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Best proximity points of α−β−ψ−proximal
contractive mappings in partially ordered

complete metric spaces

Gutti Venkata Ravindranadh Babu, Leta Bekere Kumssa,
Pathina Sudheer Kumar

Abstract. In this paper, we define α−β−ψ−proximal contractive map-
pings in partially ordered metric spaces and prove the existence of best
proximity points of these maps in partially ordered complete metric
spaces. These results extend/generalize the results of Asgari and Bade-
hian, J. Nonl. Sci. and Appl., 2015. We provide illustrative examples
in support of our theorems.

1. Introduction

In recent research in the field of nonlinear functional analysis, many re-
searchers are interested in dealing with non-selfmaps to determine the dis-
tance between two nonempty subsets of a metric space (X, d). Let A and
B be two nonempty subsets of a metric space (X, d) and T : A → B be a
non-selfmapping. Then d(x, Tx) ≥ d(A,B), for all x ∈ A, where d(A,B) =
inf{d(x, y) : x ∈ A, y ∈ B}. In general, for a non-selfmapping T : A → B,
the fixed point equation Tx = x may not have a solution. In such cases, one
intend to find an approximate solution x ∈ A such that d(x, Tx) = d(A,B).
Best approximation theorems and best proximity point theorems are rele-
vant in this regard. For instance, let us consider the well known classical
best approximation theorem by Ky Fan [12].

Theorem 1.1 ([12]). Let A be a non-empty compact convex subset of a
normed linear space X and T : A → X be a continuous function. Then
there exists x ∈ A such that

‖x− Tx‖ = d(Tx,A) = inf{‖Tx− a‖ : a ∈ A}.
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On the other hand, though best approximation theorems only ensure the
existence of approximate solutions, in this case, such results need not yield
optimal solutions. But, best proximity point theorems provide sufficient con-
ditions that assure the existence of approximate solutions which are optimal.
In this regard, the best proximity point evolves as a generalization of the
best approximation. The authors Basha [5], Choudhury, Maity and Konar,
[9, 10] and Kutbi, Chandok and Sintunavarat [16] tried to reduce the prob-
lem of finding approximate solutions to that of finding optimal approximate
solutions.

In recent years, the existence of best proximity points is an interesting
aspect of optimization theory which attracted the attention of many re-
searchers. For example, Abkar and Gableh [2], Basha [6], Caballaro, Harjani
and Sadarangani [7], Eldred [11], Gabeleh [13] and Karapinar [15] and the
related references cited in these papers, worked in this area.

A best proximity point becomes a fixed point if the underlying mapping is
a selfmapping. Therefore, it is concluded that best proximity point theorems
generalize fixed point theorems in a natural way. For more works on the
existence of best proximity points, we refer [1, 3, 8, 14, 17] and references
therein.

Our purpose here is to establish best proximity point theorems in partially
ordered metric spaces.

We recall the following notation and definitions. Let (X, d,�) be a
partially ordered metric space and let A and B be nonempty subsets of X.

A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

Definition 1.1 ([6]). A mapping T : A → B is said to be proximally
increasing if for all u1, u2, x1, x2 ∈ A, x1 � x2 and d(u1, Tx1) = d(u2, Tx2) =
d(A,B) imply u1 � u2.

We denote by Ψ a family of functions ψ : [0,∞) → [0,∞) such that for
each ψ ∈ Ψ and t > 0,
(i) ψ is nondecreasing,

(ii)
∞∑
n=1

ψn(t) < +∞, where ψn is the n-th iterate of ψ.

Remark 1.1. If ψ ∈ Ψ, then ψn(t) → 0 as n → ∞, for all t ≥ 0 and
ψ(t) < t, for all t > 0.

Definition 1.2 ([4]). Let (X,�) be a partially ordered space with metric d.
We say that f : X → X is an α−β−ψ−contractive mapping if there exist
three functions α, β : X ×X → [0,∞), ψ ∈ Ψ such that

α(x, y)d(f(x), f(y)) ≤ β(x, y)ψ(d(x, y)),

for all x, y ∈ X with x � y.
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Definition 1.3 ([4]). Let f : X → X, α, β : X × X → [0,∞) and Cα >
0, Cβ ≥ 0. We say that f is an α−β−admissible mapping, if for all x, y ∈ X
with x � y hold
(i) α(x, y) ≥ Cα =⇒ α(fx, fy) ≥ Cα,
(ii) β(x, y) ≤ Cβ =⇒ β(fx, fy) ≤ Cβ ,
(iii) 0 ≤ Cβ

Cα
≤ 1.

In 2015, Asgari and Badehian [4], proved fixed point theorems for α−β−
ψ−contractive mappings in partially ordered space with complete metric.

Theorem 1.2 ([4]). Let (X,�) be a partially ordered space with complete
metric d. Let f : X → X be a nondecreasing, α−β−ψ−contractive mapping
satisfying the following conditions:
(i) f is continuous,
(ii) f is α−β−admissible,
(iii) there exists x0 ∈ X such that x0 � fx0,
(iv) there exist Cα > 0, Cβ ≥ 0 such that α(fx0, x0) ≥ Cα, β(fx0, x0) ≤

Cβ.
Then, f has a fixed point.

In Section 2, we introduce a notion of α−β−proximal admissible mappings
and α−β−ψ−proximal contractive mappings that we consider to prove our
main results in Section 3. In Section 4, we draw some corollaries and provide
examples in support of our main results.

2. Preliminaries

Definition 2.1. Let (X, d,�) be a partially ordered metric space, A,B be
two nonempty subsets of X, α, β : A × A → [0,∞) be functions, Cα >
0, Cβ ≥ 0 be two constants and T : A → B be a non-selfmapping. We say
that T is an α−β−proximal admissible, if for all x, y, u, v ∈ A, with x � y
hold
(i) α(x, y) ≥ Cα and d(u, Tx) = d(v, Ty) = d(A,B) implies α(u, v) ≥ Cα,
(ii) β(x, y) ≤ Cβ and d(u, Tx) = d(v, Ty) = d(A,B) implies β(u, v) ≤ Cβ ,
(iii) 0 ≤ Cβ

Cα
≤ 1.

If (i), (ii) and (iii) hold for α(x, y) = 1 = β(x, y), for all x, y ∈ A, then we
say that T is proximal admissible.

Remark 2.1. If A = B = X in Definition 2.1, then T is an α−β−admissible
mapping.

Example 2.1. Let X = [0,∞) × [0,∞) with the Euclidean metric d. Let
A = {1} × [0,∞), B = {2} × [0,∞). We define a partial order � on X by
(x, y) � (u, v) if and only if x ≤ u and y ≤ v, for all (x, y), (u, v) ∈ X, where
� is the usual order on [0,∞). We define T : A→ B by

T (1, x) = (2, 2x), if x ∈ [0,∞).



18 Best proximity points of α−β−ψ−proximal contractive mappings. . .

We also define functions α, β : A×A→ [0,∞) by

α((1, x), (1, y)) =

{
3
2 , if (1, x) � (1, y),

0, otherwise.

β((1, x), (1, y)) =

{
1
2 , if (1, x) � (1, y),

0, otherwise.

We choose Cα = 1 and Cβ = 2
3 . Clearly, 0 ≤ Cβ

Cα
≤ 1.

Let (1, x), (1, y), (1, u) and (1, v) ∈ A, such that
(i) α((1, x), (1, y)) = 3

2 ≥ 1 = Cα and
d((1, u), T (1, x)) = d((1, v), T (1, y)) = d(A,B) = 1,

(ii) β((1, x), (1, y)) = 1
2 ≤

2
3 = Cβ and

d((1, u), T (1, x)) = d((1, v), T (1, y)) = d(A,B) = 1.

From (i) and (ii), we obtain u = 2x and v = 2y.
Since (1, x) � (1, y), it follows that (1, u) � (1, v), so α((1, u), (1, v)) =

3
2 ≥ 1 = Cα and β((1, u), (1, v)) = 1

2 ≤
2
3 = Cβ. Hence T is α−β-proximal

admissible.

Definition 2.2. Let (X, d,�) be a partially ordered metric space and A
and B be nonempty closed subsets of X. We say that T : A → B is
an α−β−ψ−proximal contractive mapping if there exist functions α, β :
A×A→ [0,∞), ψ ∈ Ψ such that for all x, y, u, v ∈ A with x � y holds:

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
=⇒ α(x, y)d(u, v) ≤ β(x, y)ψ(d(x, y)).(1)

If α(x, y) = 1 = β(x, y), for all x, y ∈ A in (1) then we say that T is a
ψ-proximal contractive mappings.

Remark 2.2. Here we observe that if A = B = X in Definition 2.2, then
T is an α−β−ψ−contractive mapping.

Example 2.2. Let A = {0}×[0,∞), B = {−1}×[0,∞) andX = A∪B, with
the Euclidean metric d. We define a partial order � on X by (x, y) � (u, v)
if and only if x ≤ u and y ≤ v, for all (x, y), (u, v) ∈ X.

Clearly, holds d(A,B) = 1. We define T : A→ B by

T (0, x) =

{
(−1, x2

1+x), if x ∈ [0, 1],

(−1, 2x− 3
2), if x ∈ [1,∞).

We also define functions α, β : A×A→ [0,∞) by

α((0, x), (0, y)) =

{
3
4 if x, y ∈ [0, 1], with (0, x) � (0, y),

0 otherwise.

β((0, x), (0, y)) =

{
2
3 if x, y ∈ [0, 1], with (0, x) � (0, y),

0 otherwise.
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Let ψ(t) = 7
8 t, for all t ≥ 0. We will show that T is an α−β−ψ−proximal

contractive mapping.
Let (0, x), (0, y), (0, u) and (0, v) ∈ A with (0, x) � (0, y) such that

d((0, u), T (0, x)) = d((0, v), T (0, y)) = d(A,B) = 1.(2)

If x, y ∈ [0, 1], with (0, x) � (0, y), then α((0, x), (0, y)) = 3
4 and β((0, x),

(0, y)) = 2
3 .

From (2), we obtain u = x2

1+x ∈ [0, 12 ] and v = y2

1+y ∈ [0, 12 ].
Therefore,

α((0, x), (0, y))d((0, u), (0, v)) =
3

4
|u− v|

=
3

4
| x

2

1 + x
− y2

1 + y
| = 3

4

(
|x− y|(x+ y + xy)

(1 + x)(1 + y)

)
≤ 7

12
|x− y| = β((0, x), (0, y))ψ(d((0, x), (0, y))).

For the other possible cases, the inequality (1) holds trivially. Hence T is
an α−β−ψ−proximal contractive mapping.

Here we observe that the inequality (1) fails to hold for any ψ ∈ Ψ, if
α((0, x), (0, y)) = β((0, x), (0, y)) = 1 such that x, y ∈ [1,∞) with (0, x) �
(0, y) and x 6= y. Let (0, x), (0, y), (0, u) and (0, v) ∈ A, with (0, x) � (0, y)
and x, y ∈ [1,∞), such that

d((0, u), T (0, x)) = d((0, v), T (0, y)) = d(A,B) = 1.(3)

From (3), we get u = 2x− 3
2 and v = 2y − 3

2 .
Therefore,

d((0, u), (0, y)) = 2|x− y| � ψ(|x− y|) = ψ(d((0, x), (0, y))).

This shows the importance of α and β in the inequality (1).

In the following, we prove our main results.

3. Main Results

Theorem 3.1. Let (X, d,�) be a partially ordered complete metric space.
Let A,B be non-empty closed subsets of X with A0 is nonempty and closed.
Let T : A → B be a proximally increasing non-selfmapping such that the
following conditions hold:
(i) T is continuous,
(ii) T is an α−β−ψ−proximal contractive mapping,
(iii) T is an α−β−proximal admissible,
(iv) T (A0) ⊆ B0,
(v) there exist elements x0, x1 ∈ A0 such that x0 � x1 and d(x1, Tx0) =

d(A,B),
(vi) there exist Cα > 0, Cβ ≥ 0 such that α(x0, x1) ≥ Cα, β(x0, x1) ≤ Cβ.
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Then T has a best proximity point in A0.

Proof. By condition (v), there exist x0, x1 ∈ A0 such that x0 � x1 and

(4) d(x1, Tx0) = d(A,B).

Since T (A0) ⊆ B0, we have Tx1 ∈ B0 and hence there exists an element
x2 ∈ A such that

(5) d(x2, Tx1) = d(A,B).

Since T is proximally increasing on A, from (4) and (5), we have x1 � x2.
On continuing this process, we get a sequence {xn} in A0 such that

d(xn, Txn−1) = d(A,B)
d(xn+1, Txn) = d(A,B)

}
(6)

satisfying

x1 � x2 � x3 � · · · � xn � xn+1 � · · · , for n = 1, 2, 3, . . .

If xn0 = xn0+1 for some n0 ∈ N, then xn0 is the best proximity point of
T and hence the conclusion of the theorem follows.

Now, we assume with out loss of generality that any two consecutive
elements of {xn} are distinct.

From condition (iii), condition (vi) and (6), the following holds:

(7)

α(x0, x1) ≥ Cα and β(x0, x1) ≤ Cβ
d(x1, Tx0) = d(A,B)
d(x2, Tx1) = d(A,B)

 =⇒

α(x1, x2) ≥ Cα and β(x1, x2) ≤ Cβ.

Since T is an α−β−ψ−proximal contractive mapping and by considering
(7), we have

Cαd(x1, x2) ≤ α(x0, x1)d(x1, x2)

≤ β(x0, x1)ψ
(
d(x0, x1)

)
≤ Cβψ

(
d(x0, x1)

)
,

therefore

d(x1, x2) ≤
Cβ
Cα

ψ
(
d(x0, x1) ≤ ψ

(
d(x0, x1).(8)

Again by condition (iii), condition (vi), (6) and (7), we have

(9)

α(x1, x2) ≥ Cα, β(x1, x2) ≤ Cβ
d(x2, Tx1) = d(A,B)
d(x3, Tx2) = d(A,B)

 =⇒

α(x2, x3) ≥ Cα and β(x2, x3) ≤ Cβ.



G. V. R. Babu, B. K. Leta, P. S. Kumar 21

Therefore, by considering (9) and by the fact that T is an α−β−ψ−proximal
contractive mapping, we have

Cαd(x2, x3) ≤ α(x1, x2)d(x2, x3)

≤ β(x1, x2)ψ
(
d(x1, x2)

)
≤ Cβψ

(
d(x1, x2)

)
,

and hence

d(x2, x3) ≤
Cβ
Cα

ψ
(
d(x1, x2) ≤ ψ

(
d(x1, x2) ≤ ψ2(d(x0, x1)).

On continuing this process, we obtain

α(xn−1, xn) ≥ Cα, β(xn−1, xn) ≤ Cβ
d(xn, Txn−1) = d(A,B)
d(xn+1, Txn) = d(A,B)

 =⇒

α(xn, xn+1) ≥ Cα and β(xn, xn+1) ≤ Cβ,
for n = 1, 2, 3, ... and

d(xn, xn+1) ≤ ψn
(
d(x0, x1)

)
.

Since ψ ∈ Ψ, we have ψn
(
d(x0, x1)

)
→ 0 as n→∞.

Now, we show that {xn} is a Cauchy sequence. We fix ε > 0 and choose

n0 ∈ N such that
∞∑

n=n0

ψn(d(x0, x1)) < ε. Let m,n ∈ N with m > n > n0.

Therefore by applying triangle inequality, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

≤ ψn
(
d(x0, x1)

)
+ ψn+1

(
d(x0, x1)

)
+ ...+ ψm−1

(
d(x0, x1)

)
=

m−1∑
n=n0

ψn(d(x0, x1)) ≤
∞∑

n=n0

ψn(d(x0, x1)) < ε.

Hence {xn} is a Cauchy sequence. Since A0 is a closed subset of a complete
metric space and hence it is complete, there exists x ∈ A0 such that xn → x.
Since T is continuous, by letting n → ∞ in (6), we obtain d(x, Tx) =
d(A,B). Hence x is a best proximity point of T . �

If we drop the continuity assumption from Theorem 3.1, we obtain the
following result.

Theorem 3.2. Let (X, d,�) be a partially ordered complete metric space.
Let A,B be non-empty closed subsets of X with A0 is nonempty and closed.
Let T : A → B be proximally increasing non-selfmapping such that the
following conditions hold:
(i) T is an α−β−ψ−proximal contractive mapping and T is an α−β−

proximal admissible;
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(ii) T (A0) ⊆ B0;
(iii) there exist elements x0, x1 ∈ A0 such that x0 � x1 and d(x1, Tx0) =

d(A,B);
(iv) there exist Cα > 0, Cβ ≥ 0 such that α(x0, x1) ≥ Cα, β(x0, x1) ≤ Cβ;
(v) if {xn} is a sequence in A such that α(xn, xn+1) ≥ Cα, β(xn, xn+1) ≤

Cβ, for all n ∈ N, xn → x as n → ∞, then α(xn, x) ≥ Cα and
β(xn, x) ≤ Cβ;

(vi) if {xn} is a nondecreasing sequence in A such that xn → x as n→∞,
then xn � x for all n ∈ N.

Then T has a best proximity point in A0.

Proof. From the proof of Theorem 3.1, we have the sequence {xn} is Cauchy
and xn → x ∈ A0. Since T (A0) ⊆ B0, then T (x) ∈ B0 and hence there exists
z ∈ A such that

(10) d(z, Tx) = d(A,B).

In the proof of Theorem 3.1, we obtained that {xn} is a nondecreasing
sequence satisfying α(xn, xn+1) ≥ Cα and β(xn, xn+1) ≤ Cβ . Therefore,
by condition (v), it follows that α(xn, x) ≥ Cα and β(xn, x) ≤ Cβ , and
condition (vi), we have xn � x for n ∈ N.

We now claim that z = x. Since d(xn+1, Txn) = d(A,B), by combining
this equation with (10) and by the fact that T is an α−β−ψ−proximal
contractive mapping, we have

Cαd(xn+1, z) ≤ α(xn, x)d(xn+1, z)

≤ β(xn, x)ψ
(
d(xn, x)

)
≤ Cβψ

(
d(xn, x)

)
,

and therefore

d(xn+1, z) ≤
Cβ
Cα

ψ
(
d(xn, x)

)
≤ ψ

(
d(xn, x)

)
.

Since ψ ∈ Ψ, we get
d(xn+1, z) < d(xn, x).

If n→∞, we obtain x = z. Hence x is a best proximity point of T . �

Lemma 3.1. In addition to the hypotheses of Theorem 3.1 (Theorem 3.2),
if x is a best proximity point of T with x � u, α(x, u) ≥ Cα and β(x, u) ≤
Cβ for some u ∈ A0, then there exists a sequence {un} ⊆ A0 such that
d(un, Tun−1) = d(A,B), x � un, for n = 1, 2, 3, . . . and un → x as
n→∞.

Proof. Let x be a best proximity point of T , i.e.,

(11) d(x, Tx) = d(A,B).
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Let u ∈ A0 such that x � u. We set u0 = u. Since T (A0) ⊆ B0 and
u = u0 ∈ A0, we have Tu0 ∈ B0. Hence there exists u1 ∈ A such that

(12) d(u1, Tu0) = d(A,B).

From (12), by the definition of A0 and B0, we have u1 ∈ A0. Since T is
proximally increasing on A0, from x � u = u0, (11) and (12), we have
x � u1.

On continuing this process we can construct a sequence {un} in A0 such
that

d(un, Tun−1) = d(A,B),(13)

satisfying

(14) x � un, for n = 1, 2, 3, . . .

By assumption, from (11) and (12) we have

(15)

α(x, u0) ≥ Cα and β(x, u0) ≤ Cβ
d(x, Tx) = d(A,B)
d(u1, Tu0) = d(A,B)

 =⇒

α(x, u1) ≥ Cα and β(x, u1) ≤ Cβ.

Since T is an α−β−ψ−proximal contractive mapping and by considering
(15), we have

Cαd(x, u1) ≤ α(x, u0)d(x, u1)

≤ β(x, u0)ψ
(
d(x, u0)

)
≤ Cβψ

(
d(x, u0)

)
,

and it follows that

d(x, u1) ≤
Cβ
Cα

ψ
(
d(x, u0) ≤ ψ

(
d(x, u0)

)
= ψ

(
d(x, u)

)
.

From (11), (13), (14) and (15) we have

(16)

α(x, u1) ≥ Cα and β(x, u1) ≤ Cβ
d(x, Tx) = d(A,B)
d(u2, Tu1) = d(A,B)

 =⇒

α(x, u2) ≥ Cα and β(x, u2) ≤ Cβ.

Since T is an α−β−ψ−proximal contractive mapping and by considering
(16), we have

Cαd(x, u2) ≤ α(x, u1)d(x, u2)

≤ β(x, u1)ψ
(
d(x, u1)

)
≤ Cβψ

(
d(x, u1)

)
.



24 Best proximity points of α−β−ψ−proximal contractive mappings. . .

Now, it follows that

d(x, u2) ≤
Cβ
Cα

ψ
(
d(x, u1)

≤ ψ
(
d(x, u1)

)
≤ ψ2

(
d(x, u0)

)
= ψ2

(
d(x, u)

)
.

On continuing this process, we obtain

d(x, un) ≤ ψn
(
d(x, u)

)
→ 0 as n→∞.

i.e., un → x as n→∞. �

Theorem 3.3. Suppose that all the hypotheses of Theorem 3.1 (Theorem
3.2) are satisfied. We Assume the following hypothesis.
Condition (H): There exists u ∈ A0 such that for every x, y ∈ A0 with
x � u, y � u,{

α(x, u) ≥ Cα and β(x, u) ≤ Cβ,
α(y, u) ≥ Cα and β(y, u) ≤ Cβ.

(17)

Then T has a unique best proximity point in A0.

Proof. By the proof of Theorem 3.1 (Theorem 3.2), the set of best proximity
points of T is nonempty. Let x, y be two best proximity points of T in A0.
By our assumption, we have there exists u ∈ A0 such that x � u, y � u,
α(x, u) ≥ Cα and β(x, u) ≤ Cβ and α(y, u) ≥ Cα and β(y, u) ≤ Cβ . Now
by applying Lemma 3.1, it follows that there exists a sequence {un} ⊆ A0

such that un → x and un → y as n→∞. Hence by the uniqueness of limits
we have x = y. �

4. Corollaries and Examples

Corollary 4.1. Let (X, d,�) be a partially ordered complete metric space.
Let A,B be non-empty closed subsets of X with A0 is nonempty and closed.
Let T : A → B be proximally increasing non-selfmapping such that for all
x, y, u, v ∈ A with x � y hold:
(i) d(u, Tx) = d(v, Ty) = d(A,B) implies that d(u, v) ≤ kd(x, y), for some

k ∈ [0, 1),
(ii) T is continuous and T (A0) ⊆ B0,
(iii) T is ψ− proximal contractive mapping and T is proximal admissible,
(iv) there exist elements x0, x1 ∈ A0 such that x0 � x1 and d(x1, Tx0) =

d(A,B),
Then T has a best proximity point in A0.

Proof. Follows by choosing ψ(t) = kt, t ≥ 0, and α(x, y) = β(x, y) = 1, for
all x, y in A, with Cα = Cβ = 1 in Theorem 3.1. �
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If the continuity assumption is removed from Corollary 4.1, we have the
following result.

Corollary 4.2. Let (X, d,�) be a partially ordered complete metric space.
Let A,B be non-empty closed subsets of X with A0 is nonempty and closed.
Let T : A → B be proximally increasing non-selfmapping such that for all
x, y, u, v ∈ A with x � y hold:
(i) d(u, Tx) = d(v, Ty) = d(A,B) implies that d(u, v) ≤ kd(x, y), for some

k ∈ [0, 1),
(ii) T (A0) ⊆ B0,
(iii) T is ψ−proximal contractive mapping and T is proximal admissible,
(iv) if {xn} is a sequence in A such that α(xn, xn+1) ≥ Cα, β(xn, xn+1) ≤

Cβ for all n ∈ N and xn → x as n → ∞, then α(xn, x) ≥ Cα and
β(xn, x) ≤ Cβ,

(v) if {xn} is a nondecreasing sequence in A such that xn → x as n→∞,
then xn � x for all n ∈ N.

Then T has a best proximity point in A0.

Proof. By choosing ψ(t) = kt, k ∈ [0, 1) and α(x, y) = β(x, y) = 1 for all x, y
in A with Cα = Cβ = 1 in Theorem 3.2, it follows that all the hypothesis of
Theorem 3.2 holds so that the conclusion of this corollary holds. �

Remark 4.1. If A = B = X in Theorem 3.1, then Theorem 1.2 follows as
a corollary to Theorem 3.1.

The following example is in support of Theorem 3.1.

Example 4.1. Let X = R2, with an Euclidean metric d. We define a
partial order � on X by (x, y) � (u, v) if and only if x ≥ u and y ≥ v, for
all (x, y), (u, v) ∈ X, where ≥ is the usual order on R.

Let A = {−1} × [0, 4] = A0, B = {1} × [0, 4] = B0. Clearly d(A,B) = 2.
We define T : A→ B by

T (−1, x) =

{
(1, x4 ), if x ∈ [0, 1],

(1, 54x− 1), if x ∈ [1, 4].

Clearly T is continuous, proximally increasing on A and T (A0) ⊆ B0.
Now, we define functions α, β : A×A→ [0,∞) by

α((−1, x), (−1, y)) =

{
3
4 , if x, y ∈ [0, 1] with (−1, x) ≤ (−1, y),
0, otherwise.

β((−1, x), (−1, y)) =

{
1
2 , if x, y ∈ [0, 1] with (−1, x) ≤ (−1, y),
0, otherwise.

Let ψ(t) = t
2 for all t ≥ 0. We now show that T is an α−β−ψ−proximal

contractive mapping.
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Now, let (−1, x), (−1, y), (−1, u) and (−1, v) ∈ A with (−1, x) � (−1, y)
such that

d((−1, u), T (−1, x)) = d((−1, v), T (−1, y)) = d(A,B) = 2.(18)

We consider the case for x, y ∈ [0, 1] with (−1, x) ≤ (−1, y).
Then α((−1, x), (−1, y)) = 3

4 and β((−1, x), (−1, y)) = 1
2 . In this case from

(18), we obtain u = x
4 and v = y

4 ∈ [0, 14 ]. Therefore

α((−1, x), (−1, y))d((−1, u), (−1, v))

=
3

4
|u− v| ≤ |u− v| = 1

2

( |x− y|
2

)
= β((−1, x), (−1, y))ψ(d((−1, x), (−1, y))).

The inequality (1) holds trivially for the other possible cases. Hence T is an
α−β−ψ−proximal contractive mapping.

We now show that T is an α−β−proximal admissible. For this purpose,
we choose Cα = 2

3 and Cβ = 1
2 . Clearly 0 ≤ Cβ

Cα
≤ 1.

Let (−1, x), (−1, y), (−1, u) and (−1, v) ∈ A with (−1, x) � (−1, y) with
x, y ∈ [0, 1] such that:

(i) α((−1, x), (−1, y)) = 3
4 ≥

2
3 = Cα and

d((−1, u), T (−1, x)) = d((−1, v), T (−1, y)) = d(A,B) = 2,
(ii) β((−1, x), (−1, y)) = 1

2 ≤
1
2 = Cβ and

d((−1, u), T (−1, x)) = d((−1, v), T (−1, y)) = d(A,B) = 2.
From (i) and (ii), we obtain u = x

4 and v = y
4 . Since x ≤ y, it follows that

u ≤ v. Therefore

α((−1, u), (−1, v)) =
3

4
≥ 2

3
= Cα,

β((−1, u), (−1, v)) =
1

2
≤ 1

2
= Cβ.

Hence T is an α−β−proximal admissible.
We choose x0 = (−1, 1), x1 = (−1, 14) in A0. Then x0 � x1 and

d((−1, 14), T (−1, 1)) = 2 = d(A,B). Also,

α((−1, 1), (−1,
1

4
)) =

3

4
≥ 2

3
= Cα

β((−1, 1), (−1,
1

4
)) =

1

2
≤ 1

2
= Cβ.

Hence all the hypotheses of Theorem 3.1 are satisfied and (−1, 0) and
(−1, 4) are two best proximity points of T .

Here we observe that Condition (H ) of Theorem 3.3 fails to hold: if
u = (−1, x0) ∈ A0 with x0 > 0, we choose x = (−1, 0), y = (−1, 4) so
that x = (−1, 0) � (−1, x0) = u; if u = (−1, 0) then x � u and y =

(−1, 4) � (−1, 0) = u, α(x, u) = 3
4 > 2

3 = Cα, β(x, u) = 1
2 = Cβ and

β(y, u) = 0 < 1
2 = Cβ . But α(y, u) = 0 � 2

3 = Cα.
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Hence Condition (H) of Theorem 3.3 fails to hold.

The following example is in support of Theorem 3.3 in which T is not
continuous.

Example 4.2. Let X = [0, 2]× [0, 2] with an Euclidean metric d.
We define a partial order on X by (x, y) � (u, v) if and only if x ≥ u and

y ≥ v, for all (x, y), (u, v) ∈ X, where ≥ is the usual order on R.
Let A = {0} × [0, 2] = A0, B = {1} × [0, 2] = B0.
We define T : A→ B by

T (0, x) =

{
(1, x2

1+2x), if x ∈ [0, 1],

(1, 23x), if x ∈ (1, 2].

Clearly, d(A,B) = 1, T is not continuous, T is proximally increasing on A
and T (A0) ⊆ B0.

Now, we define functions α, β : A×A→ [0,∞) by

α((0, x), (0, y)) =

{
3
4 , if x, y ∈ [0, 1] with (0, x) � (0, y),
0, otherwise.

β((0, x), (0, y)) =

{
2
5 , if x, y ∈ [0, 1] with (0, x) � (0, y),
0, otherwise.

Let ψ(t) = 7
8 t for all t ≥ 0. We now show that T is an α−β−ψ−proximal

contractive mapping.
Now, let (0, x), (0, y), (0, u) and (0, v) ∈ A with (0, x) � (0, y) such that

d((0, u), T (0, x)) = d((0, v), T (0, y)) = d(A,B) = 1.(19)

Let us consider the case x, y ∈ [0, 1] with (0, x) � (0, y). Then α((0, x),
(0, y)) = 3

4 and β((0, x), (0, y)) = 2
5 .

From (18), we obtain u = x2

1+2x ∈ [0, 13 ] and v = y2

1+2y ∈ [0, 13 ].
Therefore

α((0, x), (0, y))d((0, u), (0, v))

=
3

4
|u− v| = 3

4

∣∣∣∣ x2

1 + 2x
− y2

1 + 2y

∣∣∣∣
=

3

4

(
|x− y|(x+ y + 2xy)|

(1 + 2x)(1 + 2y)

)
≤ 7

20
|x− y| = β((0, x), (0, y))ψ(d((0, x), (0, y))).

For the other possible cases the inequality (1) clearly holds. Hence T is
an α−β−ψ−proximal contractive mapping.

We now show that T is an α−β−proximal admissible. For this purpose,
we choose Cα = 2

3 and Cβ = 1
2 . Clearly 0 ≤ Cβ

Cα
≤ 1.

Let (0, x), (0, y), (0, u) and (0, v) ∈ A with x ≥ y such that
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(a) α((0, x), (0, y)) = 3
4 ≥

2
3 = Cα,

d((0, u), T (0, x)) = d((0, v), T (0, y)) = d(A,B) = 1,
(b) β((0, x), (0, y)) = 2

5 ≤
1
2 = Cβ,

d((0, u), T (0, x)) = d((0, v), T (0, y)) = d(A,B) = 1.

From (a) and (b), we obtain u = x2

1+2x ∈ [0, 13 ] and v = y2

1+2y ∈ [0, 13 ].
Since x ≥ y, it follows that u ≥ v. Therefore α((0, u), (0, v)) = 3

4 ≥
2
3 =

Cα and β((0, u), (0, v)) = 2
5 ≤

1
2 = Cβ.

Hence T is an α−β−proximal admissible.
Now, we choose x0 = (0, 12), x1 = (0, 18), such that d((0, 18), T (0, 12)) = 1,

α((0, 12), (0, 18)) = 3
4 ≥

2
3 = Cα, β((0, 12), (0, 18)) = 2

5 ≤
1
2 = Cβ and x0 � x1.

Finally, if {xn} is a sequence in A such that α(xn, xn+1) ≥ Cα, β(xn, xn+1)
≤ Cβ for all n ∈ N and xn → x as n → ∞, then by definition of α and β,
xn ∈ [0, 1]. Thus x ∈ [0, 1]. i.e., α(xn, x) ≥ Cα and β(xn, x) ≤ Cβ . Further,
{xn} is a nondecreasing sequence, then xn � x for all n ∈ N.

Hence all the hypotheses of Theorem 3.3 are satisfied and (0, 0) is the
unique best proximity point of T .
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