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Best proximity points for generalized
α− η − ψ-Geraghty proximal contraction mappings

K.K.M. Sarma∗ and Yohannes Gebru

Abstract. In this paper, we introduce the new notion of generalized
α− η−ψ-Geraghty proximal contraction mappings and prove the exis-
tence of the best proximity point for such mappings in α− η complete
metric spaces. we give an example to illustrate our result. Our result
extends some of the results in the literature.

1. Introduction

The purpose of best proximity point theory is to address a problem of
finding the distance between two closed sets by using non-self mappings
from one set to the other. This problem is known as the proximity point
problem. Some mappings on a complete metric space have no fixed point,
that is, d(x, Tx) > 0 for all x ∈ X. In this case, it is natural to ask the
existence and uniqueness of the smallest value of d(x, Tx). This is the main
motivation of a best proximity point. This research subject has attracted
attention of a number of researchers (see [3, 4, 5, 7, 8, 10, 11]).

Let A and B be two non intersecting subsets of a metric space (X, d).
A best proximity point of the mapping T of A into B is a point u ∈ A
satisfying the equality d(u, Tu) = d(A,B), where

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
Let F be the family of all functions β : [0,∞)→ [0, 1) satisfying the condi-
tion:

lim
n→∞

β(tn) = 1 ⇒ lim
n→∞

tn = 0.

Recently, Chuadchawna et al. introduced a new class of contraction map-
pings called generalized α− η − ψ-Geraghty contraction for self mappings.
Let Ψ denote the class of all functions ψ : [0,∞)→ [0,∞) which satisfy the
following conditions:
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(a) ψ is nondecreasing;
(b) ψ is continuous;
(c) ψ(t) = 0 ⇐⇒ t = 0.

Definition 1.1. [6] Let (X, d) be a metric space and α, η : X×X → [0,∞).
A mapping T : X → X is said to be a generalized α − η − ψ-Geraghty
contraction type mapping if there exists β ∈ F such that α(x, y) ≥ η(x, y)
implies

ψ(d(Tx, Ty)) ≤ β(ψ(MT (x, y)))ψ(MT (x, y)),

where

MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
} and ψ ∈ Ψ.

Definition 1.2. [12] Let α, η : X ×X → [0,∞) be functions. A mapping
T : X → X is said to be α− orbital admissible with respect to η if for x ∈ X,

α(x, Tx) ≥ η(x, Tx) =⇒ α(Tx, T 2x) ≥ η(Tx, T 2x).

Definition 1.3. [12] Let α, η : X ×X → [0,∞) be functions. A mapping
T : X → X is said to be triangular α− orbital admissible with respect to η
if

(1) T is α− orbital admissible with respect to η.
(2) α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty) imply α(x, Ty) ≥ η(x, Ty).

Remark 1.1. [6] Every triangular α− admissible mapping is a triangular
α− orbital admissible mapping.

Definition 1.4. [9] Let (X, d) be a metric space and α, η : X×X → [0,∞).
Then X is said to be α− η− complete if every Cauchy sequence {xn} in X
with α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N converges in X.

Example 1.1. [9] Let X = (0,∞) and d(x, y) = |x−y| be a metric function
on X.
Let A be a closed subset of X. Define α, η : X ×X → [0,∞) by

α(x, y) =

{
(x+ y)2, if x, y ∈ A;
0, otherwise,

η(x, y) = 2xy.

Then (X, d) is a α− η complete metric space.

Definition 1.5. [9] Let (X, d) be a metric space and α, η : X×X → [0,∞).
A mapping T : X → X is said to be α− η− continuous mapping if for each
{xn} in X with xn → x as n → ∞ and α(xn, xn+1) ≥ η(xn, xn+1) for all
n ∈ N imply Txn → Tx as n→∞.

Example 1.2. [9] Let X = [0,∞) and d(x, y) = |x− y| be a metric on X.
Assume that T : X → X and α, η : X ×X → [0,∞) are defined by:

Tx =

{
x5, if x ∈ [0 1];
sinπx+ 2, if x ∈ (1, ∞).
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α(x, y) =

{
x2 + y2 + 1, if x, y ∈ [0, 1],

0, otherwise,

η(x, y) = x2.

Then T is α− η continuous map but not a continuous map.

In 2016, Chuadchawna et al. proved the following fixed point theorem for
a generalized α− η − ψ− Geraghty contraction type mapping.

Theorem 1.1. [6] Let (X, d) be a metric space. Assume that α, η : X×X →
[0,∞) be functions and T : X → X be mapping . Suppose that the following
conditions are satisfied:

i) (X, d) is an α− η−complete metric space;
ii) T is a generalized α− η − ψ− Geraghty contraction type mapping;
iii) T is a triangular α− orbital admissible mapping with respect to η;
iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);
v) T is an α− η− continuous mapping

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

We refer the reader to [6] for details.

In this paper, we extend the concept of generalized α− η−ψ− Geraghty
Contraction type mapping to the case of non self mapping. In particular we
study the existence of best proximity point for generalized α− η−ψ− Ger-
aghty proximal contraction mapping. Several consequences of our obtained
results are presented.

2. Preliminaries

Let A and B be two nonempty subsets of a metrics space (X, d). We use
the following notations:

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
A0 = {a ∈ A : d(a, b) = d(A,B) for some b ∈ B};
B0 = {b ∈ A : d(a, b) = d(A,B) for some a ∈ A}.

Definition 2.1. An element x∗ ∈ A is said to be a best proximity point of
non-self mapping T : A → B if it satisfies the condition that d(x∗, Tx∗) =
d(A,B).

We denote the set of all best proximity points of T by PT (A),

that is, PT (A) = {x ∈ A : d(x, Tx) = d(A,B)}.
Definition 2.2. [8] Let A and B be two nonempty subsets of a metric space
(X, d) and T : A → B be a mapping. we say that T has RJ− property if
for any sequence {xn} ⊂ A,

limn→∞ d(xn+1, Txn) = d(A,B)
limn→∞ xn = x

}
=⇒ x ∈ A0.
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We refer the reader to [8] for some more details.

Definition 2.3. [2] A mapping T : A→ B is said to be proximally increa-
sing on A if for all u1, u2, x1, x2 ∈ A,

x1 � x2
d(u1, Tx1) = d(A,B)
d(u2, Tx2) = d(A,B)

⇒ u1 � u2,

where A and B are nonempty subsets of partially ordered metric space
(X,�, d).

Lemma 2.1. [1] Suppose that (X, d) is a metric space. Let {xn} be a se-
quence in X such that d(xn, xn+1)→ 0 as n→∞. If {xn} is not a Cauchy
sequence, then there exist an ε > 0 and sequences of positive integers {mk}
and {nk} with mk > nk > k such that d(xmk

, xnk
) ≥ ε, d(xmk−1, xnk

) < ε
and

i) limk→∞ d(xmk−1, xnk+1) = ε;
ii) limk→∞ d(xmk

, xnk
) = ε;

iii) limk→∞ d(xmk−1, xnk
) = ε.

Remark 2.1. By using the hypotheses of Lemma 2.1 and triangular ine-
quality we can show that limk→∞ d(xmk+1, xnk+1) = ε.

We now introduce the concept of α− orbital proximal admissible with
respect to η and triangular α− orbital proximal admissible with respect η
in the following definitions.

Definition 2.4. Let T : A → B be a map and α, η : A × A → [0,∞) be
functions. we say that T is α− orbital proximal admissible with respect to
η if

α(x, u) ≥ η(x, u)
d(u, Tx) = d(A,B)
d(v, Tu) = d(A,B)

 =⇒ α(u, v) ≥ η(u, v), for all x, u, v ∈ A.

Definition 2.5. Let T : A → B be a map and α, η : A × A → [0,∞) be
functions. we say that T is triangular α− orbital proximal admissible with
respect to η if

(1) T is α− orbital proximal admissible with respect to η.

(2)
α(x, y) ≥ η(x, y)
α(y, u) ≥ η(y, u)
d(u, Ty) = d(A,B)

 =⇒ α(x, u) ≥ η(x, u), for all x, y, u ∈ A.

Example 2.1. Let X = [0,∞)× [0,∞) and d : X ×X → [0,∞) defined by

d((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2.
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Let A = {(0, x) : 0 ≤ x ≤ 1} , B = {(1, x) : 0 ≤ x ≤ 1
3}. Let α, η : A×A→

[0,∞) defined by

α((0, x), (0, y)) =

{
2, if x, y ≤ 1

3 ,

0, other wise,

η((0, x), (0, y) =

{
1
3 , if x, y ≤ 1

3 ,

2, other wise.

Clearly, d(A,B) = 1. We define a mapping T : A→ B by T (0, x) = (1, x3 ).
Then T is triangular α− orbital proximal admissible with respect to η.
For, α((0, x), (0, u)) ≥ η((0, x), (0, u)). we have x, u ≤ 1

3 . Again let
d((0, v), T (0, u) = d(A,B). Then d((0, v), (1, u3 ) = 1. Which implies v =
u
3 ≤

1
3 . Thus, we get u, v ≤

1
3 . This implies α((0, u), (0, v)) ≥ η((0, u), (0, v)).

Hence T is α− orbital proximal admissible mapping.
Let α((0, x), (0, y)) ≥ η((0, x), (0, y) and α((0, y), (0, u)) ≥ η((0, y), (0, u).

This implies x, y, u ≤ 1
3 . Consequently

(1) α((0, x), (0, u)) ≥ η((0, x), (0, u).

By (1) and since T is α− orbital admissible we can conclude that T is
triangular α− orbital proximal admissible.

Remark 2.2. Clearly, if A = B, T is triangular α− orbital proximal ad-
missible with respect to η implies T is triangular α− orbital admissible with
respect to η.

3. Main results

The following proposition is needed to establish the main result.

Proposition 3.1. Let T : A → B be a triangular α− oribital proximal ad-
missible mapping. Assume that {xn} is a sequence in A such that α(xn, xn+1)
≥ η(xn, xn+1) and d(xn+1, Txn) = d(A,B) for all n ∈ N. Then we have
α(xn, xm) ≥ η(xn, xm) for all m,n ∈ N with n < m.

Proof. Let m = n+ k. We wish to show for any k ≥ 1,

(2) α(xn, xn+k) ≥ η(xn, xn+k).

If k = 1, by hypothesis of the proposition, the statement (2) is true.
Suppose the statement (2) is true for some k = t ∈ N. i.e.,

α(xn, xn+t) ≥ η(xn, xn+t).

Now we want to prove (2) is true for k = t + 1, i.e, α(xn, xn+t+1) ≥
η(xn, xn+t+1). Now, we have

α(xn, xn+t) ≥ η(xn, xn+t);

α(xn+t, xn+t+1) ≥ η(xn+t, xn+t+1);
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d(xn+t+1, Txn+t) = d(A,B).

Since T is α− proximal admissible with respect to η we deduce α(xn, xn+t+1)
≥ η(xn, xn+t+1). This implies the statement (2) is true for k = t+1. By the
principle of Mathematical induction, the statement is true for any k ≥ 1.
Hence α(xn, xm) ≥ η(xn, xm) for n < m. �

We now introduce the following definition.

Definition 3.1. Let A and B be two nonempty subsets of a metric space
(X, d) and α, η : X × X → [0,∞) be functions. A mapping T : A → B is
said to be a generalized α − η − ψ-Geraghty proximal contraction if there
exists β ∈ F such that for all x, y, u, v ∈ A,

α(x, y) ≥ η(x, y)
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒

ψ(d(u, v)) ≤ β(ψ(MT (x, y, u, v)))ψ(MT (x, y, u, v)),

where

MT (x, y, u, v) = max{d(x, y), d(x, u), d(y, v),
d(x, v) + d(y, u)

2
}

for any x, y, u, v ∈ A, and ψ ∈ Ψ.

Now we prove the following theorem, which extends, improves and gene-
ralizes some results in the literature on best proximity point theorems.

Theorem 3.1. Let A and B be two nonempty subsets of a metric space
(X, d).
Let α, η : A × A → [0,∞) be functions and T : A → B be a mapping.
Suppose the following conditions are satisfied:

i) (X, d) is an α− η-complete metric space;
ii) T is a generalized α − η − ψ−Geraghty proximal conntraction type

mapping.
iii) T (A0) ⊆ B0 and T is a triangular orbital α− proximal admissible

with respect to η.
iv) T is α− η continuous mapping.
v) there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥

η(x0, x1). Then there exists x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B).

Moreover if α(x, y) ≥ η(x, y) for all x, y ∈ PT (A), then x∗ is the unique
proximity point of T .

Proof. : Let x1, x0 ∈ A be such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥
η(x0, x1). Since x1 ∈ A0 and T (A0) ⊆ B0 there exist x2 ∈ A0 such that
d(x2, Tx1) = d(A,B). Now we have

α(x0, y1) ≥ η(x0, x1);

d(x1, Tx0) = d(A,B);
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d(x2, Tx1) = d(A,B).

Since T is α− proximal admissible with respect to η, α(x2, x1) ≥ η(x2, x1),
we have d(x2, Tx1) = d(A,B) and α(x2, x1) ≥ η(x2, x1).
Continuing this process by induction, we construct a sequence {xn} ⊆ A0

such that

(3)
d(xn+1, Txn) = d(A,B),

α(xn, xn+1) ≥ η(xn, xn+1), for all n ∈ N.
Therefore for any n ∈ N, we have

α(xn−1, xn) ≥ η(xn−1, xn);

d(xn, Txn−1) = d(A,B);

d(xn+1, Txn) = d(A,B).

Since T is a generalized α − η − ψ-Geraghty proximal contraction type
mapping there exists β ∈ F such that

ψ(d(xn, xn+1)) ≤ β(ψ(MT (xn−1, xn, xn, xn+1)))ψ(MT (xn−1, xn, xn, xn+1));

< ψ(MT (xn−1, xn, xn, xn+1)),(4)

where MT (xn−1, xn, xn, xn+1) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
d(xn−1,xn+1)+d(xn,xn)

2 }, for any n ∈ N.

From triangular inequality we have

d(xn−1, xn+1) ≤ d(xn−1, xn) + d(xn, xn+1).

Thus
d(xn−1, xn+1)

2
≤ max{d(xn−1, xn), d(xn, xn+1)}.

Therefore MT (xn−1, xn, xn, xn+1) = max{d(xn−1, xn), d(xn, xn+1)}, for
any n ∈ N.

If MT (xn−1, xn, xn, xn+1) = d(xn, xn+1), applying (4), we deduce that

ψ(d(xn, xn+1)) < ψ(MT (xn−1, xn, xn, xn+1)

= ψ(d(xn, xn+1)),(5)

which is a contradiction. Thus, we conclude that

(6) MT (xn−1, xn, xn, xn+1) = d(xn−1, xn)foralln ∈ N.
Now from (4) and (6), for all n ∈ N we get

ψ(d(xn, xn+1)) < ψ(d(xn−1, xn)).

From the nondecreasing property of ψ, for all n ∈ N implies that

d(xn, xn+1) < d(xn−1, xn).

Hence the sequence {d(xn, xn+1)} is nonnegative and nondecreasing. Thus
there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. Suppose that there
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exists n0 ∈ N such that d(xn0 , xn0+1) = 0. This implies that xn0 = xn0+1.
Applying (3) we deduce that d(xn0 , Txn0) = d(xn0+1, Txn0) = d(A,B). This
is the desired result. Now let for any n ∈ N, d(xn, xn+1) 6= 0. In the sequel,
we prove r = 0. Contrary let us assume that r > 0.

Then from (4) and (6) we have

0 ≤ ψ(d(xn, xn+1))

ψ(d(xn−1, xn))
≤ β(ψ(d(xn−1, xn))) < 1.

Taking limit as n→∞ in the above inequality we obtain

lim
n→∞

β(ψ(d(xn−1, xn))) = 1.

Since β ∈ F we get limn→∞ ψ(d(xn−1, xn)) = 0. Again from the properties
of ψ, we deduce limn→∞ d(xn−1, xn) = 0. This implies that r = 0, which
is a contradiction. Therefore limn→∞ d(xn, xn+1) = 0. Now we shall prove
that {xn} is a cauchy sequence in (X, d).

Suppose on the contrary {xn} is not Cauchy. Then by Lemma 2.1 , there
exist an ε > 0 for which we can find sequences of positive integers {mk} and
{nk} with mk > nk > k such that d(xmk

, xnk
) ≥ ε, d(xmk−1, xnk

) < ε and
the identities (i)-(iii) of Lemma 2.1 and Remark 2.1 are satisfied. Since

α(xnk
, xmk

) ≥ η(xnk
, xmk

);

d(xnk+1, Txnk
) = d(A,B);

d(xmk+1, Txmk
) = d(A,B).

Since T is α− η−ψ- Geraghty proximal contraction type mapping, we have

(7)

ψ(d(xnk+1, xmk+1) ≤ β(ψ(MT (xnk
, xmk

, xnk+1, xmk+1)))·
· ψ(MT (xnk

, xmk
, xnk+1, xmk+1))

< ψ(MT (xnk
, xmk

, xnk+1, xmk+1)),

where MT (xnk
, xmk

, xnk+1, xmk+1) = max{d(xnk
, xmk

), d(xnk
, xmk+1),

d(xmk
, xmk+1),

d(xnk
,xmk+1)+d(xmk

,xnk+1)

2 }.
Therefore

(8) lim
k→∞

MT (xnk
, xmk

, xnk+1, xmk+1) = ε.

By (7) and (8), we have

1 =
limk→∞ ψ(d(xnk+1, xmk+1))

limk→∞ ψ(MT (xnk
, xmk

, xnk+1, xmk+1))

≤ lim
k→∞

β(ψ(MT (xnk
, xmk

, xnk+1, xmk+1)))

≤ 1,

which implies limk→∞ β(ψ(MT (xnk
, xmk

, xnk+1, xmk+1))) = 1. Consequently
we get limk→∞MT (xnk

, xmk
, xnk+1, xmk+1) = 0. Hence ε = 0, which is a

contradiction. Thus {xn} is a Cauchy sequence in X.



K.K.M. Sarma and Yohannes Gebru 93

Since (X, d) is α−η complete metric space and α(xn, xn+1) ≥ η(xn, xn+1)
for all n ∈ N, there exists x∗ ∈ A such that limn→∞ xn = x∗. Since T
is an α − η− continuous, we have limn→∞ Txn = Tx∗ and d(A,B) =
d(xn+1, Txn) → d(x∗, Tx∗). Therefore there exists x∗ ∈ A0 such that
d(x∗, Tx∗) = d(A,B). Hence x∗ is best proximity point for the map T .
For uniqueness, let α(x, y) ≥ η(x, y) for all x, y ∈ PT (A).
Suppose that x1 and x2 are two best proximity points of T with x1 6= x2.
Therefore

d(x1, Tx1) = d(A,B);

d(x2, Tx2) = d(A,B).

Also, we have

MT (x1, x2, x1, x2) = max
{
d(x1, x2), d(x1, x1), d(x2, x2),

d(x1, x2) + d(x1, x2)

2

}
= d(x1, x2).

Since α(x1, x2) ≥ η(x1, x2) and T is a generalized α − η − ψ-Geraghty
proximal contraction type mapping, we get

(9) ψ(d(x1, x2)) ≤ β(ψ(d(x1, x2)))ψ(d(x1, x2)) < ψ(d(x1, x2)),

which is a contradiction. Hence the best proximity point is unique. �

We provide an example which supports our theorem.

Example 3.1. Let X = R2 and d : X ×X → [0,∞) be defined by

d((x, y), (x
′
, y
′
) =

√
(x− x′)2 + (y − y′)2.

Let

A = {(x, 0) : 0 ≤ x <∞},
B = {(x, 1) : 0 ≤ x <∞}.

Since X = R2 is a complete metric space it is α − η-complete metric space
and T is also α− η− continuous map.

Let T : A→ B be defined by T (x, 0) = ( 2x
x+1 , 1). Let α, η : A×A→ [0,∞)

defined by

α((x, 0), (y, 0)) =

{
3, if x, y ∈ [1,∞),

1 other wise.

η((x, 0), (y, 0) =

{
2, if x, y ∈ [1,∞),

3, other wise.

Let ψ : [0,∞)→ [0,∞) be a function defined by ψ(t) = t
2 . Then ψ ∈ Ψ
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Clearly d(A,B) = 1, A = A0 and B = B0. Thus T (A0) ⊆ B0. To show T
is Triangular orbital admissible, let α((x, 0), (u, 0)) ≥ η((x, 0), (u, 0)). This
implies x, u ≥ 1. Moreover, d((u, 0), ( 2x

x+1 , 1)) = 1 and d((v, 0), ( 2u
u+1 , 1)) = 1

imply that u = 2x
x+1 and v = 2u

u+1 . For x ≥ 1 we observe u = 2x
x+1 ≥ 1

and similarly v = 2u
u+1 ≥ 1. Now u, v ≥ 1 imply that α((u, 0), (v, 0)) ≥

η((u, 0), (v, 0)). Hence T is α-orbital proximal admissible with respect to
η. Furthermore if α((x, 0), (y, 0)) ≥ η((x, 0), (y, 0)) then x, y ≥ 1 and
α((0, y), (0, u)) ≥ η((0, y), (0, u)) imply u ≥ 1. Consequently α((x, 0), (u, 0))
≥ η((x, 0), (u, 0)). Therefore T is triangular α− orbital proximal admissible.

Now we wish to show that T is a generalized α−η−ψ-Geraghty proximal
contraction. i.e, ∃β ∈ F , for each (x, 0), (y, 0), (u, 0), (v, 0) ∈ A

α((x, 0), (y, 0)) ≥ η((x, 0), (y, 0))
d((u, 0), T (x, 0)) = d(A,B)
d((v, 0), T (y, 0)) = d(A,B)

 =⇒

ψ(d((u, 0), (v, 0))) ≤ β(ψ(MT ((x, 0), (y, 0), (u, 0), (v, 0))))·
· ψ(MT ((x, 0), (y, 0), (u, 0), (v, 0))).

Let α((x, 0), (y, 0) ≥ η((x, 0), (y, 0)). Then x, y ∈ [1,∞). Furthermore
d((u, 0), T (x, 0)) = d(A,B) and d((v, 0), T (y, 0)) = d(A,B) imply that u =
2x
x+1 and v = 2y

y+1 .
Now

d((u, 0), (v, 0)) = d((
2x

x+ 1
, 0), (

2y

y + 1
, 0))

= | 2x

x+ 1
− 2y

y + 1
|

= 2(
|x− y|

(x+ 1)(y + 1)
).

For x, y ≥ 1 we can easily observe that |x− y|+ 2 ≤ (x+ 1)(y+ 1). Thus

d((u, 0), (v, 0))

2
≤ |x− y|
|x− y|+ 2

(10)

Since d((x, 0), (y, 0)) = |x − y| ≤ MT ((x, 0), (y, 0), (u, 0), (v, 0)) and the
map γ(t) = t

t+2 is non decreasing from (10) we conclude

(11)

d((u, 0), (v, 0))

2
≤ MT ((x, 0), (y, 0), (u, 0), (v, 0))

MT ((x, 0), (y, 0), (u, 0), (v, 0)) + 2

=
1

MT ((x,0),(y,0),(u,0),(v,0))
2 + 1

·

· MT ((x, 0), (y, 0), (u, 0), (v, 0))

2
.
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we take β : [0,∞)→ [0, 1) defined by

β(t) =

{
1

t+1 , if t 6= 0,

0, if t = 0.

Thus, from (11) we deduce that there exists β ∈ F such that

ψ(d((u, 0), (v, 0)) ≤ β(ψ(MT ((x, 0), (y, 0), (u, 0), (v, 0))))·
· ψ(MT ((x, 0), (y, 0), (u, 0), (v, 0))).

Hence T is a generalized α − η − ψ-Geraghty proximal contraction type
mapping.

Since all conditions of Theorem 3.1 are satisfied except uniqueness, T has
at least one best proximity point. Note that x∗ = (0, 0) and y∗ = (1, 0)
are best proximity points of T and we can easily see that α((0, 0), (1, 0) <
η((0, 0), (1, 0)).

In the following theorem we replace the continuity of T by some conditi-
ons.

Theorem 3.2. Let A and B be two nonempty and closed subsets of a metric
space (X, d).
Let α, η : A × A → [0,∞) be functions and T : A → B be a mapping.
Suppose the following conditions are satisfied:

i) (X, d) is an α− η-complete metric space;
ii) T is a generalized α − η − ψ− Geraghty proximal contraction type

mapping.
iii) T (A0) ⊆ B0 and T is a triangular orbital α− proximal admissible

with respect to η.
iv) T has RJ− property
v) If {xn} is a sequence in A such that α(xn, xn+1) ≥ η(xn, xn+1) for

all n ∈ N and xn → x ∈ A as n→∞, then there exists a subsequence
{xnk

} of {xn} such that α(xnk
, x) ≥ η(xnk

, x) for all k ∈ N
vi) there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥

η(x0, x1). Then there exists x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B).
Moreover if α(x, y) ≥ η(x, y) for all x, y ∈ PT (A), then x∗ is the unique

proximity point of T .

Proof. Following the proof of Theorem 3.1, there exists a Cauchy sequence
{xn} ⊆ A such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N converging to
x∗ ∈ A. Also RJ− property of T implies that x∗ ∈ A0. Since T (A0) ⊆ B0,
there exists w ∈ A0 such that d(w, Tx∗) = d(A,B). We need to prove
x∗ = w. On the contrary let us assume that w 6= x∗. By (v) there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ η(xnk

, x) for all k ∈ N.
For any k ∈ N, we have d(xnk+1, Txnk

) = d(A,B) and d(w, Tx∗) = d(A,B).
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Since T is a generalized α − η − ψ− Geraghty proximal contraction type
mapping, for any k ∈ N, we have

ψ(d(xnk+1, w)) ≤ β(ψ(MT (xnk
, x∗, xnk+1, w)))ψ(MT (xnk

, x∗, xnk+1, w));

< ψ(MT (xnk
, x∗, xnk+1, w)).(12)

Also for any k ∈ N, we have

MT (xnk
, x∗, xnk+1, w)

= max{d(xnk
, x∗), d(xnk

, xnk+1), d(x∗, w),
d(xnk

, w) + d(x∗, xnk+1

2
}.

Case I:
Suppose there exist a subsequence {xnki

} ⊂ {xnk
} ⊂ {xn} such that

MT (xnki
, x∗, xnki

+1, w) = d(x∗, w) for all i ∈ N.
Thus for any i ∈ N, we have

ψ(d(xnki
+1, w)) ≤ β(ψ(d(x∗, w))))ψ(d(x∗, w)).(13)

Taking limit in (13) as i → ∞ implies that β(ψ(d(x∗, w))) = 1. Which
implies that d(x∗, w) = 0, which is a contradiction.

Case II:
Suppose there exist a subsequence {xnki

} ⊂ {xnk
} ⊂ {xn} such that

MT (xnki
, x∗, xnki

+1, w) =
d(xnki

, w) + d(x∗, xnki
+1)

2
for all i ∈ N.

Letting i→∞ we get

lim
i→∞

MT (xnki
, x∗, xnki

+1, w) =
d(x∗, w)

2
.

Thus, we have

ψ(d(x∗, w)) ≤ β(ψ(
d(x∗, w)

2
)))(14)

< ψ(
d(x∗, w)

2
).(15)

Since ψ is non-decreasing, it follows that, d(x∗, w) < d(x∗,w)
2 . This is a con-

tradiction.

Case III:
Suppose that there exists t ∈ N such that
(16)
MT (xnki

, x∗, xnki
+1, w) = max{d(xnki

, x∗), d(xnki
, xnki

+1)} for all i ≥ t.

From (7) and above result, and by taking the limit as i→∞, we deduce
that
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d(x∗, w) = 0. This is a contradiction. Therefore x∗ = w, which implies that

d(x∗, Tx∗) = d(w, Tx∗) = d(A,B).

Hence x∗ is the best proximity point of T . �

If in Theorem 3.1 or Theorem 3.2 we take η(x, y) = 1 and ψ(t) = t, then
we have the following corollary.

Corollary 3.1. Let A and B be two nonempty subsets of a metric space
(X, d). Let
α : A× A → [0,∞) be function and T : A → B be a mapping. Suppose the
following conditions are satisfied:

i) T is a generalized α− Geraghty proximal contraction type mapping,
that is

α(x, y) ≥ 1
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒ d(u, v) ≤ β(MT (x, y, u, v))MT (x, y, u, v),

where

MT (x, y, u, v) = max{d(x, y), d(x, u), d(y, v),
d(x, v) + d(y, u)

2
},

for any x, y, u, v ∈ A.
ii) The conditions (i), (iii)-(v) of Theorem 3.1 or 3.2 are satisfied.

Then there exists x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B). Moreover if
α(x, y) ≥ 1 for all x, y ∈ PT (A), then x∗ is the unique proximity point of T .

4. Consequences

We start this section with the following definition.

Definition 4.1. Let A and B be two nonempty subsets of a metric space
(X, d) and α, η : X × X → [0,∞) be functions. A mapping T : A → B is
said to be a α− η − ψ-Geraghty proximal contraction if there exists β ∈ F
such that for all x, y, u, v ∈ A,

α(x, y) ≥ η(x, y)
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒ ψ(d(u, v)) ≤ β(ψ(d(x, y)))ψ(d(x, y)),

where ψ ∈ Ψ.

Theorem 4.1. Let A and B be two nonempty subsets of a metric space
(X, d).
Let α, η : A × A → [0,∞) be functions and T : A → B be a mapping.
Suppose the following conditions are satisfied:

i) (X, d) is an α− η-complete metric space;
ii) T is a generalized α − η − ψ− Geraghty proximal contraction type

mapping.
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iii) T (A0) ⊆ B0 and T is a triangular orbital α− proximal admissible
with respect to η.

iv) T is α− η continuous mapping.
v) there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥

η(x0, x1). Then there exists x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B).

Moreover if α(x, y) ≥ η(x, y) for all x, y ∈ PT (A), then x∗ is the unique
proximity point of T .

Proof. Let x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥
η(x0, x1). As in the proof of Theorem 3.1 we construct a sequence {xn}
in A0 such that

(17) d(xn+1, Txn) = d(A,B) and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N,
and converging to some x∗ ∈ A0. Since T is α − η− continuous mapping,
we have

d(A,B) = d(xn+1, Txn)→ d(x∗, Tx∗) as n→∞.
Hence T has best proximity point.

Uniqueness of this best proximity point is proved as in Theorem 3.1. �

Theorem 4.2. Let A and B be two nonempty subsets of a metric space
(X, d).
Let α, η : A × A → [0,∞) be functions and T : A → B be a mapping.
Suppose the following conditions are satisfied:

i) (X, d) is an α− η-complete metric space;
ii) T is an α− η − ψ− Geraghty proximal conntraction type mapping.
iii) T (A0) ⊆ B0 and T is a triangular orbital α− proximal admissible

with respect to η.
iv) T has RJ− property
v) If {xn} is a sequence in A such that α(xn, xn+1) ≥ η(xn, xn+1) for

all n ∈ N and xn → x ∈ A as n→∞, then there exists a subsequence
{xnk

} of {xn} such that α(xnk
, x) ≥ η(xnk

, x) for all k ∈ N
vi) there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥

η(x0, x1). Then there exists x∗ ∈ A0 such that d(x∗, Tx∗) = d(A,B)

Moreover if α(x, y) ≥ η(x, y) for all x, y ∈ PT (A), then x∗ is the unique
proximity point of T .

Proof. Let x0, x1 ∈ A such that d(x1, Tx0) = d(A,B) and α(x0, x1) ≥
η(x0, x1). As in the proof of Theorem 3.1 we construct a sequence {xn}
in A0 such that

(18) d(xn+1, Txn) = d(A,B) and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N,
and converging to some x∗ ∈ A0. By(v) there exists a subsequence {xnk

}
of {xn} such that α(xnk

, x) ≥ η(xnk
, x) for all k ∈ N. Further more RJ−

property of T implies that x∗ ∈ A0. Since T (A0) ⊆ B0, there exists w ∈ A0

such that d(w, Tx∗) = d(A,B). We need to prove x∗ = w. On the contrary
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let us assume that w 6= x∗. For any k ∈ N, we have d(xnk+1, Txnk
) =

d(A,B). Now for all k ∈ N we have

α(xnk
, x∗) ≥ η(xnk

, x∗)

d(xnk+1, Txnk
) = d(A,B)

d(w, Tx∗) = d(A,B)


Since T is α − η − ψ-Geraghty proximal contraction there exists β ∈ F

such that

ψ(d(xnk+1, w)) ≤ β(ψ(d(xnk,x∗)))

< ψ(d(xnk
, x∗))(19)

Letting k → ∞ in (19) we get ψ(d(x∗, w)) ≤ 0. Thus ψ(d(x∗, w)) =
0. This implies d(x∗, w) = 0. This is a contradiction. Hence x∗ = w.
Uniqueness of x∗ is proved as in the Theorem 3.1. �

Corollary 4.1. Let (X,�) be a partial ordered set and suppose there exists
a metric d such that (X,�, d) complete. Let A,B be two nonempty closed
subsets of X. Suppose T : A→ B be a mapping. Assume that the following
conditions are satisfied:

i) there exists β ∈ F such that for all x, y, u, v ∈ A,
x � y
d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

 =⇒ ψ(d(u, v)) ≤ β(ψ(d(x, y)))ψ(d(x, y)),

where ψ ∈ Ψ.
ii) there exist x0, x1 ∈ A0 such that d(x1, Tx0) = d(A,B) and x0 � x1.
iii) T is proximal nondecreasing and T (A0) ⊆ B0.
iv) either T is continuous or T has RJ− property and if {xn} is a non

decreasing sequence with xn → x as n → ∞, there exists a sub
sequence {xnk

} of {xn} such that xnk
� x for all k ∈ N.

Then there exists x∗ ∈ A0 such that d(x0, Tx0) = d(A,B).
Moreover, if x and y are comparable for all x, y ∈ PT (A), then x∗ is the
unique proximity point of T .

Proof. Define functions α, η : A×A→ [0,∞) by

α(x, y) =

{
2, if x � y,
3
4 , otherwise.

η(x, y) =

{
1, if x � y,
2, otherwise.

Let x, y, u, v ∈ A with α(x, y) ≥ η(x, y), d(u, Tx) = d(A,B) and d(v, Ty)
= d(A,B). This implies x � y. By (i) ψ(d(u, v)) ≤ β(ψ(d(x, y)))ψ(d(x, y)).
This implies that T is an α− η − ψ− Geraghty proximal contraction.
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Since X is complete space X is α − η− complete space. By (ii) and
definition of α, η there exist x0, x1 ∈ A0 such that d(x1, Tx0) = d(A,B) and
α(x0, x1) ≥ η(x0, x1).

Let α(x, u) ≥ η(x, u), d(u, Tx) = d(A,B) and d(v, Tu) = d(A,B). This
implies x � u. Since T is proximal nondecreasing we get that u � v. Then
α(u, v) ≥ η(u, v). Furthermore, let α(x, y) ≥ η(x, y), α(y, u) ≥ η(y, u) and
d(u, Ty) = d(A,B). This implies that x � y and y � u. consequently x � u.
Thus α(x, u) ≥ η(x, u). Therefore T is triangular α−orbital proximal ad-
missible. Thus all conditions of either Theorem 4.1 or Theorem 4.2 satisfied.
Hence T has best proximity point.
Moreover x and y are comparable for all x, y ∈ PT (A) imply that either
α(x, y) ≥ η(x, y) or α(y, x) ≥ η(y, x). Thus similar to Theorem 3.1 we get
that x∗ is unique. �

5. Application in Fixed point theory

As an application of our results, we prove this fixed point theorem which
is proved by Chuadchawna et al. [6] as follows.

Theorem 5.1. Let (X, d) be a metric space. Assume that α, η : X ×X →
[0,∞) be functions and T : X → X be mapping . Suppose that the following
conditions are satisfied:

i) (X, d) is an α− η−complete metric space;
ii) T is a generalized α− η − ψ− Geraghty contraction type mapping;
iii) T is a triangular α− orbital admissible mapping with respect to η;
iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);
v) T is an α− η− continuous mapping

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. Let A = B = X in Theorem 3.1. First we prove that T is a generali-
zed α− η − ψ-Geraghty proximal contraction type map. Let x, y, u, v ∈ X,
satisfying the following conditions α(x, y) ≥ η(x, y),

d(u, Tx) = d(A,B),
d(v, Ty) = d(A,B).

Since d(A,B) = 0, we have u = Tx and v = Ty. Since T is generalized
α− η − ψ-Geraghty Contraction mapping, which implies that

ψ(d(u, v)) = ψ(d(Tx, Ty)) ≤ β(ψ(MT (x, y)))ψ(MT (x, y))

where

MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}

= max{d(x, y), d(x, u), d(y, v),
d(x, v) + d(y, u)

2
}
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= MT (x, y, u, v).

Therefore

ψ(d(u, v)) ≤ β(ψ(MT (x, y, u, v)))ψ(MT (x, y, u, v)),

which implies that T is a generalized α−η−ψ-Geraghty proximal contraction
type map.

Let

 α(x, u) ≥ η(x, u),
d(u, Tx) = d(A,B),
d(v, Tu) = d(A,B).

Since d(A,B) = 0, we have u = Tx, v = Tu = T 2x. Thus α(x, Tx) ≥
η(x, Tx). Orbital admissible property of T implies that

α(u, v) = α(Tx, T 2x) ≥ η(Tx, T 2x) = η(u, v).

Therefore T is α-orbtal proximal admissible with respect to η. Moreover,
let  α(x, y) ≥ η(x, y),

α(y, u) ≥ η(y, u),
d(u, Ty) = d(A,B) = 0.

This implies u = Ty . T is a triangular α−orbital admissible property
implies that α(x, u) = α(x, Ty) ≥ η(x, Ty) = η(x, u). Therefore T is a
triangular α− orbital admissible with respect to η. Applying Condition (iv)
there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0). Let x1 = Tx0, thus
α(x0, x1) ≥ η(x0, Tx0) and d(x1, Tx0) = d(Tx0, Tx0) = d(A,B) = 0.

All conditions of Theorem 3.1 are satisfied. Consequently there exists
x∗ ∈ X such that d(x∗, Tx∗) = 0. This implies x∗ = Tx∗. �

If η(x, y) = 1 for all x, y ∈ A = X, and in view of Remark 1.1, we get the
following corollary proved by Karapinar [10].

Corollary 5.1. Let (X, d) be a complete metric space. Assume that α :
X × X → [0,∞) be functions and T : X → X be mapping . Suppose that
the following conditions are satisfied:

i) T is a generalized α− ψ− Geraghty contraction type mapping;
ii) T is a triangular α− admissible mapping;
iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
iv) T is continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
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