + b2 + · · ·+ bn)s
.

Proof 1. By using the Radon inequality (2), we have

(6)
n∑
k=1

ark
bsk

=
n∑
k=1

(
a

r
s+1

k

)s+1

bsk
≥

(
a

r
s+1

1 + a
r

s+1

2 + · · ·+ a
r

s+1
n

)s+1

(b1 + b2 + · · ·+ bn)s
.

Note that r ≥ s + 1 ≥ 1, then r
s+1 − 1 ≥ 0. Using the Radon inequality

again, it follows that

(7)
n∑
k=1

a
r

s+1

k =

n∑
k=1

a
r

s+1

k

1
r

s+1
−1
≥ (a1 + a2 + · · ·+ an)

r
s+1

(1 + 1 + · · ·+ 1)
r

s+1
−1

.
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According to inequalities (6) and (7), we clearly have
ar1
bs1

+
ar2
bs2

+ · · ·+ arn
bsn
≥ (a1 + a2 + · · ·+ an)r

nr−s−1 (b1 + b2 + · · ·+ bn)s
.

Therefore, the desired result (5) is obtained. �

Proof 2. Let the concave function f : (0,+∞) → R be f(x) = lnx. We
observe that the weighted Jensen inequality: for q1, q2, q3 ∈ [0, 1] with q1 +
q2 + q3 = 1 and positive real numbers x1, x2, x3, then we have

q1f(x1) + q2f(x2) + q3f(x3) ≤ f(q1x1 + q2x2 + q3x3),

and the equality holds if and only if x1 = x2 = x3. We denote

Un(a) =

(
ar1
bs1

+
ar2
bs2

+ · · ·+ arn
bsn

)−1

and
Hn(b) = (b1 + b2 + · · ·+ bn)−1.

Consider x1 =
ark
bsk
Un(a), x2 = bkHn(b), x3 = 1

n and q1 = 1
r , q2 = s

r , q3 =
r−s−1
r (observe that q3 ≥ 0 from r ≥ s+ 1). Thus we have

ak(Un(a))
1
r · (Hn(b))

s
r ·
(

1

n

) r−s−1
r

≤ 1

r
·
ark
bsk
Un(a) +

s

r
· bkHn(b) +

r − s− 1

r
· 1

n
.

Summing up over k (k = 1, 2, . . . , n), we obtain
n∑
k=1

ak(Un(a))
1
r · (Hn(b))

s
r ·
(

1

n

) r−s−1
r

≤
n∑
k=1

(
1

r
·
ark
bsk
Un(a) +

s

r
· bkHn(b) +

r − s− 1

r
· 1

n

)
= 1.

The required inequality (5) follows. �

For many numerical inequalities, the induction is sometimes a useful
method used to establish a given statement for all natural numbers. We
now give the third proof of Theorem 2.1 by mathematical induction. To
state this proof clearly, let us start with the following lemma.

Lemma 2.1. If a1, a2, . . . , an, b1, b2, . . . , bn are nonnegative real numbers
and λ1, λ2,. . ., λn are nonnegative real numbers such that λ1+λ2+· · ·+λn =
1, then

(8)
n∏
k=1

aλkk +
n∏
k=1

bλkk ≤
n∏
k=1

(ak + bk)
λk .
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Proof of Lemma 2.1. According to the weighted AM-GM inequality, we have
n∏
k=1

(
ak

ak + bk

)λk
≤

n∑
k=1

λk

(
ak

ak + bk

)
.

Similarly, we get
n∏
k=1

(
bk

ak + bk

)λk
≤

n∑
k=1

λk

(
bk

ak + bk

)
.

Summing up these two inequalities, it holds
n∏
k=1

1

(ak + bk)
λk

[
n∏
k=1

aλkk +

n∏
k=1

bλkk

]
≤

n∑
k=1

λk = 1,

which leads to the desired result (8). �

Remark 2.1. A particular case b1 = b2 = · · · = bn = 1, λ1 = λ2 = · · · =
λn = 1

n in (8) yields

(1 + a1)(1 + a2) · · · (1 + an) ≥
[
1 + (a1a2 · · · an)

1
n

]n
,

which is a famous inequality, called the Chrystal inequality (refer to [7, pp.
61]), so Lemma 2.1 can be regarded as a generalization of the Chrystal
inequality.

Proof 3. Use the induction on n ∈ N+. When n = 1, the result is obviously
obtained. Assume that (5) is true for n = m, that is

ar1
bs1

+
ar2
bs2

+ · · ·+ arm
bsm
≥ (a1 + a2 + · · ·+ am)r

mr−s−1 (b1 + b2 + · · ·+ bm)s
.

When n = m+ 1, we need to prove the following inequality:
m+1∑
k=1

ark
bsk

=

m∑
k=1

ark
bsk

+
arm+1

bsm+1

≥ (a1 + a2 + · · ·+ am)r

mr−s−1 (b1 + b2 + · · ·+ bm)s
+
arm+1

bsm+1

(by induction assumption)

=

[(
Rm(a) +

arm+1

bsm+1

) 1
r (
Sm(b) + bm+1

) s
r (m+ 1)

r−s−1
r

]r
(m+ 1)r−s−1(Sm(b) + bm+1)s

≥

[(
Rm(a)

) 1
r
(
Sm(b)

) s
rm

r−s−1
r +

(arm+1

bsm+1

) 1
r b

s
r
m+11

r−s−1
r

]r
(m+ 1)r−s−1(b1 + · · ·+ bm + bm+1)s

(by a special case n = 3 in (8))

=
(a1 + · · ·+ am + am+1)

r

(m+ 1)r−s−1(b1 + · · ·+ bm + bm+1)s
,
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where Rm(a) = (a1+···+am)r

mr−s−1(b1+···+bm)s
and Sm(b) = b1 + b2 + · · · + bm. Thus,

the inequality (5) holds for n = m+ 1, so the proof of the induction step is
completed. �

In the next theorem, we will prove the equivalence relations between the
weighted power mean inequality and the Radon inequality, which is partly
motivated by a slight observation of the inequality (7).

Theorem 2.2. The Radon inequality (2) is equivalent to the weighted power
mean inequality (4).

Proof. ⇒ By the Radon inequality (2) and y1, y2, . . . , yn ∈ [0,+∞), we have

p1y
r
s
1 + p2y

r
s
2 + · · ·+ pny

r
s
n =

(p1y1)
r
s

p
r
s
−1

1

+
(p2y2)

r
s

p
r
s
−1

2

+ · · ·+ (pnyn)
r
s

p
r
s
−1

n

≥ (p1y1 + p2y2 + · · ·+ pnyn)
r
s

(p1 + p2 + · · ·+ pn)
r
s
−1

,

which means that

(9)
p1y

r
s
1 + p2y

r
s
2 + · · ·+ pny

r
s
n

p1 + p2 + · · ·+ pn
≥
(
p1y1 + p2y2 + · · ·+ pnyn

p1 + p2 + · · ·+ pn

) r
s

.

Let yk = xsk for all xk ≥ 0 (k = 1, 2, . . . , n) in (9). Thus, we can obtain the
following weighted power mean inequality (4)(

p1x
r
1 + p2x

r
2 + · · ·+ pnx

r
n

p1 + p2 + · · ·+ pn

) 1
r

≥
(
p1x

s
1 + p2x

s
2 + · · ·+ pnx

s
n

p1 + p2 + · · ·+ pn

) 1
s

.

⇐ Let pk = bk, xk = ak
bk

and r = m+ 1(m ≥ 0), s = 1 in (4). Then, we have[
1

b1 + b2 + · · ·+ bn

(
am+1
1

bm1
+
am+1
2

bm2
+ · · ·+ am+1

n

bmn

)] 1
m+1

≥ a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

,

which implies that the Radon inequality (2) is achieved. �

Theorem 2.3. The following inequalities are mutually equivalent:
(i) The Bernoulli inequality;
(ii) The weighted AM-GM inequality;
(iii) The Hölder inequality;
(iv) The weighted power mean inequality;
(v) The Minkovski inequality;
(vi) The Radon inequality.

Proof. The equivalence between (iv) and (vi) is given in Theorem 2.2, the
equivalence among (i), (iii) and (vi), one can find in [11] as well as (ii), (iii)
and (iv) in [15], the equivalence between (iii) and (v) is shown in [16]. �
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Corollary 2.1. If a1, a2, . . . , an, b1, b2, . . . , bn are positive real numbers, then
for m ≤ −1, the following inequality holds

am+1
1

bm1
+
am+1
2

bm2
+ · · ·+ am+1

n

bmn
≥ (a1 + a2 + · · ·+ an)m+1

(b1 + b2 + · · ·+ bn)m
.(10)

Proof. Since m ≤ −1, thus by the inequality (2), we have

am+1
1

bm1
+
am+1
2

bm2
+ · · ·+ am+1

n

bmn
=

b−m1

a−m−1
1

+
b−m2

a−m−1
2

+ · · ·+ b−mn
a−m−1
n

≥ (b1 + b2 + · · ·+ bn)−m

(a1 + a2 + · · ·+ an)−m−1 .

Therefore, the inequality (10) holds. �

Corollary 2.2. If a1, a2, . . . , an, b1, b2, . . . , bn are positive real numbers, then
for nonpositive real numbers r, s such that r ≥ s+ 1, we have

(11)
ar1
bs1

+
ar2
bs2

+ · · ·+ arn
bsn
≥ (a1 + a2 + · · ·+ an)r

nr−s−1 (b1 + b2 + · · ·+ bn)s
.

Proof. For r ≤ 0 and s ≤ 0, the inequalities −s ≥ −r + 1,−r ≥ 0,−s ≥ 0
hold. By the inequality (5), we obtain

ar1
bs1

+
ar2
bs2

+ · · ·+ arn
bsn

=
b−s1

a−r1

+
b−s2

a−r2

+ · · ·+ b−sn
a−rn

≥ (b1 + b2 + · · ·+ bn)−s

n−s−(−r)−1 (a1 + a2 + · · ·+ an)−r

=
(a1 + a2 + · · ·+ an)r

nr−s−1 (b1 + b2 + · · ·+ bn)s
.

So, the inequality (11) holds. �

Corollary 2.3. If a1, a2, . . . , an, c1, c2, . . . , cn are positive real numbers, and
m is real numbers such that m > 0 or m ≤ −1, then

(12)
a1
c1

+
a2
c2

+ · · ·+ an
cn
≥ (a1 + a2 + · · ·+ an)m+1(

a1c
1
m
1 + a2c

1
m
2 + · · ·+ anc

1
m
n

)m .
Proof. Consider bk = akc

1
m
k for all 1 ≤ k ≤ n in the inequality (2) and (10).

Thus, we obtain the inequality (12). �

Corollary 2.4. If a, b ∈ R, a < b,m ≥ 0 or m ≤ −1,f, g : [a, b] → (0,+∞)
are integrable functions on [a, b] for all x ∈ [a, b], then

(13)
∫ b

a

(f(x))m+1

(g(x))m
dx ≥

(∫ b
a f(x) dx

)m+1(∫ b
a g(x) dx

)m .
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Proof. Let n ∈ N+, xk = a+ k b−an , k ∈ {0, 1, . . . , n} and ξk ∈ [xk−1, xk]. By
using the inequalities (2) and (10), it follows

n∑
k=1

(f(ξk))
m+1

(g(ξk))
m ≥

(
n∑
k=1

f(ξk)

)m+1

(
n∑
k=1

g(ξk)

)m .

It holds that

σ

(
(f(x))m+1

(g(x))m
,∆n, ξk

)
≥
[
σ (f(x),∆n, ξk)

]m+1[
σ (g(x),∆n, ξk)

]m ,

where σ (f(x),∆n, ξk) is the corresponding Riemann sum of f(x), of ∆n =
(x0, x1, . . . , xn) division and the intermediate ξk points. By passing to limit
in inequality above, when n tends to infinity, the inequality(13) follows. �

Corollary 2.5. If a, b ∈ R, a < b, rs ≥ 0, r ≥ s + 1, f, g : [a, b] → (0,+∞)
are integrable functions on [a, b] for any x ∈ [a, b], then∫ b

a

(f(x))r

(g(x))s
dx ≥

(∫ b
a f(x) dx

)r
(b− a)r−s−1

(∫ b
a g(x) dx

)s .
Proof. Since the conclusion can be obtained via using the same method of
Corollary 2.4, we omit the details here. �

Proposition 2.1. If a, b, c are the lengths of the sides of a triangle and
2S = a+ b+ c, then

(14)
an

b+ c
+

bn

c+ a
+

cn

a+ b
≥
(

2

3

)n−2

Sn−1, n ≥ 1.

Proof. When n = 1, the result (14) equals to the Nesbitt inequality (see [9, p.
16, Example 1.4.8] or [12, p. 2, Exercise 1.3]). For n ≥ 2, we obtain

an

b+ c
+

bn

c+ a
+

cn

a+ b
≥ (a+ b+ c)n

3n−1−1(b+ c+ c+ a+ a+ b)

=

(
2

3

)n−2

Sn−1,

by using the inequality (5). �

Proposition 2.2. Let a1, a2, . . . , an be positive real numbers such that a1 +
a2 + · · ·+ an = s and p > q + 1 > 1. Then

n∑
k=1

apk
(s− ak)q

≥ sp−q

(n− 1)qnp−q−1
.

Proof. By the inequality (5), the inequality above is easily obtained. �
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Proposition 2.3. Let x, y, and z be positive numbers with xyz = 1. Then

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4
.

Proof. By using the generalized Radon inequality (5), we obtain

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)

≥ (x+ y + z)3

3 ((1 + y)(1 + z) + (1 + z)(1 + x) + (1 + x)(1 + y))

=
(x+ y + z)3

9 + 6(x+ y + z) + 3(xy + yz + zx)

(by a general inequality 3(xy + yz + zx) ≤ (x+ y + z)2 )

≥ (x+ y + z)3

9 + 6(x+ y + z) + (x+ y + z)2
.

Since x+y+z ≥ 3 3
√
xyz = 3, it is not hard to prove that (x+y+z)3

9+6(x+y+z)+(x+y+z)2

≥ 3
4 . By the way, another proof can be found in [9, pp. 139-140]. �
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