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Extended biorthogonal matrix polynomials

Ayman Shehata

Abstract. The pair of biorthogonal matrix polynomials for commuta-
tive matrices were first introduced by Varma and Taşdelen in [22]. The
main aim of this paper is to extend the properties of the pair of biort-
hogonal matrix polynomials of Varma and Tasdelen and certain gene-
rating matrix functions, finite series, some matrix recurrence relations,
several important properties of matrix differential recurrence relations,
biorthogonality relations and matrix differential equation for the pair
of biorthogonal matrix polynomials J

(A,B)
n (x; k) and K

(A,B)
n (x; k) are

discussed. For the matrix polynomials J
(A,B)
n (x; k), various families of

bilinear and bilateral generating matrix functions are constructed in the
sequel.

1. Introduction

There has become an increased interest important in the extension of
the notion of the theory of orthogonal matrix polynomials and many of
their properties in the last two decades. In [1–8, 10, 14, 16–21], Chebyshev,
Konhauser, Hermite and Jacobi matrix polynomials were studied and several
properties of our results were given for these families of matrix polynomials
for matrices in CN×N . In [22], Varma and Taşdelen introduced and studied a
pair of biorthogonal matrix polynomials J (A,B)

n (x; k) and K(A,B)
n (x; k) where

all eigenvalues µ of the matrices A and B with commutative matrices satisfy
the condition Re(µ) > −1.

Motivated by the work of Varma and Taşdelen [22], on biorthogonal
matrix polynomials the present paper aims at an extension of the various
properties of the pair of biorthogonal matrix polynomials J (A,B)

n (x; k) and
K

(A,B)
n (x; k) as have been already outlined in the abstract of this paper.

This paper is constructed as follows. In section 2, some matrix recurrence
relations, several important properties of matrix differential recurrence re-
lations, matrix differential equation and more generating matrix functions
are given for these biorthogonal matrix polynomials J (A,B)

n (x; k) given by
Varma and Taşdelen. The relations between Konhauser and biorthogonal
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matrix polynomials in this study are also indicated, and the biorthogona-
lity of the matrix polynomials J (A,B)

n (x; k) of the first kind over the interval
(−1, 1) with respect to a weight matrix function is shown. In section 3, the
biorthogonality of the biorthogonal matrix polynomials K(A,B)

n (x; k) of the
second kind over the interval (−1, 1) with respect to a weight matrix function
(1−x)A(1+x)B is given, several families of generating matrix functions and
finite summation formula for these matrix polynomials K(A,B)

n (x; k) of the
second kind are shown. Various families of bilinear and bilateral generating
matrix functions are derived for the matrix polynomials J (A,B)

n (x; k) of the
first kind. They obtained results are given as application of given in section
4.

1.1. Preliminaries. For the sake of clarity in the subsection, we recall be-
low definitions and some properties of matrix functional calculus, which will
be used throughout this paper. All through this paper, its spectrum is de-
noted by σ(A) where is the set of all eigenvalues of a matrix A in CN×N .
The two-norm of a matrix A is described by

‖A‖ = sup
x 6=0

‖Ax‖2
‖x‖2

where ||x||2 = (xHx)
1
2 denotes the well-known Euclidean norm of a vector

x in CN . The identity and null matrix in CN×N will be denoted I and 0,
respectively.

Theorem 1.1. For functions U(z) and V (z) in an open set Ω are holomor-
phic functions of the complex plane. The matrices P and Q in CN×N are
commutative with σ(P ) ⊂ Ω and σ(Q) ⊂ Ω, then from the matrix functional
calculus [9], we have

U(P )V (Q) = V (Q)U(P ) and PQ = QP.

Lemma 1.1. If A(k, n) is a matrix in CN×N for k, n ∈ N0, the following
relations are satisfied (see, Defez and Jódar [7])

(1.1)
∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k)

and

(1.2)
∞∑
n=0

n∑
k=0

A(k, n) =
∞∑
n=0

∞∑
k=0

A(k, n+ k).

Definition 1.1 ([11]). For a positive stable matrix P in CN×N , the Gamma
matrix function Γ(P ) is described by

Γ(P ) =

∫ ∞
0

e−ttP−Idt; tP−I = exp

(
(P − I) ln t

)
.(1.3)
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Definition 1.2. For A in CN×N such that σ(A) does not contain 0 or a
negative integer (σ(A) ∩ Z− = ∅ where ∅ is an empty set), the matrix form
of the Pochhammer symbol is given by

(A)n = A(A+ I) . . . (A+ (n− 1)I)

= Γ(A+ nI)Γ−1(A); n ∈ N; (A)0 = I,
(1.4)

where Γ(A) is an invertible matrix.

Theorem 1.2 ([15]). For p and q are finite positive integers and if Ai ;
1 ≤ i ≤ p are matrices in CN×N , and Bj ; 1 ≤ j ≤ q are invertible matrices
in CN×N , and all matrices are commutative. The generalized hypergeometric
matrix function satisfies the following matrix differential equation

(1.5)
[
θ

q∏
j=1

(θ I +Bj − I)− z
p∏
i=1

(θ I +Ai)

]
pFq = 0.

Definition 1.3 ([11]). For positive stable matrices P and Q in CN×N with
commutative matrices, then Beta matrix function B(P,Q) is given as

B(P,Q) =

∫ 1

0
tP−I(1− t)Q−Idt.(1.6)

Lemma 1.2 ([8]). Let P and Q be matrices in CN×N with commutative
matrices such that

Re(z) > −1 for all z ∈ σ(P ),

Re(w) > −1, for all w ∈ σ(Q).
(1.7)

Using (1.6), one can obtain∫ 1

−1
(1 + x)P−I(1− x)Q−Idx = 2P+Q−IB(P,Q).(1.8)

Fact 1.1. For an arbitrary matrix A ∈ CN×N ,

Dk

[
tA+mI

]
= (A+ I)m(A+ I)m−kt

A+(m−k)I ; k = 0, 1, 2, . . . , .(1.9)

Definition 1.4. The pair of the Konhauser matrix polynomials is given in
[21] as follows:
(1.10)

Z(A,λ)
n (x; k) = Γ(A+ (kn+ 1)I)

n∑
m=0

(−1)m(λ x)mk

(n−m)!m!
Γ−1(A+ (km+ 1)I)

and

(1.11) Y (A,λ)
n (x; k) =

1

n!

n∑
r=0

r∑
s=0

(−1)s(λx)r

s!(r − s)!

(
1

k
((s+ 1)I +A)

)
n

,

where Re(µ) > −1 ∀ µ ∈ σ(A) for A ∈ CN×N and λ ∈ C with Re(λ) > 0,
k ∈ N = Z+.
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Definition 1.5 ([8]). Let A and B be commutative matrices in CN×N sa-
tisfying the condition

Re(z) > −1, ∀ z ∈ σ(A) and Re(w) > −1, ∀ w ∈ σ(B).(1.12)

For n ≥ 0, the nthJacobi matrix polynomials P (A,B)
n (x) is defined by the

hypergeometric matrix function

(1.13) P (A,B)
n (x) =

(B + I)n
n!

2F1

(
A+B + (n+ 1)I,−nI;B + I;

1− x
2

)
.

Definition 1.6. In [22], Varma and Taşdelen defined the pair of the biort-
hogonal matrix polynomials suggested by Jacobi matrix polynomials have
the explicit representation as follows:

(1.14)
J (A,B)
n (x; k) =Γ(A+ (kn+ 1)I)

n∑
r=0

(−1)r

(n− r)!r!
(A+B + (n+ 1)I)kr

× Γ−1(A+ (kr + 1)I)

(
1

2
(1− x)

)kr
and
(1.15)

K(A,B)
n (x; k) =

1

n!
Γ(B + (n+ 1)I)

n∑
r=0

r∑
s=0

(−1)s

s!(r − s)!

(
1

k
((s+ 1)I +A)

)
n

× Γ−1(B + (n− r + 1)I)

(
1

2
(1− x)

)r(1

2
(x+ 1)

)n−r
where A and B are commutative matrices in CN×N satisfying the conditions

(1.16)
Re(µ) > −1 for all eigenvalues µ ∈ σ(A) and

Re(ν) > −1 for all eigenvalues ν ∈ σ(B)

and k ∈ N = Z+.

Remark 1.1. If k = 1, (1.14) and (1.15) reduced to Jacobi matrix polyno-
mials (1.13).

Theorem 1.3 ([22]). The matrix polynomials J (A,B)
n (x; k) given by (1.14)

have the following generating matrix functions

(1.17)

∞∑
n=0

(A+B + I)n[(A+ I)kn]−1J (A,B)
n (x; k)tn = (1− t)−A−B−I

× k+1Fk

(
A+B + I

k + 1
,
A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;

A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
,
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for |t| < 1, |x| < 1 and
∣∣∣∣( (k+1)(1−x)

2k

)k(
−(k+1)t
(1−t)k+1

)∣∣∣∣ < 1, and

(1.18)

∞∑
n=0

[(A+ I)kn]−1J (A,B−nI)
n (x; k)tn = et

× kFk

(
A+B + I

k
,
A+B + 2I

k
, . . . ,

A+B + kI

k
;
A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;−t
(

(1− x)

2

)k)
.

Theorem 1.4 ([22]). The matrix polynomials J (A,B)
n (x; k) given by (1.14)

satisfy the following matrix recurrence relations

(1.19)
(x− 1)DJ (A,B)

n (x; k) = nkJ (A,B)
n (x; k)

−k(A+ (kn− k + 1)I)kJ
(A,B+I)
n−1 (x; k)

and

(1.20) (x− 1)DJ (A,B)
n (x; k) = (A+ knI)J (A−I,B+I)

n (x; k)−AJ (A,B)
n (x; k).

Fact 1.2. For any matrix A in CN×N for |z| < 1, we give the following
relation (see Jódar and Cortés [12])

(1− z)−A = 1F0(A;−; z) =

∞∑
n=0

1

n!
(A)nz

n.(1.21)

2. Some properties of biorthogonal
matrix polynomials J (A,B)

n (x; k)

This section is devoted to introduce the finite summation, biorthogona-
lity, some matrix recurrence relations, several matrix differential recurrence
relations, matrix differential equation and more generating matrix functions
for the biorthogonal matrix polynomials J (A,B)

n (x; k) of the first kind.

Theorem 2.1. For matrices A, B and B+mI in CN×N satisfying the con-
dition (1.16) and all matrices are commutative. Then biorthogonal matrix
polynomials satisfy:

(2.1)
J (A,B)
n (x; k) =

(
x− 1

y − 1

)kn n∑
m=0

1

m!
(A+ I)kn[(A+ I)k(n−m)]

−1

×
[(

y − 1

x− 1

)k
− 1

]m
J
(A,B+mI)
n−m (y; k).
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Proof. If we put y = 1−x
2 in (1.18) and replace t by txk, we have

e−tx
k
∞∑
n=0

[(A+ I)kn]−1J (A,B−nI)
n (1− 2y; k)tnxkn = kFk

(
A+B + I

k
,

A+B + 2I

k
, . . . ,

A+B + kI

k
;
A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;−txkyk

)
.

Interchange of x and y yields

e−ty
k
∞∑
n=0

[(A+ I)kn]−1J (A,B−nI)
n (1− 2x; k)tnykn = kFk

(
A+B + I

k
,

A+B + 2I

k
, . . . ,

A+B + kI

k
;
A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;−txkyk

)
.

It is easy to see the right-hand sides of the above two expressions are the
same. Thus, we get

∞∑
n=0

[(A+ I)kn]−1J (A,B−nI)
n (1− 2y; k)tnxkn =

et(x
k−yk)

∞∑
n=0

[(A+ I)kn]−1J (A,B−nI)
n (1− 2x; k)tnykn.

Equating the coefficients of tn on both sides gives the formula (2.1). �

Theorem 2.2. The matrix polynomials J (A,B)
n (x; k) satisfy the following

biorthogonality condition

(2.2)
∫ 1

−1
xs(1−x)A(1+x)BJ (A,B)

n (x; k)dx

{
= 0, s = 0, 1, 2, . . . , n− 1;
6= 0, s = n,

with respect to the weight matrix functionW (x,A,B) = (1−x)A(1+x)B over
the interval (−1, 1) and the matrices A and B are commutative in CN×N
satisfying the condition (1.16).



Ayman Shehata 33

Proof. If we replace J (A,B)
n (x; k) by the form (1.14) in the left-hand side of

(2.2), then carry out the permissible interchange of summation and integra-
tion to obtain∫ 1

−1
xs(1− x)A(1 + x)BJ (A,B)

n (x; k)dx = Γ(A+ (kn+ 1)I)

×
n∑
r=0

(−1)r

2kr(n− r)!r!
(A+B + (n+ 1)I)krΓ

−1(A+ (kr + 1)I)

×
∫ 1

−1
xs(1− x)A+krI(1 + x)Bdx = Γ(A+ (kn+ 1)I)

×
n∑
r=0

(−1)r

2kr(n− r)!r!
(A+B + (n+ 1)I)krΓ

−1(A+ (kr + 1)I)

×
s∑

m=0

(−1)ms!

m!(s−m)!

∫ 1

−1
(1− x)A+krI(1 + x)B+mIdx.

Replacing x by (1 + x)− 1, we get∫ 1

−1
xs(1− x)A(1 + x)BJ (A,B)

n (x; k)dx = Γ(A+ (kn+ 1)I)

×
n∑
r=0

s∑
m=0

(−1)r+m

2kr(n− r)!(s−m)!m!r!
(A+B + (n+ 1)I)kr

× Γ−1(A+ (kr + 1)I)

∫ 1

−1
(1− x)A+krI(1 + x)B+mIdx

= (−1)s2A+B+IΓ(A+ (kn+ 1)I)Γ(B + I)Γ−1(A+B + (n+ 1)I)

×
n∑
r=0

s∑
m=0

(−1)r+m

2kr(n− r)!(s−m)!m!r!
(A+B + I)n+kr(B + I)m

×
[
(A+B + I)m+kr+1

]−1
= (−1)s2A+B+IΓ(A+ (kn+ 1)I)Γ(B + I)

× Γ−1(A+B + (n+ 1)I)

n∑
r=0

s∑
m=0

(−1)r+m

2kr(n− r)!(s−m)!m!r!
(A+B + I)n+kr

× (B + I)mD
n−m−1xA+B + (kn+ n)I

∣∣∣∣
x=1

= (−1)s2A+B+IΓ(A+ (kn+ 1)I)Γ(B + I)Γ−1(A+B + (n+ 1)I)

×
n∑
r=0

s∑
m=0

(−1)r+m

2kr(n− r)!(s−m)!m!r!
(A+B + I)n+kr(B + I)m

Dn−m−1xA+B + nI(1− xk)n
∣∣∣∣
x=1

.
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This matrix is a zero matrix or a null matrix for 0 ≤ s ≤ n− 1 and different
from zero matrix or a null matrix for s = n.

By using integration by parts n times yields

(2.3)

∫ 1

−1
xn(1− x)A(1 + x)BJ (A,B)

n (x; k)dx

= 2A+B+(n+1)IΓ(A+ (kn+ 1)I)Γ(B + (n+ 1)I)

× Γ−1(A+B + (n+ 2)I)

[(
I +

1

k
(A+B + (n+ 1))

)
n

]−1
.

Thus, the formula (2.3) means that∫ 1

−1
xs(1− x)A(1 + x)BJ (A,B)

n (x; k)dx

{
= 0, s = 0, 1, 2, . . . , n− 1;
6= 0, s = n,

which gives (2.2). �

Theorem 2.3. For the biorthogonal matrix polynomials J (A,B)
n (x; k), we

have the matrix differential recurrence relations

(2.4)
Dk

[
(x− 1)A+IDJ (A,B)

n (x; k)

]
= k(−1)k2−k(A+B + (kn+ 1)I)k

× (A+ (kn− k + 1)I)k
(
1− x

)A
J
(A,B+(k+1)I)
n−1 (x; k);n ≥ 1

and
(2.5)

Dk

[
(x− 1)A+IDJ (A,B)

n (x; k)

]
= k(−1)k2−k(A+B + (n+ 1)I)k

(
1− x

)A
×
[
(1− x)DJ (A,B+(k+1)I)

n (x; k) + nkJ (A,B+kI)
n (x; k)

]
,

where A, B, B + kI and B + (k + 1)I are commutative matrices in CN×N
satisfying the condition (1.16).

Proof. From (1.19), we get

(x− 1)DJ (A,B)
n (x; k) =

x− 1

n!
Γ(A+ (kn+ 1)I)Γ−1(A+B + (n+ 1)I)

×
n∑
r=0

(−1)r

2
(nr )Γ(A+B + (kr + n+ 1)I)Γ−1(A+ (kr + 1)I)

(
1

2
(1− x)

)kr−1
.

This expression can be rewritten as

(x− 1)DJ (A,B)
n (x; k) =

k

(n− 1)!
Γ(A+ (kn+ 1)I)Γ−1(A+B + (n+ 1)I)

×
n∑
r=0

(−1)r(n−1r−1 )Γ(A+B + (kr + n+ 1)I)Γ−1(A+ (kr + 1)I)

(
1

2
(1− x)

)kr
.
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Multiply both sides by (1− x)A and taking the k-th derivative, we have

Dk

[
(x− 1)A+IDJ (A,B)

n (x; k)

]
=

k(−1)k

(n− 1)!
Γ(A+ (kn+ 1)I)

× Γ−1(A+B + (n+ 1)I)
n∑
r=0

(−1)r

2kr
(n−1r−1 )Γ(A+B + (kr + n+ 1)I)

× Γ−1(A+ (kr − k + 1)I)
(
1− x

)A+(kr−k)I
=
k(−1)k2−k

(n− 1)!

× Γ(A+ (kn+ 1)I)Γ−1(A+B + (n+ 1)I)
(
1− x

)A n∑
r=0

(−1)r

2kr
(n−1r−1 )

× Γ(A+B + (kr + n+ 1)I)Γ−1(A+ (kr − k + 1)I)

(
1

2
(1− x)

)(r−1)k

=
k(−1)k2−k

(n− 1)!
(A+B + (kn+ 1)I)n(A+ (kn− k + 1)I)k

(
1− x

)A
× Γ−1(A+B + (k + n+ 1)I)Γ(A+ (kn− k + 1)I)

n−1∑
r=0

(−1)r

2kr
(n−1r )

× Γ(A+B + (kr + n+ 1)I)Γ−1(A+ (kr + 1)I)

(
1

2
(1− x)

)rk
.

Hence yields the matrix differential recurrence relation in (2.4). The relation
(2.5) can be obtained similarly from (2.4) and (1.19). �

Theorem 2.4. For the matrices A, A− I, A+ kI, B and B + I in CN×N
with commutative matrices satisfying the condition (1.16). The biorthogo-
nal matrix polynomials J (A,B)

n (x; k) satisfy the interesting matrix recurrence
relation

(2.6)
k(1− x)k(A+B + (n+ 1)I)kJ

(A+kI,B+I)
n−1 (x; k)

= 2kA J (A,B)
n (x; k)− 2k(A+ knI)J (A−I,B+I)

n (x; k), n ≥ 1.

Proof. If we denote the right-hand side of (1.18) by F = F (x, t;A,B; k), one
can easily verified that

kFk

(
A+B + (k + 1)I

k
,
A+B + (k + 2)I

k
, . . . ,

A+B + 2kI

k

;
A+ (k + 1)I

k
,
A+ (k + 2)I

k
, . . . ,

A+ 2kI

k
; z

)
,
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which satisfies the following :

kzΓ(A+B + (k + 1)I)Γ−1(A+ (k + 1)I) kFk

(
A+B + (k + 1)I

k
,

A+B + (k + 2)I

k
, . . . ,

A+B + 2kI

k
;
A+ (k + 1)I

k
,
A+ (k + 2)I

k
,

. . . ,
A+ 2kI

k
; z

)
= Γ(A+B)Γ−1(A) kFk

(
A+B

k
,
A+B + I

k
,

. . . ,
A+B + (k − 1)I

k
;
A

k
,
A+ I

k
, . . . ,

A+ (k − 1)I

k
; z

)
−A(A+B)−1Γ(A+B + I)Γ−1(A+ I) kFk

(
A+B + I

k
,
A+B + 2I

k
,

. . . ,
A+B + kI

k
;
A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
; z

)
.

Multiply both sides by et after putting z = −t
(

1−x
2

)k
, and taking account

into the generating matrix function (1.18), we have the matrix recurrence
relation (2.6) for the matrix polynomials J (A,B)

n (x; k). �

Theorem 2.5. Let A, A− I, A+ kI, B, B − I and B + I be commutative
matrices in CN×N satisfying the condition (1.16). The biorthogonal matrix
polynomials satisfy the matrix differential recurrence relations

(2.7)

(x− 1)

[
(A+B + nI)DJ (A,B)

n (x; k) + k(A+ (kn− k + 1)I)k

×DJ (A,B)
n−1 (x; k)

]
= (A+B + nI)

[
nJ (A,B)

n (x; k)

− k(A+ (kn− k + 1)I)kJ
(A,B)
n−1 (x; k)

]
;n ≥ 1,

(2.8)

(x− 1)DJ (A,B)
n (x; k)− nJ (A,B)

n (x; k)

= −(A+ I)kn[(A+B + I)n]−1
n−1∑
m=0

(A+B + I)m[(A+ I)km]−1

×
[
k(A+B + I)J (A,B)

m (x; k) + (k + 1)(x− 1)DJ (A,B)
m (x; k)

]
;n ≥ 1
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and

(2.9)

(x− 1)DJ (A,B)
n (x; k)− nJ (A,B)

n (x; k) = (A+ I)kn[(A+B + I)n]−1

×
n−1∑
m=0

(−k)n−m(A+B + I)m[(A+ I)km]−1

× (A+B + (km+m+ 1)I)J (A,B)
m (x; k);n ≥ 1.

Proof. In order to prove the formulas (2.7), (2.8) and (2.9), differentiate
partially the formula

F (x, t;A,B; k) =

∞∑
n=0

(A+B + I)n[(A+ I)kn]−1J (A,B)
n (x; k)tn,

with respect to x and t where F = F (x, t;A,B; k) is the right-hand side of
eq. (1.17), we have the partial differential equation

(2.10) (1− x)(1 + kt)
∂F

∂x
+ kt(1− t)∂F

∂t
= (A+B + I)ktF.

This equation (2.10) can be rewritten in the following forms

(2.11) (1− x)
∂F

∂x
+ kt

∂F

∂t
= (A+B + I)ktF + kt2

∂F

∂t
− (1− x)kt

∂F

∂x
,

(2.12) (1− x)
∂F

∂x
+ kt

∂F

∂t
=

(A+B + I)kt

1− t
F − (k − 1)(1− x)t

1− t
∂F

∂x

and

(2.13) (1− x)
∂F

∂x
+ kt

∂F

∂t
=

(A+B + I)kt

1 + kt
F +

k(k + 1)t2

1 + kt

∂F

∂t
.

If we substitute for F in (2.11), we give
∞∑
n=0

(A+B + I)n[(A+ I)kn]−1
[
(1− x)DJ (A,B)

n (x; k) + nJ (A,B)
n (x; k)

]
tn

= (A+B + I)k

∞∑
n=0

(A+B + I)n[(A+ I)kn]−1J (A,B)
n (x; k)tn+1

+ k
∞∑
n=0

(A+B + I)n[(A+ I)kn]−1nJ (A,B)
n (x; k)tn+1

− k(1− x)

∞∑
n=0

(A+B + I)n[(A+ I)kn]−1DJ (A,B)
n (x; k)tn+1.

Equating the coefficients of tn on both sides and simplifying, we obtain (2.7).
The matrix differential recurrence relations (2.8) and (2.9) can be obtained

from (2.12) and (2.13) respectively, as the technique used in the proof of
(2.7). �
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Remark 2.1. For k = 1, formulas (2.7), (2.8) and (2.9) reduced to the well-
known matrix differential recurrence relations for Jacobi matrix polynomials
in [8].

In fact J (A,B)
n (x; k) has the generalized hypergeometric matrix function

in the following form (see [22])

(2.14)

J (A,B)
n (x; k) =

1

n!
(A+ I)kn k+1Fk

(
− nI, A+B + (n+ 1)I

k
,

A+B + (n+ 2)I

k
, . . . ,

A+B + (n+ k + 1)I

k
;
A+ I

k
,

A+ 2I

k
, . . . ,

A+ kI

k
;

(
1− x

2

)k)
.

From (1.5) and (2.14), we obtain the matrix differential equation of order
k + 1
(2.15)[

x− 1

k
D

k∏
j=1

(
x− 1

k
D I +

A+ jI

k
− I
)
−
(

1− x
2

)k(x− 1

k
D − n

)

×
k∏
i=1

(
x− 1

k
D I +

A+B + (n+ i)I

k

)]
J (A,B)
n (x; k) = 0,

for
∣∣∣∣(1−x

2

)k∣∣∣∣ < 1. Which can be written in the form

(2.16)[
2k(x− 1)D

(
(x− 1)DI +A+ (1− k)I

)
k

− (1− x)k((x− 1)D − nk)

×
(

(x− 1)DI +A+B + (n+ 1)I

)
k

]
J (A,B)
n (x; k) = 0,

∣∣∣∣(1− x
2

)k∣∣∣∣ < 1.

Summary of this result is given in the following theorem.

Theorem 2.6. For the matrices A and B in CN×N with commutative ma-
trices satisfying the condition (1.16), the biorthogonal matrix polynomials
J
(A,B)
n (x; k) satisfy the matrix differential equation of order k + 1 in (2.15).

Remark 2.2. For k = 1, the matrix differential equation (2.15) reduces to
the usual matrix differential equation satisfied by the Jacobi matrix polyno-
mials [8].
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Corollary 2.1. The connection between biorthogonal and Konhauser matrix
polynomials is given as follows

(2.17)
J (A,B)
n (x; k) = Γ−1(A+B + (n+ 1)I)

×
∫ ∞
0

tA+B+nIe−tZ(A,1)
n

(
1− x

2
t; k

)
dt.

Proof. Using the formula (1.3), the right-hand side of (2.17) can be written
as

Γ−1(A+B + (n+ 1)I)

∫ ∞
0

tA+B+nIe−tZ(A,1)
n

(
1− x

2
t; k

)
dt

= Γ−1(A+B + (n+ 1)I)Γ(A+ (kn+ 1)I)

n∑
r=0

(−1)r

(n− r)!r!

× Γ−1(A+ (kr + 1)I)

(
1− x

2

)kr ∫ ∞
0

tA+B+(n+kr)Ie−tdt.

We evaluate integral by using Gamma matrix function and taking the ne-
cessary steps, we obtain (2.17). �

3. Some properties of biorthogonal
matrix polynomials K(A,B)

n (x; k)

Here, we establish some of the interesting properties of biorthogonal ma-
trix polynomials K(A,B)

n (x; k) of the second kind.

Theorem 3.1. For the matrices A and B in CN×N with commutative ma-
trices satisfying (1.16). Then the matrix polynomials K(A,B)

n (x; k) satisfy
the biorthogonality with respect to weight matrix function W (x,A,B) =
(1− x)A(1 + x)B over the interval (−1, 1)
(3.1)∫ 1

−1
(1−x)km(1−x)A(1+x)BK(A,B)

n (x; k)dx

{
= 0, m = 0, 1, 2, . . . , n− 1;
6= 0, m = n.

Proof. Taking the K(A,B)
n (x; k) given by (1.15) in the left-hand side of (3.1),

we have

L.H.S. =

∫ 1

−1
(1− x)km(1− x)A(1 + x)BK(A,B)

n (x; k)dx =
1

n!
Γ(B + (n+ 1)I)

×
n∑
r=0

r∑
s=0

(−1)s

2ns!(r − s)!
Γ−1(B + (n− r + 1)I)

(
1

k
((s+ 1)I +A)

)
n

×
∫ 1

−1
(1− x)A+(r+km)I(1 + x)B+(n−r)Idx =

2A+B+(km+1)I

n!
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× Γ(B + (n+ 1)I)Γ(A+ (km+ 1)I)Γ−1(A+B + (km+ n+ 2)I)

×
n∑
r=0

r∑
s=0

(−1)s

2ns!(r − s)!

(
A+ (km+ 1)I

)
r

(
1

k
(A+ (s+ 1)I)

)
n

.

Using the relation (see [22])

(−mI)n =

n∑
r=0

r∑
s=0

(−1)s

s!(r − s)!

(
A+ (km+ 1)I

)
r

(
1

k
(A+ (s+ 1)I)

)
n

,

we get

L.H.S. =
(−mI)n
n!

2A+B+(km+1)IΓ(A+ (km+ 1)I)

× Γ(B + (n+ 1)I)Γ−1(A+B + (km+ n+ 2)I).

Since, this matrix is a zero matrix or a null matrix for 0 ≤ m ≤ n − 1 and
different from not zero matrix or not null matrix for m = n. For m = n, we
get the r.h.s of (3.1). This completes the proof of (3.1). �

Now, we establish a proof of the generating matrix functions for biortho-
gonal matrix polynomials K(A,B)

n (x; k) of the second kind which we state in
the form of the following theorem.

Theorem 3.2. If A and B − nI are matrices in CN×N with commuta-
tive matrices satisfying the condition (1.16), then the matrix polynomials
K

(A,B)
n (x; k) of the second kind satisfy the interesting formula:

(3.2)

∞∑
n=0

K(A,B−nI)
n (x; k)tn =

(
x+ 1

2

)−B(
1− x+ 1

2
t

)−A+B+I
k

×
[
x− 1

2
+

(
1− x+ 1

2
t

) 1
k
]B
.

Proof. From (1.21) and (1.18), we have

(3.3)

∞∑
n=0

K(A,B−nI)
n (x; k)

(
2t

x+ 1

)n
=

∞∑
n=0

∞∑
r=0

r∑
s=0

(−B)r(−r)s
n!s!r!

(
A+ (s+ 1)I

k

)
n

(
x− 1

x+ 1

)r
tn

=
∞∑
r=0

r∑
s=0

(−B)r(−r)s
s!r!

(
x− 1

x+ 1

)r ∞∑
n=0

1

n!

(
A+ (s+ 1)I

k

)
n

tn
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=
∞∑
r=0

r∑
s=0

(−B)r(−r)s
s!r!

(
x− 1

x+ 1

)r
(1− t)−

A+(s+1)I
k

= (1− t)−
A+I
k

∞∑
r=0

(−B)r
r!

(
x− 1

x+ 1

)r r∑
s=0

(−1)sr!

s!(r − s)!
(1− t)−

s
k

= (1− t)−
A+I
k

∞∑
r=0

(−B)r
r!

(
x− 1

x+ 1

)r[
1− (1− t)−

1
k

]r
=

(
x+ 1

2

)−B
(1− t)−

A+B+I
k

[
x− 1

2
+ (1− t)

1
k

]B
.

Replacing t by x+1
2 t in (3), we obtain (3.2). �

Theorem 3.3. If A, B and B − nI are matrices in CN×N with commuta-
tive matrices satisfying the condition (1.19). Then the biorthogonal matrix
polynomials K(A,B)

n (x; k) of the second kind satisfy the interesting relation:

(3.4)
K(A,B−nI)
n (x; k) =

1

n!

(
x+ 1

2

)nI−B
×
{
∂n

∂ tn
(1− t)−

A+B+I
k

[
x− 1

2
+ (1− t)

1
k

]B}∣∣∣∣
t=0

.

Proof. Using the generating matrix function (3), we have directly (3.4). �

Theorem 3.4. If A, B, C and B+mI are matrices in CN×N with commu-
tative matrices satisfying the condition (1.16), then the K(A,B)

n (x; k) satisfy
the finite summation formula:

(3.5) K(A,B)
n (x; k) =

n∑
m=0

1

m!

(
1

k
(A− C)

)
m

(
x+ 1

2

)m
K

(C,B+mI)
n−m (x; k).

Proof. In order to obtain a summation formula for the second kind biortho-
gonal matrix polynomials recall the generating matrix function (3.2), (1.1)
and (1.21). Thus, we have

∞∑
n=0

K(A,B−nI)
n (x; k)tn

=

(
x+ 1

2

)−B(
1− x+ 1

2
t

)−A+B+I
k
[
x− 1

2
+

(
1− x+ 1

2
t

) 1
k
]B
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=

(
1− x+ 1

2
t

)C−A
k
(
x+ 1

2

)−B(
1− x+ 1

2
t

)−C+B+I
k

·[
x− 1

2
+

(
1− x+ 1

2
t

) 1
k
]B

=

(
1− x+ 1

2
t

)−A−C
k

∞∑
n=0

K(C,B−nI)
n (x; k)tn

=

∞∑
n=0

∞∑
m=0

1

m!

(
1

k
(A− C)

)
m

(
x+ 1

2

)m
K(C,B−nI)
n (x; k)tn+m

=
∞∑
n=0

n∑
m=0

1

m!

(
1

k
(A− C)

)
m

(
x+ 1

2

)m
K

(C,B−(n−m)I)
n−m (x; k)tn.

Comparing of the coefficients of tn and replacing B by B+nI in both sides
gives (3.5). �

Theorem 3.5. If A − knI and B − nI are matrices in CN×N with com-
mutative matrices which satisfy the condition in (1.16), then we have the
relation:

(3.6)

∞∑
n=0

K(A−knI,B−nI)
n (x; k)tn =

(
x+ 1

2

)−B(
1 +

x+ 1

2
t

)A+(1−k)I
k

×
[
1 +

(
x+ 1

2
− 1

)(
1 +

x+ 1

2
t

) 1
k
]B
.

Proof. From (1.18) and (1.21), we have

∞∑
n=0

K(A−knI,B−nI)
n (x; k)

(
2t

x+ 1

)n
=

∞∑
n=0

∞∑
r=0

r∑
s=0

(−B)r(−r)s
n!s!r!

(
1− A+ (s+ 1)I

k

)
n

(
x− 1

x+ 1

)r
(−t)n

=
∞∑
r=0

r∑
s=0

(−B)r(−r)s
s!r!

(
x− 1

x+ 1

)r ∞∑
n=0

1

n!

(
1− A+ (s+ 1)I

k

)
n

(−t)n

=

∞∑
r=0

r∑
s=0

(−B)r(−r)s
s!r!

(
x− 1

x+ 1

)r
(1 + t)

A+(s+1)I
k

−1

= (1 + t)
A+(1−k)I

k

∞∑
r=0

(−B)r
r!

(
x− 1

x+ 1

)r r∑
s=0

(−1)sr!

s!(r − s)!
(1 + t)

s
k
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= (1 + t)
A+(1−k)I

k

∞∑
r=0

(−B)r
r!

(
x− 1

x+ 1

)r[
1− (1 + t)

1
k

]r
=

(
x+ 1

2

)−B
(1 + t)

A+(1−k)I
k

[
1 +

x− 1

2
(1 + t)

1
k

]B
.

Thus, we have established the bilateral generating matrix function (3.6) for
the biorthogonal matrix polynomials K(A,B)

n (x; k) of the second kind. �

4. Bilinear and bilateral generating matrix functions

In this section, we give theorems which establish several substantially
more general families of bilinear and bilateral generating matrix functions
for J (A,B)

n (x; k) of the first kind defined by (1.17) as well as their applications.
Using the same techniques considered in [2,6,10,20], we can obtain the main
results.

Theorem 4.1. Corresponding to a non-vanishing matrix function Ωµ(y1, y2,
. . . , ys) of s complex variables y1, y2, . . . , ys, s ∈ N and of complex order µ,
let us consider the following
(4.1)

Λµ,ν(y1, y2, . . . , ys; z) =
∞∑
k=0

akΩµ+νk(y1, y2, . . . , ys)z
k; ak 6= 0, µ, ν ∈ C,

where the coefficients ak are assumed to a non-vanishing in order for the
matrix function on the left-hand side to be non-null. Suppose that

(4.2)
Ψn,m,µ,ν(x; y1, y2, . . . , ys; η) =

[ 1
m
n]∑

r=0

ar(A+B + I)n−mr

×
[
(A+ I)k(n−mr)

]−1
J
(A,B)
n−mr(x; k)Ωµ+νr(y1, y2, . . . , ys)η

r;n,m ∈ N,

where A and B are matrices in CN×N satisfying the condition (1.16) and all
matrices are commutative, and (as usual) [α] represents the greatest integer

in α ∈ R. Then, for |t| < 1,
∣∣x∣∣ < 1 and

∣∣∣∣( (k+1)(1−x)
2k

)k(
−(k+1)t
(1−t)k+1

)∣∣∣∣ < 1,

we have

(4.3)

∞∑
n=0

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η

tm

)
tn = (1− t)−A−B−I

× k+1Fk

(
A+B + I

k + 1
,
A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;
A+ I

k
,

A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
× Λµ,ν(y1, y2, . . . , ys; η).
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Proof. For convenience, suppose that S denote the first member of the
assertion (4.3) of Theorem 4.1. Then, plugging the matrix polynomials

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η
tm

)
.

In view of the definition (4.2) into the left-hand side of (4.3), we obtain

(4.4)

∞∑
n=0

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η

tm

)
tn =

∞∑
n=0

[ 1
m
n]∑

r=0

ar(A+B + I)n−mr

×
[
(A+ I)k(n−mr)

]−1
J
(A,B)
n−mr(x; k)Ωµ+νr(y1, y2, . . . , ys)η

rtn−mr.

Upon inverting the order of summation in (4.4) and replacing n by n =
n+mr, we can write
∞∑
n=0

Ψn,m,µ,ν

(
x; y1, y2, . . . , ys;

η

tm

)
tn

=
∞∑
n=0

∞∑
r=0

ak(A+B + I)n
[
(A+ I)kn

]−1
J (A,B)
n (x; k)Ωµ+νr(y1, y2, . . . , ys)η

ktn

=

[ ∞∑
n=0

(A+B + I)n
[
(A+ I)kn

]−1
J (A,B)
n (x; k)tn

][ ∞∑
r=0

arΩµ+νr(y1, y2, . . . , ys)η
r

]
= (1− t)−A−B−I k+1Fk

(
A+B + I

k + 1
,
A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;
A+ I

k
,

A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
Λµ,ν(y1, y2, . . . , ys; η),

which completes the proof of Theorem 4.1. �

Expressing the multivariable matrix function Ωµ+νk(y1, y2, . . . , ys), k ∈
N0 and s ∈ N in terms of simpler matrix function of one variable and more
variables, we give the applications of Theorem 4.1. In the following, we
provide a class of bilateral generating matrix functions for the biorthogonal
matrix polynomials of the first kind.

Corollary 4.1. Let

Λµ,ν(y; z) =
∞∑
r=0

arJ
(P,Q)
µ+νr (y; k)zr; ar 6= 0, µ, ν ∈ N0

and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

r=0

ar(A+B + I)n−mr

[
(A+ I)k(n−mr)

]−1
× J (A,B)

n−mr(x; k)J
(P,Q)
µ+ν r(y; k)ηr;n,m ∈ N,



Ayman Shehata 45

where P and Q are matrices in CN×N satisfying the condition (1.16) and
all matrices are commutative, then we get

(4.5)

∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−A−B−I k+1Fk

(
A+B + I

k + 1
,

A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;
A+ I

k
,
A+ 2I

k
,

. . . ,
A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
Λµ,ν(y; η)

provided that each member of (4.5) exists.

Remark 4.1. Using the generating matrix function given by (1.17) for the
biorthogonal matrix polynomials of the first kind, and taking ar = (P +Q+

I)r

[
(P + I)kr

]−1
, µ = 0 and ν = 1, we get

∞∑
n=0

[ 1
m
n]∑

r=0

(A+B + I)n−mr

[
(A+ I)k(n−mr)

]−1
(P +Q+ I)r

[
(P + I)kr

]−1
× J (A,B)

n−mr(x; k)J (P,Q)
r (y; k)ηktn−mk = (1− t)−A−B−I(1− η)−P−Q−I

× k+1Fk

(
A+B + I

k + 1
,
A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;
A+ I

k
,

A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
× k+1Fk

(
P +Q+ I

k + 1
,
P +Q+ 2I

k + 1
, . . . ,

P +Q+ (k + 1)I

k + 1
;

P + I

k
,
P + 2I

k
, . . . ,

P + kI

k
;

(
(k + 1)(1− y)

2k

)k(−(k + 1)η

(1− η)k+1

))

for |t| < 1, |x| < 1, |η| < 1, |y| < 1,
∣∣∣∣( (k+1)(1−x)

2k

)k(
−(k+1)t
(1−t)k+1

)∣∣∣∣ < 1 and∣∣∣∣( (k+1)(1−y)
2k

)k(
−(k+1)η
(1−η)k+1

)∣∣∣∣ < 1.

Now, we give some special cases for several important generating matrix
functions. Firstly, if we set Ωµ+νr(y) = Y

(D,λ)
n (y; k) for s = 1 in Theorem

4.1, where the Konhauser matrix polynomials Y (D,λ)
n (x; k) are defined by

means of the generating matrix function in [15]:

(4.6)
∞∑
n=0

Y (D,λ)
n (x; k)tn = (1− t)−

1
k
(D+I) exp

[
λ x[1− (1− t)−

1
k ]

]
; |t| < 1
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where D is a matrix in CN×N satisfying the condition Re(µ) > −1 ∀ µ ∈
σ(D) and all matrices are commutative. Then we obtain a class of bila-
teral generating matrix functions for the biorthogonal matrix polynomials
J
(A,B)
n (x; k) and the Konhauser matrix polynomials Y (D,λ)

n (x; k) of the se-
cond kind.

Corollary 4.2. Let

Λµ,ν(y; z) =
∞∑
r=0

arY
(D,λ)
µ+νr (y; k)zr; ar 6= 0, µ, ν ∈ N0

and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

r=0

ar(A+B + I)n−mr

[
(A+ I)k(n−mr)

]−1
× J (A,B)

n−mr(x; k)Y
(D,λ)
µ+νr (y; k)ηr;n,m ∈ N,

where D is a matrix in CN×N satisfying Re(µ) > −1 ∀ µ ∈ σ(D) and all
matrices are commutative. Then we have

(4.7)

∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−A−B−I k+1Fk

(
A+B + I

k + 1
,

A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;
A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
Λµ,ν(y; η)

provided that each member of (4.7) exists.

Remark 4.2. Using the generating matrix function (4.6) for the Konhauser
matrix polynomials Y (D,λ)

r (y; k) and taking ar = 1, µ = 0 and ν = 1, we
have
∞∑
n=0

[ 1
m
n]∑

r=0

(A+B + I)n−mr
[
(A+ I)k(n−mr)

]−1
J
(A,B)
n−mr(x; k)Y (D,λ)

r (y; k)ηrtn−mr

= (1− t)−A−B−I k+1Fk

(
A+B + I

k + 1
,
A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;

A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
× (1− η)−

1
k
(D+I) exp

[
λ y[1− (1− η)−

1
k ]

]
,

for |t| < 1, |x| < 1, |η| < 1 and
∣∣∣∣( (k+1)(1−x)

2k

)k(
−(k+1)t
(1−t)k+1

)∣∣∣∣ < 1.
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Also setting Ωµ+νr(y) = Z
(D,λ)
n (y; k) for s = 1 in Theorem 4.1, where the

Konhauser matrix polynomials of the second kind is defined by means of the
generating matrix function

(4.8)

∞∑
n=0

[
(D + I)kn

]−1
Z(D,λ)
n (x; k)tn

= et 0Fk

(
−;

D + I

k
,
D + 2I

k
, . . . ,

D + kI

k
;−(λ x)kt

kk

)
where D is a matrix in CN×N satisfying the condition Re(µ) > −1 ∀ µ ∈
σ(D) and all matrices are commutative.

Corollary 4.3. Let

Λµ,ν(y; z) =
∞∑
r=0

arZ
(D,λ)
µ+νr (y; k)zr; ar 6= 0, µ, ν ∈ N0

and

Ψn,m,µ,ν(x; y; η) =

[ 1
m
n]∑

r=0

ar

[
(A+ I)k(n−mr)

]−1
(P +Q+ I)n−mr

×
[
(P + I)k(n−mr)

]−1
J
(A,B)
n−mr(x; k)Z

(D,λ)
µ+νr (y; k)ηr;n,m ∈ N,

where D is a matrix in CN×N satisfying the condition Re(µ) > −1 ∀ µ ∈
σ(D) and all matrices are commutative, then we have

(4.9)

∞∑
n=0

Ψn,m,µ,ν

(
x; y;

η

tm

)
tn = (1− t)−A−B−I k+1Fk

(
A+B + I

k + 1
,

A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;
A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
Λµ,ν(y; η)

provided that each member of (4.9) exists.

Remark 4.3. Using the generating matrix function (4.8) for the Konhauser
matrix polynomials Z(D,λ)

r (y; k) and taking ar =
[
(D + I)kr

]−1, µ = 0 and
ν = 1, we have
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∞∑
n=0

[ 1
m
n]∑

r=0

(A+B + I)n−mr
[
(A+ I)k(n−mr)

]−1
J
(A,B)
n−mr(x; k)

×
[
(D + I)kr

]−1
Z(D,λ)
r (y; k)ηrtn−mr = (1− t)−A−B−I

× k+1Fk

(
A+B + I

k + 1
,
A+B + 2I

k + 1
, . . . ,

A+B + (k + 1)I

k + 1
;

A+ I

k
,
A+ 2I

k
, . . . ,

A+ kI

k
;

(
(k + 1)(1− x)

2k

)k(−(k + 1)t

(1− t)k+1

))
× eη 0Fk

(
−;

D + I

k
,
D + 2I

k
, . . . ,

D + kI

k
;−(λ y)kη

kk

)
,

for |t| < 1, |x| < 1 and
∣∣∣∣( (k+1)(1−x)

2k

)k(
−(k+1)t
(1−t)k+1

)∣∣∣∣ < 1.

We remark that for every suitable choice of the coefficients ar (r ∈ N0),
if the multivariables matrix function Ωµ(y1, y2, . . . , ys), s ∈ N is expressed
as an appropriation product of several simpler matrix functions with com-
mutative matrices which satisfy (1.16). The assertions of Theorem 4.1 can
be applied in order to derive the certain families of more multilinear and
multilateral generating matrix functions for the matrix version of the mul-
tivariable J (A,B)

n (x; k) and K(A,B)
n (x; k).
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