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Generalized Cψ
β− rational contraction

and fixed point theorem with application
to second order differential equation

Naveen Mani

Abstract. In this article, generalized Cψβ - rational contraction is de-
fined and the existence and uniqueness of fixed points for self map in
partially ordered metric spaces are discussed. As an application, we
apply our result to find existence and uniqueness of solutions of second
order differential equations with boundary conditions.

1. Introduction

From last 15 years, several authors have studied and derived various fixed
point results for many contractions in partially ordered sets. Ran and Reur-
ings [1] derived a fixed point result on partially ordered sets in which con-
tractive condition assumed to be hold on comparable elements. After that,
author in [9, 10] deduced some results to get fixed point for monotone,
non-decreasing operator with partially ordered relation on a set Y with-
out using the continuity of maps. They also discussed few applications of
their main findings and gave existence as well as uniqueness theorem or-
dinary differential equation of first order and first degree with restricted
boundary conditions. Number of results after that have been investigated
to establish fixed point in partially ordered metric spaces (for more detail
see [2, 4, 7, 8, 11, 12, 13, 15, 18, 19, 21, 22]).

In 1975, Jaggi [23] and Das and Gupta [24] derived some fixed point results
for rational type contraction. There exist several results in the literature for
self and pair of maps satisfying rational expression in different spaces [20, 25].

In 2007, Suzuki [16] introduced the weaker C- contractive condition and
proved some fixed point theorems. The existence as well as uniqueness of
fixed point of such types of operator have also been extensively studied in
[3, 17].
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Definition 1.1. [16] Let (Y, d) be a metric space. Then a map f on Y is
said to satisfies the C− condition if, for all u, v ∈ Y,

1

2
d(u, fu) ≤ d(u, v) implies d(fu, fv) ≤ d(u, v).

We begin with the following definition and lemmas which are useful in
proving our result.

Definition 1.2. [14] Let Ψ denote the class of function ψ : [0,∞)→ [0,∞)
(called altering distance function), which satisfies the following assumptions:
(Ψ1.) ψ is non-decreasing and continuous,
(Ψ2.) ψ(ω) = 0 if and only if ω = 0.

Lemma 1.1. [5] Let π : [0,∞) → [0,∞) is a continuous function. If ψ is
an altering distance function satisfying condition ψ(ω) > π(ω) for all ω > 0,
then π(0) = 0.

Lemma 1.2. [6] Let (Y, d) be a metric space. Let {un} be a sequence in Y
such that

lim
n→∞

d(un, un+1) = 0.

If {un} is not a Cauchy sequence in Y then there exist an ε > 0 and sequences
of positive integers (mk) and (nk) with mk > nk > k such that

d(umk , unk) ≥ ε, d(umk−1, unk) < ε

and
(B1.) limk→∞ d(umk−1, unk+1) = ε,
(B2.) limk→∞ d(umk , unk) = ε,
(B3.) limk→∞ d(umk−1, unk) = ε.

In this paper, we first define a generalized Cψβ− rational contraction and
then prove the existence and uniqueness of fixed points for self monotone
map. We also consider a partially ordered set Y with comparable elements,
and a complete metric d with set Y to deduce our main result. As applica-
tion, we give an existence as well as uniqueness theorem for ordinary dif-
ferential equation of second order and first degree with restricted boundary
conditions.

2. Fixed point result with partial order

We define generalized Cψβ− rational contraction as follows:

Definition 2.1. A mapping f on a metric space (Y, d) is said to satisfy
generalized Cψβ− rational contraction if, for all u, v ∈ Y,

1

2
d(u, fu) ≤ d(u, v) implies ψ(d(fu, fv)) ≤ β(M(u, v)),(1)
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where

M(u, v) = max

{
d(u, v),

d(u, fu)d(v, fv)

[1 + d(u, v)]
,
d(v, fv)[1 + d(u, fu)]

[1 + d(u, v)]

}
,(2)

β : [0,∞)→ [0,∞) is continuous function and ψ ∈ Ψ.

Main finding of this article is the following result.

Theorem 2.1. Let (Y, d,�) be a partially ordered complete metric space
and let f : Y → Y be a non-decreasing, monotone map satisfying generalized
Cψβ− rational contraction. Also, suppose β : [0,∞) → [0,∞) is continuous
function and ψ ∈ Ψ satisfying

0 < β(ω) < ψ(ω), ω > 0.(3)

Also assume that:

(4) For every u, v ∈ Y, there exists z ∈ Y, such that u � z and v � z.
If there exists u0 ∈ Y such that u0 � fu0, then f has a unique fixed point in
Y .

Proof. Let u0 ∈ Y satisfy u0 � fu0. We define a sequence {un} as follows:
un = fun−1, n ∈ N.(5)

If un = un+1 for some n ∈ N , then, clearly M(un, un+1) = 0 and so, un
is the fixed point of f . So, assume that un 6= un+1 for all n ∈ N. Let
an = d(un, un+1). Then, clearly an > 0. Since u0 � fu0 = u1 and f is
non-decreasing, then

u0 � u1 � u2 · · · � un · · · .(6)

On taking u = un and v = fun = un+1 in (1), we obtain that
1

2
d(un, fun) =

1

2
d(un, un+1) ≤ d(un, un+1)

implies

(7) ψ(d(fun, fun+1)) = ψ(d(un+1, un+2)) ≤ β(M(un, un+1)),

where

M(un, un+1) = max

 d(un, un+1),
d(un,fun)d(un+1,fun+1)

[1+d(un,un+1)]
,

d(un+1,fun+1)[1+d(un,fun)]
[1+d(un,un+1)]


= max

{
d(un, un+1), d(un+1, un+2),

d(un,un+1)d(un+1,un+2)
[1+d(un,un+1)]

}
.

Since d(un,un+1)
[1+d(un,un+1)]

< 1 for all n ∈ N, therefore

d(un, un+1)d(un+1, un+2)

[1 + d(un, un+1)]
< d(un+1, un+2),
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and hence

M(un, un+1) ≤ max {d(un, un+1), d(un+1, un+2)} .

From (7), we have

ψ(d(un+1, un+2)) ≤ β(max {d(un, un+1), d(un+1, un+2)}).(8)

If d(un, un+1) < d(un+1, un+2), then (8) gives a contradiction to condition
(3) and hence

ψ(d(un+1, un+2)) ≤ β(d(un, un+1)).

Since ψ and β are continuous functions, therefore

d(un+1, un+2) ≤ d(un, un+1).

Similarly we get

d(un, un+1) ≤ d(un−1, un).

Thus, we get a sequence {d(un, un+1)} of functions, which is non-increasing
and r ≥ 0 such that

lim
n→∞

d(un, un+1) = r.(9)

However, by taking limn→∞ on both side of (8), we get ψ(r) ≤ β(r), which
is a contradiction to (2). Thus we have r = 0, and hence

lim
n→∞

d(un, un+1) = r = 0.(10)

Assume on contrary that sequence {un} is not Cauchy. Then for every ε > 0,
we can find subsequences of positive integersmk and nk, where nk > mk > k,
for all k ∈ N, such that

d(umk , unk) > ε and d(umk , unk−1
) ≤ ε.(11)

Also for this ε > 0, the convergence of sequence {d(un, un+1)} implies,
there exists N0 ∈ N such that d(un, un+1) < ε for all n ≥ N0. Let
N1 = max {mi, N0}. Then, for all mk > nk ≥ N1, we have

d(unk , unk+1) < ε ≤ d(unk , umk),

where mk > nk and hence
1

2
d(unk , unk+1) ≤ d(unk , umk).

Now from (1), on substituting u = unk and v = umk , we get

ψ(d(funk , fumk)) = ψ(d(unk+1, umk+1)) ≤ β(M(unk , umk))(12)

where,

M(unk , umk) = max

 d(unk , umk),
d(unk ,funk )d(umk ,fumk )

[1+d(unk ,umk )]
,

d(umk ,fumk )[1+d(unk ,funk )]

[1+d(unk ,umk )]
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(13) = max

 d(unk , umk),
d(unk ,unk+1

)d(umk ,umk+1
)

[1+d(unk ,umk )]
,

d(umk ,umk+1
)[1+d(unk ,unk+1

)]

[1+d(unk ,umk )]

 .

On using Lemma 1.2 and letting k →∞ in (12) and (13), we obtain ψ(ε) ≤
β(ε), that’s a contradiction to (3) and hence by Lemma 1.1, we get ε = 0.
This contradicts the assumption that ε > 0. Therefore our assumption is
wrong. Hence {un} is Cauchy. Since Y is complete, so {un} converges with
all its subsequences to some limiting value, say z ∈ Y .
Now assume for every n ∈ N

d(un, z) <
1

2
d(un, un+1)

and

d(un+1, z) <
1

2
d(un+1, un+2).

Then we have

d(un, un+1) ≤ d(un, z) + d(un+1, z)

<
1

2

[
d(un, un+1) + d(un+1, un+2)

]
≤ d(un, un+1),

this is a contradiction. Hence we must have d(un, z) ≥ 1
2d(un, un+1) or

d(un+1, z) ≥ 1
2d(un+1, un+2), for all n ∈ N . Thus for a sub-sequence {nk}

of N , we obatin

1

2
d(unk , funk) =

1

2
d(unk , unk+1) ≤ d(unk , z), k ∈ N,

which implies

ψ(d(funk , fz)) = β(M(unk , z)),(14)

where

M(unk , z) = max

 d(unk , z),
d(unk ,fz)d(unk ,funk )

[1+d(unk ,z)]
,

d(z,fz)[1+d(unk ,funk )]

[1+d(unk ,z)]

 .(15)

Both, on letting k →∞, and using (15) in (14), we get

ψ(d(z, fz)) ≤ β(d(z, fz)).

Lemma 1.1 implies that d(z, fz) = 0. That is, fz = z.
To establish uniqueness, we suppose on contradictory that for all u, v ∈ Y ,
u = fu and v = fv provided u 6= v. Now we discuss following two case for
both elements.
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Case 1. Without loss of generality, suppose that u � v are comparable.
Then

0 =
1

2
d(u, fu) ≤ d(u, v),

implies that

ψ(d(fu, fv)) = ψ(d(u, v)) ≤ β(M(u, v)) = β(d(u, v)),(16)

Thus from (2) and Lemma 1.1, we get d(u, v) = 0, i.e, u = v.
Case 2. Assume that u and v are not comparable then from (4), there

exists some z ∈ Y comparable to u and v such that fz = z is comparable
u = fu and v = fv.
Clearly,

0 = d(u, u) =
1

2
d(u, fu) < d(u,w)

implies that

ψ(d(fu, fw) ≤ β(M(u,w)),(17)

where

M(u,w) = max

{
d(u,w),

d(u, fu)d(w, fw)

1 + d(u,w)
,
d(w, fw)[1 + d(u, fu)]

1 + d(u,w)

}
= max d(u,w), 0, 0 = d(u,w).

Hence, from (17),

ψ(d(fu, fw) ≤ β(d(u,w)).

Consequently, we have

ψ(d(u,w) ≤ β(d(u,w)).

On using Lemma 1.1, we have d(u,w) = 0.
Similarly, we can obtain d(v, w) = 0. This implies that u = v.
This completes the proof of Theorem 2.1.

�

Theorem 2.2. Let (Y, d,�) be a partially ordered complete metric space and
let f : Y → Y be a non-decreasing, monotone map such that for all u, v ∈ Y,

1

2
d(u, fu) ≤ d(u, v) implies ψ(d(fu, fv)) ≤ β(N(u, v)),(18)

and

N(u, v) = a1d(u, v) + a2
d(u, fu)d(v, fv)

[1 + d(u, v)]
+ a3

d(v, fv)[1 + d(u, fu)]

[1 + d(u, v)]
,(19)

where ψ ∈ Ψ, ai ≥ 0,
∑
ai < 1, for all i = 1, 2, 3 and β : [0,∞)→ [0,∞) is

continuous function such that

0 < β(ω) < ψ(ω), ω > 0.(20)
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Also assume that, for every u, v ∈ Y, there exists z ∈ Y , such that u � z
and v � z. If there exists u0 ∈ Y such that u0 � fu0, then f has a unique
fixed point in Y .

Proof. Given that f : Y → Y be monotone, nondecreasing map such that
for all u, v ∈ Y,

1

2
d(u, fu) ≤ d(u, v) implies ψ(d(fu, fv)) ≤ β(N(u, v)),

and

N(u, v) = a1d(u, v) + a2
d(u, fu)d(v, fv)

[1 + d(u, v)]
+ a3

d(v, fv)[1 + d(u, fu)]

[1 + d(u, v)]

=
∑

ai.max

{
d(u, v),

d(u, fu)d(v, fv)

[1 + d(u, v)]
,
d(v, fv)[1 + d(u, fu)]

[1 + d(u, v)]

}
.

Since all ai ≥ 0 and
∑
ai < 1, for all i = 1, 2, 3, then

N(u, v) ≤ max

{
d(u, v),

d(u, fu)d(v, fv)

[1 + d(u, v)]
,
d(v, fv)[1 + d(u, fu)]

[1 + d(u, v)]

}
= M(u, v).

Rest of the proof follows directly from main result (Theorem 2.1). �

If we take a2 = a3 = 0, a1 = 1 in Theorem 2.2, we obtain following result
of Yan et al. [5] satisfying weaker type of Cψβ - condition.

Corollary 2.1. Let (Y, d,�) be a partially ordered complete metric space
and let f : Y → Y be a non-decreasing map such that for all u, v ∈ Y,

1

2
d(u, fu) ≤ d(u, v) implies ψ(d(fu, fv)) ≤ β(d(u, v)),

where ψ ∈ Ψ and β : [0,∞)→ [0,∞) is a continuous function such that

0 < β(ω) < ψ(ω), ω > 0.

Also assume that for every u, v ∈ Y , there exists z ∈ Y , such that u � z and
v � z. If there exists u0 ∈ Y such that u0 � fu0, then f has a unique fixed
point in Y .

If we take ψ(ω) = ω and β(ω) = ω in Theorem 2.2, we get the following
new result.

Corollary 2.2. Let (Y, d,�) be a partially ordered complete metric space
and let f : Y → Y be a non-decreasing map such that for all u, v ∈ Y,

1

2
d(u, fu) ≤ d(u, v) implies d(fu, fv) ≤ N(u, v),

and

N(u, v) = a1d(u, v) + a2
d(u, fu)(v, fv)

[1 + d(u, v)]
+ a3

d(v, fv)[1 + d(u, fu)]

[1 + d(u, v)]
,
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where ai ≥ 0,
∑
ai < 1, for all i = 1, 2, 3. Also assume that for every

u, v ∈ Y , there exists z ∈ Y , such that u � z and v � z. If there exists
u0 ∈ Y such that u0 � fu0, then f has a unique fixed point in Y .

Remark 2.1. If we take a2 = 0 in Corollary 2.2, we obtain the result of Dass
and Gupta [24] in fame work of partially ordered metric spaces satisfying C-
condition.

Remark 2.2. If we take a1 = 0 and a2 = 0 in Corollary 2.2, we get new
result in the sense of partially ordered metric spaces satisfying C- condition.

3. Application: Existence of solution of second order
boundary value problem

We consider following second order differential equation with boundary
condition

− d2u

dω2
= f(ω, u(ω)), ω ∈ L = [0, 1], u ∈ [0,∞),(21)

u(0) = u′(1) = 0.

If u ∈ C2(L) is zero of (21), then u ∈ C(L) is also a zero of following integral
equation

u(ω) =

∫ T

0
G(ω, θ)f(θ, u(θ))dθ for all ω ∈ L,

where G(ω, θ) is the Green function given by

G(ω, θ) =

{
ω, if 0 ≤ ω ≤ θ ≤ 1,

θ, if 0 ≤ θ ≤ ω ≤ 1.

Theorem 3.1. Consider a second order differential equation (21) with a
map f : L × R → R. Assume that f is weakly increasing with respect to
second variable and continuous. If there exist λ ∈ (0, 2] such that

f(ω, u)− f(ω, v) ≤ λ
√

log[(u− v)2 + 1], u ≥ v,
then there exist a unique non negative solution for the problem (21).

Proof. If we let S = {u ∈ C(L), L = [0, 1] : u(ω) ≥ 0} be a cone, and (S, d)
be a metric space with metric defined as d(u, v) = sup {|u(ω)− v(ω)| : ω ∈ L};
for all u, v ∈ E, then clearly (S, d) is complete.
Define H : C(L)→ C(L) by

(Hu)(ω) =

∫ 1

0
G(ω, θ)f(θ, u(θ))dθ.

If u ∈ C(L) is a fixed point of H, then u ∈ C1(L) is a zero of (21).
Clearly, with assumption on f and elements u, v ∈ E, we obtain

(Hu)(ω) =

∫ 1

0
G(ω, θ)f(θ, u(θ))dθ ≥

∫ 1

0
G(ω, θ)f(θ, v(θ))dθ = (Hv)(ω).
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Since G(ω, θ) > 0, for ω ∈ L. This proves that H is also weakly increasing
mapping.

Also, for all u, v ∈ E with u ≥ v implies that

sup {|u(ω)− v(ω)| , ω ∈ L} ≥ sup {|Hu(ω)− u(ω)| , ω ∈ L} ,(22)

and so, in term of metric

d(u, v) ≥ d(Hu, u) ≥ 1

2
d(Hu, u).(23)

This implies

d(Hu,Hv) = sup
ω∈L
|(Hu)(ω)− (Hv)(ω)| = sup

ω∈L
((Hu)(ω)− (Hv)(ω))

= sup
ω∈L

∫ 1

0
G(ω, θ)[f(θ, u(θ))− f(θ, v(θ))]dθ

= sup
ω∈L

∫ 1

0
G(ω, θ)λ

√
log[(u(θ)− v(θ))2 + 1]dθ

= sup
ω∈L

∫ 1

0
G(ω, θ)λ

√
log[d(u, v)2 + 1]dθ

= λ
√

log[d(u, v)2 + 1] sup
ω∈L

∫ 1

0
G(ω, θ)dθ.(24)

It is easy to calculate that∫ 1

0
G(ω, θ)dθ =

−ω2

2
+ ω,

and so

sup
ω∈L

∫ 1

0
G(ω, θ)dθ =

1

2
.(25)

On using (25) in (24), we get

d(Hu,Hv) ≤ λ

2

√
log[d(u, v)2 + 1].(26)

Since, λ ∈ (0, 2], we obatin

d(Hu,Hv) ≤
√

log[d(u, v)2 + 1],

and that

d(Hu,Hv)2 ≤ log[d(u, v)2 + 1].(27)

Assuming ψ(ω) = ω2 and β(ω) = log[ω2 + 1]. Then clearly, ψ ∈ Ψ, and for
all u > 0, ψ(u) > β(u).
Relation (27) implies that

ψ(d(Hu,Hv)) ≤ β(d(u, v))
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≤ β

(
max

{
d(u, v),

d(u, fu)d(v, fv)

[1 + d(u, v)]
,
d(v, fv)[1 + d(u, fu)]

[1 + d(u, v)]

})
= β(M(u, v)).

Also,

H(0) =

∫ 1

0
G(ω, θ)f(θ, 0)dθ ≥ 0.

Thus one by one all assumptions of Theorem 2.1 are satisfied and therefore,
the function H has a unique non negative solution. �

4. Conclusion

In this manuscript, we have first defined a generalized Cψβ− rational con-
traction and then derived our main result Theorem 2.1. Some consequence
results (Corollary 2.1, 2.2) and Remarks 2.1, 2.2 flaunted that our result
is a proper generalization and extension of some previous existing results.
As an application of our main result, we have presented an example to find
the existence and uniqueness of solutions of second order boundary value
problem.
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