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Non-existence of solutions for a Timoshenko
equations with weak dissipation

Erhan Pı̇şkı̇n, Hazal Yüksekkaya

Abstract. In this paper, we consider the following Timoshenko equ-
ation

utt +42u−M
(
‖∇u‖2

)
4 u+ ut = |u|q−1 u

associated with initial and Dirichlet boundary conditions. We prove the
non-existence of solutions with positive and negative initial energy.

1. Introduction

Let Ω be a bounded domain with smooth boundary ∂Ω in Rn. We study
the following Timoshenko equation

(1)


utt +42u−M

(
‖∇u‖2

)
4 u+ ut = |u|q−1 u, (x, t) ∈ Ω× (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = ∂
∂νu (x, t) = 0, x ∈ ∂Ω,

where q ≥ 1 is real number, ν is the outer normal andM (s) = 1+sγ , γ ≥ 1.
This type equation arises beam theory [3]. Timoshenko [14], a pioneer in

strength of materials, developed a theory in 1921 which is a modification
of Euler’s beam theory. The theory takes into account corrections for shear
and rotatory inertia neglected in Euler’s beam theory. The modified theory
is called the “Timoshenko beam theory”.

In the case ofM (s) = 1 and without fourth order term 42u, the equation
(1) can be written in the following form

utt −4u+ ut = |u|q−1 u.(2)

The existence and blow up in finite time of solutions for (2) were established
in [6, 7, 8, 10, 15].
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In the case of M (s) = 0 the equation (1) can be written in the following
form

utt +42u+ ut = |u|q−1 u.(3)

Messaoudi [11] studied the local existence and blow up of the solution to
the equation (3). Wu and Tsai [16] obtained global existence and blow up of
the solution of the problem (3). Later, Chen and Zhou [2] studied blow up
of the solution of the problem (3) for positive initial energy.

The problem (1) was studied by Esquivel-Avila [4, 5], he proved blow up,
unboundedness, convergence and global attractor. Pişkin [12] studied the
local and global existence, asymptotic behavior and blow up. Later, Pişkin
and Irkıl [13] studied blow up of the solutions (1) with positive initial energy.

In this paper, we prove the nonexistence of solutions for the problem (1),
with positive and negative initial energy.

This paper is organized as follows. In section 2, we present some lemmas
and notations needed later of this paper. In section 3, nonexistence of the
solution is discussed.

2. Preliminaries

In this section, we shall give some assumptions and lemmas which will be
used throughout this paper. Let ‖.‖ and ‖.‖p denote the usual L2 (Ω) norm
and Lp (Ω) norm, respectively.

Lemma 2.1 (Sobolev-Poincare inequality [1]). Let p be a number with 2 ≤
p < ∞ (n = 1, 2) or 2 ≤ p ≤ 2n

n−2 (n ≥ 3) , then there is a constant C∗ =

C∗ (Ω, p) such that

‖u‖p ≤ C∗ ‖∇u‖ for u ∈ H1
0 (Ω) .

We define the energy function as follows

(4)
E (t) =

1

2
‖ut‖2 +

1

2

(
‖∇u‖2 + ‖∆u‖2

)
+

1

2 (γ + 1)
‖∇u‖2(γ+1) − 1

q + 1
‖u‖q+1

q+1 .

Lemma 2.2. E (t) is a nonincreasing function for t ≥ 0 and

E′ (t) = −‖ut‖2 ≤ 0.

Proof. Multiplying the equation of (1) by ut and integrating over Ω, using
integrating by parts, we get

E (t)− E (0) = −
∫ t

0
‖uτ‖2 d τ for t ≥ 0.

�

Next, we state the local existence theorem of problem (1), whose proof
can be found in [12].
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Theorem 2.1 (Local existence). Assume that (u0, u1) ∈ H2
0 (Ω) × L2 (Ω)

holds. Then there exists a unique solution u of (1) satisfying

u ∈ C
(
[0, T ) ;H2

0 (Ω)
)
, ut ∈ C

(
[0, T ) ;L2 (Ω)

)
∩ Lp+1 (Ω× (0, T )) .

Moreover, at least one of the following statements holds:
(i) T =∞,
(ii) ‖ut‖2 + ‖4u‖2 →∞ as t→ T−.

3. Non-existence of solutions

In this section, we deal with the blow up of the solution for the problem
(1). Let us begin by stating the following two lemmas,which will be used
later.

Lemma 3.1. Let us have δ > 0 and let B (t) ∈ C2 (0,∞) be a nonnegative
function satisfying

B′′ (t)− 4 (δ + 1)B′ (t) + 4 (δ + 1)B (t) ≥ 0.

If B′ (0) > r2B (0)+K0, with r2 = 2 (δ + 1)−2
√

(δ + 1) δ, then B′ (t) > K0

for t > 0, where K0 is a constant.

Proof. See [9]. �

Lemma 3.2. If H (t) is a nonincreasing function on [t0,∞) and satisfies
the differential inequality[

H ′ (t)
]2 ≥ a+ b [H (t)]2+ 1

δ , for t ≥ t0,
where a > 0, b ∈ R, then there exists a finite time T ∗ such that

lim
t−→T ∗−

H (t) = 0.

Upper bounds for T ∗ are estimated as follows:
(i) If b < 0 and H (t0) < min

{
1,
√
−a
b

}
, then

T ∗ ≤ t0 +
1√
−b

ln

√
−a
b√

−a
b −H (t0)

.

(ii) If b = 0, then

T ∗ ≤ t0 +
H (t0)

H ′ (t0)
.

(iii) If b > 0, then

T ∗ ≤ H (t0)√
a

or T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
a

[
1− (1 + cH (t0))−

1
2δ

]
,

where c =
(
a
b

)2+ 1
δ .

Proof. See [9]. �
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Definition 3.1. A solution u of (1) is called blow up if there exists a finite
time T ∗ such that

lim
t−→T ∗−

[∫
Ω
u2 dx+

∫ t

0

∫
Ω
u2 dx d τ

]
=∞.(5)

Let

a (t) =

∫
Ω
u2dx+

∫ t

0

∫
Ω
u2 dx d τ, for t ≥ 0.(6)

Lemma 3.3. Assume γ
2 ≤ δ ≤

q−1
4 , and that γ ≥ 0, then we have

a′′ (t) ≥ 4 (δ + 1)

∫
Ω
u2
t dx− 4 (2δ + 1)E (0) + 4 (2δ + 1)

∫ t

0
‖uτ‖2 d τ.(7)

Proof. By differentiating (6) with respect to t, we have

a′ (t) = 2

∫
Ω
uut dx+ ‖u‖2 ,(8)

(9)
a′′ (t) = 2

∫
Ω
u2
t dx+ 2

∫
Ω
uutt dx+ 2

∫
Ω
uut dx

= 2
(
‖ut‖2 + ‖u‖q+1

q+1

)
− 2

(
‖∇u‖2 + ‖∇u‖2(γ+1) + ‖∆u‖2

)
.

Then from (4) and (9), we have

a′′ (t) = 4 (δ + 1)

∫
Ω
u2
t dx− 4 (2δ + 1)E (0)

+ 4δ
(
‖∇u‖2 + ‖∆u‖2

)
+

(
4δ + 2

γ + 1
− 2

)
‖∇u‖2(γ+1)

+

(
2− 4 (2δ + 1)

q + 1

)
‖u‖q+1

q+1 + 4 (2δ + 1)

∫ t

0
‖uτ‖p+1

p+1 d τ.

Since γ
2 ≤ δ ≤

q−1
4 , we obtain (7). �

Lemma 3.4. Assume γ
2 ≤ δ ≤ q−1

4 , γ ≥ 0 and one of the following state-
ments are satisfied

(i) E (0) < 0 and
∫

Ω u0u1 dx > 0,
(ii) E (0) = 0 and

∫
Ω u0u1 dx > 0,

(iii) E (0) > 0 and

a′ (0) > r2

[
a (0) +

K1

4 (δ + 1)

]
+ ‖u0‖2(10)

holds.
Then a′ (t) > ‖u0‖2 for t > t∗, where t0 = t∗ is given by (11) in case (i)

and t0 = 0 in cases (ii) and (iii).
Where K1 and t∗ are defined in (15) and (11), respectively.
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Proof. (i) If E (0) < 0, then from (7), we have

a′ (t) ≥ 2

∫
Ω
u0u1 dx+ ‖u0‖2 − 4 (2δ + 1)E (0) t, t ≥ 0.

Thus we get a′ (t) > ‖u0‖2, for t > t∗, where

t∗ = max

{
a′ (0)− ‖u0‖2

4 (2δ + 1)E (0)
, 0

}
.(11)

(ii) If E (0) = 0 and
∫

Ω u0u1 dx > 0, then a′′ (t) ≥ 0, for t ≥ 0. We have
a′ (t) > ‖u0‖2 , t ≥ 0.

(iii) If E (0) > 0, we first note that

2

∫ t

0

∫
Ω
uut dx d τ = ‖u‖2 − ‖u0‖2 .(12)

By Hölder inequality and Young inequality, we get

‖u‖2 ≤ ‖u0‖2 +

∫ t

0
‖u‖2 d t+

∫ t

0
‖ut‖2 d t.(13)

By Hölder inequality, Young inequality and (13), we have

a′ (t) ≤ a (t) + ‖u0‖2 +

∫
Ω
u2
t dx+

∫ t

0
‖ut‖2 d τ.(14)

Hence, by (7) and (14), we obtain

a′′ (t)− 4 (δ + 1) a′ (t) + 4 (δ + 1) a (t) +K1 ≥ 0,

where

K1 = 4 (2δ + 1)E (0) + 4 (δ + 1)

∫
Ω
u2

0 dx.(15)

Let

b (t) = a (t) +
K1

4 (δ + 1)
, t > 0.

Then b (t) satisfies Lemma 3.1. Consequently, we get from (10) a′ (t) >

‖u0‖2 , t > 0, where r2 is given in Lemma 3.1. �

Theorem 3.1. Assume γ
2 ≤ δ ≤ q−1

4 , γ ≥ 0 and one of the following
statements are satisfied

(i) E (0) < 0 and
∫

Ω u0u1 dx > 0,
(ii) E (0) = 0 and

∫
Ω u0u1 dx > 0,

(iii) 0 < E (0) <
(a′(t0)−‖u0‖2)

2

8[a(t0)+(T1−t0)‖u0‖2]
and (10) holds.
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Then the solution u blow up in finite time T ∗ in the case of (5).
In case (i)

T ∗ ≤ t0 −
H (t0)

H ′ (t0)
.

Furthermore, if H (t0) < min
{

1,
√
−a
b

}
, we have

T ∗ ≤ t0 +
1√
−b

ln

√
−a
b√

−a
b −H (t0)

,

where

a = δ2H2+ 2
δ (t0)

[(
a′ (t0)− ‖u0‖2

)2
− 8E (0)H−

1
δ (t0)

]
> 0,(16)

b = 8δ2E (0) .(17)

In case (ii)

T ∗ ≤ t0 −
H (t0)

H ′ (t0)
.

In case (iii)

T ∗ ≤ H (t0)√
a

or

T ∗ ≤ t0 + 2
3δ+1
2δ

(a
b

)2+ 1
δ δ√

a

{
1−

[
1 +

(a
b

)2+ 1
δ
H (t0)

]− 1
2δ

}
where a and b are given (16), (17).

Proof. Let

H (t) =
[
a (t) + (T1 − t) ‖u0‖2

]−δ
, for t ∈ [0, T1] ,(18)

where T1 > 0 is a certain constant which will be specified later. Then we get

H ′ (t) = −δ
[
a (t) + (T1 − t) ‖u0‖2

]−δ−1 [
a′ (t)− ‖u0‖2

]
= −δH1+ 1

δ (t)
[
a′ (t)− ‖u0‖2

]
,

H ′′ (t) = −δH1+ 2
δ (t) a′′ (t)

[
a (t) + (T1 − t) ‖u0‖2

]
+ δH1+ 2

δ (t) (1 + δ)
[
a′ (t)− ‖u0‖2

]2

and

H ′′ (t) = −δH1+ 2
δ (t)V (t) ,(19)

where

V (t) = a′′ (t)
[
a (t) + (T1 − t) ‖u0‖2

]
− (1 + δ)

[
a′ (t)− ‖u0‖2

]2
.(20)
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For simplicity of calculation, we define

Pu =

∫
Ω
u2 dx, Ru =

∫
Ω
u2
t dx,

Qu =

∫ t

0
‖u‖2 d t, Su =

∫ t

0
‖ut‖2 d t.

From (8), (12) and Hölder inequality, we get

(21)
a′ (t) = 2

∫
Ω
uut dx+ ‖u0‖2 + 2

∫ t

0

∫
Ω
uut dx d t

≤ 2
(√

RuPu +
√
QuSu

)
+ ‖u0‖2 .

If case (i) or (ii) holds, by (7) we have

a′′ (t) ≥ (−4− 8δ)E (0) + 4 (1 + δ) (Ru + Su) .(22)

Thus, from (20)-(22) and (18), we obtain

V (t) ≥ [(−4− 8δ)E (0) + 4 (1 + δ) (Ru + Su)]H−
1
δ (t)

− 4 (1 + δ)
(√

RuPu +
√
QuSu

)2
.

From (6),

a (t) =

∫
Ω
u2 dx+

∫ t

0

∫
Ω
u2 dx d s

= Pu +Qu

and (18), we get

V (t) ≥ (−4− 8δ)E (0)H−
1
δ (t) + 4 (1 + δ)

[
(Ru + Su) (T1 − t) ‖u0‖2 + Θ (t)

]
,

where

Θ (t) = (Ru + Su) (Pu +Qu)−
(√

RuPu +
√
QuSu

)2
.

By the Schwarz inequality, and Θ (t) being nonnegative, we have

V (t) ≥ (−4− 8δ)E (0)H−
1
δ (t) , t ≥ t0.(23)

Therefore, by (19) and (23), we get

H ′′ (t) ≤ 4δ (1 + 2δ)E (0)H1+ 1
δ (t) , t ≥ t0.(24)

By Lemma 3.3, we know that H ′ (t) < 0, for t ≥ t0. Multiplying (24) by
H ′ (t) and integrating it from t0 to t, we get

H ′2 (t) ≥ a+ bH2+ 1
δ (t) ,

for t ≥ t0, where a, b are defined in (16) and (17) respectively.
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If case (iii) holds, by the steps of case (i), we get a > 0 if and only if

E (0) <

(
a′ (t0)− ‖u0‖2

)2

8
[
a (t0) + (T1 − t0) ‖u0‖2

] .
Then by Lemma 3.2, there exists a finite time T ∗ such that lim

t−→T ∗−
H (t) = 0

and upper bound of T ∗ is estimated according to the sign of E (0) . This
means that (5) holds. �
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