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Relation between b-metric and fuzzy metric spaces

Zeinab Hassanzadeh, Shaban Sedghi

Abstract. In this work we have considered several common fixed point
results in b-metric spaces for weak compatible mappings. By applica-
tions of these results we establish some fixed point theorems in b-fuzzy
metric spaces.

1. Introduction

In this paper we establish some fixed point results in a b-fuzzy metric space
by applications of certain fixed point theorems in b-metric spaces. Also we
prove some fixed point results in b-metric spaces. Fuzzy metric space was
first introduced by Kramosil and Michalek [3]. Subsequently, George and
Veeramani had given a modified definition of fuzzy metric spaces [1]. Fixed
point results in such spaces have been established in a large number of works.
Some of these works are noted in [2, 4, 5, 7, 10, 11].

Definition 1.1. [1] A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a contin-
uous t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a, for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b =
min(a, b).

Definition 1.2. [1] A 3-tuple (X,M, ∗) is called a fuzzy metric space if X
is an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy
set on X2 × (0,∞), satisfying the following conditions, for each x, y, z ∈ X
and t, s > 0:

(1) M(x, y, t) > 0,
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(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) =M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

Definition 1.3. [8, 9] A 3-tuple (X,M, ∗) is called a b-fuzzy metric space if
X is an arbitrary (non-empty) set, ∗ is a continuous t-norm andM is a fuzzy
set on X2 × (0,∞), satisfying the following conditions, for each x, y, z ∈ X,
t, s > 0 and a given real number b ≥ 1:

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) =M(y, x, t),
(4) M(x, y, tb) ∗M(y, z, sb ) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

We present an example shows that a b-fuzzy metric on X need not be a
fuzzy metric on X.

Example 1.4. Let M(x, y, t) = e
−|x−y|p

t , where p > 1 is a real number. We
show that M is a b-fuzzy metric with b = 2p−1.

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied.
If 1 < p < ∞, then the convexity of the function f(x) = xp (x > 0)

implies (
a+ c

2

)p
≤ 1

2
(ap + cp) ,

and hence, (a+ c)p ≤ 2p−1(ap + cp) holds. Therefore,

|x− y|p

t+ s
≤ 2p−1

|x− z|p

t+ s
+ 2p−1

|z − y|p

t+ s

≤ 2p−1
|x− z|p

t
+ 2p−1

|z − y|p

s

=
|x− z|p

t/2p−1
+
|z − y|p

s/2p−1
.

Thus for each x, y, z ∈ X we obtain

M(x, y, t+ s) = e
−|x−y|p
t+s

≥ M(x, z,
t

2p−1
) ∗M(z, y,

s

2p−1
),

where a ∗ b = ab. So condition (4) of Definition 1.3 hold and M is a b-fuzzy
metric.

It should be noted that in preceding example, for p = 2 it is easy to see
that (X,M, ∗) is not a fuzzy metric space.
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Example 1.5. Let M(x, y, t) = e
−d(x,y)

t or M(x, y, t) = t
t+d(x,y) , where d is

a b-metric on X and a ∗ c = ac, for all a, c ∈ [0, 1]. Then it is easy to show
that M is a b-fuzzy metric.

Obviously conditions (1), (2), (3) and (5) of Definition 1.3 are satisfied.
For each x, y, z ∈ X we obtain

M(x, y, t+ s) = e
−d(x,y)
t+s

≥ e−b
d(x,z)+d(z,y)

t+s

= e−b
d(x,z)
t+s · e−b

d(z,y)
t+s

≥ e
−d(x,z)
t/b · e

−d(z,y)
s/b

= M(x, z,
t

b
) ∗M(z, y,

s

b
).

So condition (4) of Definition 1.3 is hold andM is a b-fuzzy metric. Similarly,
it is easy to see that M(x, y, t) = t

t+d(x,y) is a b-fuzzy metric.

2. MAIN RESULTS

Lemma 2.1. Let (X,M, ∗) be a b-fuzzy metric space with a ∗ c ≥ ac, for all
a, c ∈ [0, 1]. If d : X2 → [0,∞) is defined by d(x, y) = lim

ε→0

∫ 1
ε logαM(x, y, t)dt,

for 0 < α < 1, then d is an 2b-metric on X.

Proof. By definition, we have that d(x, y) is well defined for each x, y ∈ X.
Clearly, d(x, y) ≥ 0, for all x, y ∈ X. Moreover, d(x, y) = 0 if and only if
logα(M(x, y, t)) = 0 if and only if M(x, y, t) = 1 if and only if x = y.

Since

M(x, y, t) ≥ M(x, z,
t

2b
) ∗M(z, y,

t

2b
)

≥ M(x, z,
t

2b
) ·M(z, y,

t

2b
),

it follows that

d(x, y) = lim
ε→0

∫ 1

ε
logαM(x, y, t)dt

≤ lim
ε→0

∫ 1

ε
logαM(x, z,

t

2b
) ·M(z, y,

t

2b
)dt

≤ lim
ε→0

∫ 1

ε
logαM(x, z,

t

2b
)dt+ lim

ε→0

∫ 1

ε
logαM(z, y,

t

2b
)dt

= 2blim
ε→0

∫ 1
2b

ε
2b

logαM(x, z, t)dt+ 2blim
ε→0

∫ 1
2b

ε
2b

logαM(z, y, t)dt

≤ 2b

[
lim
ε→0

∫ 1

ε
2b

logαM(x, z, t)dt+ lim
ε→0

∫ 1

ε
2b

logαM(x, z, t)dt

]



58 Relation between b-metric and fuzzy metric spaces

= 2b[d(x, z) + d(z, y)].

This proves that d is an 2b-metric on X. �

The following lemma plays an important role to give fixed point results
on a fuzzy metric space.

Lemma 2.2. Let (X,M, ∗) be a b-fuzzy metric space with a ∗ c ≥ ac, for all
a, c ∈ [0, 1]. If d : X2 → [0,∞) is define by d(x, y) = lim

ε→0

∫ 1
ε logαM(x, y, t)dt,

for all 0 < α < 1, then:
(1) {xn} is a Cauchy sequence in b-fuzzy metric (X,M, ∗) if and only if

it is a Cauchy sequence in the 2b- metric space (X, d).
(2) A b-fuzzy metric space (X,M, ∗) is complete if and only if the 2b-

metric space (X, d) is complete.

Proof. First we show that every Cauchy sequence in (X,M, ∗) is a Cauchy
sequence in (X, d). To this end let {xn} be a Cauchy sequence in (X,M, ∗).
Then lim

n,m→∞
M(xn, xm, t) = 1. Since

d(xn, xm) = lim
ε→0

∫ 1

ε
logαM(xn, xm, t)dt,

is a 2b-metric. Hence, we have

lim
n,m→∞

d(xn, xm) = lim
n,m→∞

lim
ε→0

∫ 1

ε
logαM(xn, xm, t)dt

= lim
ε→0

∫ 1

ε
logα lim

n,m→∞
M(xn, xm, t)dt = 0,

so, we conclude that {xn} is a Cauchy sequence in (X, d).
Next we prove that completeness of (X, d) implies completeness of (X,M, ∗).

Indeed, if {xn} is a Cauchy sequence in (X,M, ∗) then it is also a Cauchy
sequence in (X, d). Since the 2b-metric space (X, d) is complete we deduce
that there exists y ∈ X such that lim

n→∞
d(xn, y) = 0. Therefore,

lim
n→∞

lim
ε→0

∫ 1

ε
logαM(xn, y, t)dt = lim

ε→0

∫ 1

ε
logα lim

n→∞
M(xn, y, t)dt = 0,

that is lim
n→∞

M(xn, y, t)dt = 1. Hence we follow that {xn} is a convergent
sequence in (X,M, ∗).

Now we prove that every Cauchy sequence {xn} in (X, d) is a Cauchy
sequence in (X,M, ∗). Since {xn} is a Cauchy sequence in (X, d), then

lim
n,m→∞

d(xn, xm) = lim
n,m→∞

lim
ε→0

∫ 1

ε
logαM(xn, xm, t)dt

= lim
ε→0

∫ 1

ε
logα lim

n,m→∞
M(xn, xm, t)dt = 0.
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Hence, lim
n,m→∞

M(xn, xm, t) = 1.

That is, {xn} is a Cauchy sequence in (X,M, ∗).
We will establish the lemma if we prove that (X, d) is complete if so is

(X,M, ∗). Let {xn} be a Cauchy sequence in (X, d). Then {xn} is a Cauchy
sequence in (X,M, ∗), and so it is convergent to a point y ∈ X with

lim
n→∞

M(xn, y, t) = 1.

As a consequence we have

lim
n→∞

d(xn, y) = lim
n→∞

lim
ε→0

∫ 1

ε
logαM(xn, y, t)dt

= lim
ε→0

∫ 1

ε
logα lim

n→∞
M(xn, y, t)dt = 0.

Therefore (X, d) is complete. �

Lemma 2.3. Let (X,M, ∗) be a b-fuzzy metric space with a∗ c = min{a, c},
for all a, c ∈ [0, 1]. We define d : X2 → [0,∞) by

d(x, y) = lim
ε→0

∫ 1

ε
cot(

π

2
M(x, y, t))dt,

then d is an 2b-metric on X.

Proof. Clearly, d(x, y) ≥ 0, for all x, y ∈ X. Moreover, d(x, y) = 0 if and
only if cot(π2M(x, y, t)) = 0 if and only if M(x, y, t) = 1 if and only if x = y.

Since,

M(x, y, t) ≥M(x, z,
t

2b
) ∗M(z, y,

t

2b
) = min{M(x, z,

t

2b
),M(z, y,

t

2b
)},

and also since 0 < π
2M(x, y, t2b) ≤

π
2 , it follows that,

d(x, y) = lim
ε→0

∫ 1

ε
cot(

π

2
M(x, y, t))dt

≤ lim
ε→0

∫ 1

ε
cot[

π

2
(M(x, z,

t

2b
) ∗M(z, y,

t

2b
))]dt

= 2b

(
lim
ε→0

∫ 1
2b

ε
2b

cot(
π

2
min{M(x, z, t),M(z, y, t)})dt

)

= 2bmin

{
lim
ε→0

∫ 1
2b

ε
2b

cot(
π

2
M(x, z, t))dt, lim

ε→0

∫ 1
2b

ε
2b

cot(
π

2
M(z, y, t))dt

}

≤ 2blim
ε→0

∫ 1

ε
2b

cot(
π

2
M(x, z, t))dt+ 2blim

ε→0

∫ 1

ε
2b

cot(
π

2
M(z, y, t))dt

= 2b[d(x, z) + d(z, y)],

that is d is an 2b-metric on X. �
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Remark 2.4. Let a, b ∈ (0, 1], then it is a standard result that

arccot(min{a, b}) ≤ arccot(a) + arccot(b)− π

4
.

Lemma 2.5. Let (X,M, ∗) be a 2b-fuzzy metric space with a∗c = min{a, c},
for all a, c ∈ [0, 1]. If we define d : X2 → [0,∞) by

d(x, y) = lim
ε→0

∫ 1

ε
(
4

π
arccot(M(x, y, t))− 1)dt,

then d is an 2b-metric on X.

Proof. Clearly, 0 ≤ d(x, y) < 1, for all x, y ∈ X. Moreover, d(x, y) = 0 if
and only if 4

π arccot(M(x, y, t))− 1 = 0 if and only if arccot(M(x, y, t)) = π
4

if and only if M(x, y, t) = 1 if and only if x = y. Since

M(x, y, t) ≥M(x, z,
t

2b
) ∗M(z, y,

t

2b
) = min{M(x, z,

t

2b
),M(z, y,

t

2b
)},

it follows that

arccot(M(x, y, t)) ≤ arccot[M(x, z,
t

2b
) ∗M(z, y,

t

2b
)]

= arccot(min{M(x, z,
t

2b
),M(z, y,

t

2b
)})

≤ arccot(M(x, z,
t

2b
)) + arccot(M(z, y,

t

2b
))− π

2
.

Hence,

d(x, y) = lim
ε→0

∫ 1

ε
(
4

π
arccot(M(x, y, t))− 1)dt

≤ lim
ε→0

∫ 1

ε
(
4

π
arccot(M(x, z,

t

2b
))− 1)dt

+ lim
ε→0

∫ 1

ε
(
4

π
arccot(M(z, y,

t

2b
))− 1)dt

= 2blim
ε→0

∫ 1
2b

ε
2b

(
4

π
arccot(M(x, z, t))− 1)dt

+ 2blim
ε→0

∫ 1
2b

ε
2b

(
4

π
arccot(M(z, y, t))− 1)dt

≤ 2b

(
lim
ε→0

∫ 1

ε
2b

(
4

π
arccot(M(x, z, t))− 1)dt

+ lim
ε→0

∫ 1

ε
2b

(
4

π
arccot(M(z, y, t))− 1)dt

)
= 2b[d(x, z) + d(z, y)],

that is d is an 2b-metric on X. �
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Remark 2.6. Let (X,M, ∗) be a fuzzy metric space with a ∗ c ≥ ac, for
all a, c ∈ [0, 1]. If sequence {xn} in X converges to x, that is, for every
0 < ε < 1 there exists n0 ∈ N such that M(xn, x, t) > 1 − ε, for all n ≥ n0
and each t > 0, then d(xn, x) → 0 where d(x, y) = lim

ε→0

∫ 1
ε logαM(x, y, t)dt.

Also it is a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exits
n0 ∈ N such that M(xn, xm, t) > 1 − ε for each n,m ≥ n0. It follows
that d(xn, xm) = lim

ε→0

∫ 1
ε logαM(xn, xm, t)dt < lim

ε→0

∫ 1
ε logα (1− ε)dt < η, for

every η = (1 − α) logα (1− ε). Thus {xn} in 2b-metric (X, d) is a Cauchy
sequence.

Theorem 2.7. [6] Suppose that f , g, S and T are self mappings of a com-
plete b-metric space (X, d), with f(X) ⊆ T (X), g(X) ⊆ S(X) and that the
pairs {f, S} and {g, T} are compatible. If
(2.1)

d(fx, gy) ≤ q

b4
max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), 1

2
(d(Sx, gy)+d(fx, Ty))},

for each x, y ∈ X, with 0 < q < 1. Then f, g, S and T have a unique common
fixed point in X provided that S and T are continuous.

We next apply theorem 2.7 to establish the following theorem in fuzzy
metric spaces.

Theorem 2.8. Let (X,M, ∗) be a complete fuzzy metric space with a∗c ≥ ac
for all a, c ∈ [0, 1]. Let f, g, S and T be self mappings on X with f(X) ⊆
T (X), g(X) ⊆ S(X) and that the pairs {f, S} and {g, T} are compatible. If
there exists q ∈ (0, 1) such that for each x, y ∈ X,

M(fx, gy, t) ≥ min

(
M(Sx, Ty, t),M(fx, Sx, t),

M(gy, Ty, t),
√
M(Sx, gy, t) ·M(fx, Ty, t))

) q

(2b)4

If S and T are continuous, then f, g, S and T have a unique common fixed
point in X.

Proof. We define d(x, y) = lim
ε→0

∫ 1
ε logαM(x, y, t)dt for every x, y ∈ X where

0 < α < 1. Then by Lemma 2.1 and Lemma 2.2 (X, d) is a complete
2b−metric space. From the above inequality, we get,
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lim
ε→0

∫ 1

ε
logαM(fx, gy, t)dt ≤

q

(2b)4
max


lim
ε→0

∫ 1
ε logαM(Sx, Ty, t)dt, lim

ε→0

∫ 1
ε logαM(fx, Sx, t)dt,

lim
ε→0

∫ 1
ε logαM(gy, Ty, t)dt,

1
2(limε→0

∫ 1
ε logαM(Sx, gy, t)dt+ lim

ε→0

∫ 1
ε logαM(fx, Ty, t)dt)

,
which is,

d(fx, gy) ≤ q

(2b)4
max

(
d(Sx, Ty), d(fx, Sx),
d(gy, Ty), 12(d(Sx, gy) + d(fx, Ty))

)
.

Hence all the conditions of Theorem 2.7 hold, so the conclusion of Theo-
rem 2.8 follows by an application of Theorem 2.7. �
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