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On topological BE-algebras

S. Mehrshad and J. Golzarpoor

Abstract. In this paper, we study some properties of uniform topol-
ogy and topological BE-algebras and compare this topologies.

1. Introduction

The study of BCK/BCI-algebras was initiated by K. Iséki as a generaliza-
tion of the concept of set-theoretic difference and propositional calculus([3],[4]).
In [9], J. Neggeres and H. S. Kim introduced the notion of d-algebras which
is a generalization of BCK-algebras. Moreover, Y. B. Jun, E. H. Roh and
H. S. Kim [6] introduced a new notion, called BH-algebras, which is a gen-
eralization of BCK/BCI-algebras. Recently, as another generalization of
BCK-algebras, the notion of BE-algebras was introduced by H. S. Kim and
Y. H. Kim [7].
In section 3 we study some properties of uniform topology. In section 4
we study some general properties of topological BE-algebras, and finally in
section 5 we obtain some relationships between this topologies.

2. preliminaries

Recall that a set X with a family τ = {U} of its subsets is called a
topological space, denoted by (X, τ), if X, ∅ ∈ τ , the intersection of any
finite number of members of τ is in τ and the arbitrary union of members
of τ is in τ . The members of τ is called open sets of X. The complement
X \ U of an open set U is said to be closed set. If B is a subset of X, the
smallest closed set containing B is called the closure of B and denoted by
B (or clτB). A subset P of X is said to be a neighborhood of x ∈ X, if
there exists an open set U such that x ∈ U ⊆ P .
A subfamily {Uα} of τ is said to be a base of τ if for each x ∈ U ∈ τ there
exists an α such that x ∈ Uα ⊆ U, or equivalently, each U in τ is the union
of members of {Uα}. A subfamily {Uβ} of τ is said to form a subbase for τ
if the family of finite intersections of members of {Uβ} forms a base of τ .
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2 On topological BE-algebras

Let (X, τ) be a topological
space. We have the following separation axioms in (X, τ):

T0: For each x, y ∈ X and x 6= y, there is at least one in an open
neighborhood excluding the other.

T1: For each x, y ∈ X and x 6= y, each has an open neighborhood not
containing the other.

T2: For each x, y ∈ X and x 6= y, both have disjoint open neighborhoods
U, V such that x ∈ U and y ∈ V.

A topological space satisfying Ti is called a Ti-space. A T2-space is also
known as a Hausdorff space.

Definition 2.1. Let (X, ∗) be an algebra of type 2 and τ be a topology on
A. Then X = (X, ∗, τ) is called a

(i) Left (right) topological algebra, if for all a in X the map X ↪→ X
is defined by x ↪→ a ∗ x ( x ↪→ x ∗ a) is continuous, or equivalently,
if for any x in X and any open set U of a ∗ x (x ∗ a), there exists an
open set V of x such that a ∗ V ⊆ U ( V ∗ a ⊆ U).

(ii) Semitopological algebra, or operation ∗ is separately continuous, if
X is right and left topological algebra.

(iii) Topological algebra, if the operation ∗ is continuous, or equivalently,
if for any x, y in X and any open set(neighborhood) W of x∗y there
exist two open sets(neighborhoods) U and V of x and y, respectively,
such that U ∗ V ∈W .

Let X be a nonempty set and U, V be any subsets of X ×X. Define
U ◦ V = {(x, y) ∈ X ×X : (x, z) ∈ U and (z, y) ∈ V, for some z ∈ X},
U−1 = {(y, x) : (x, y) ∈ U}, 4 = {(x, x) : x ∈ X}.

Definition 2.2 ([5]). By an uniformity on X we shall mean a nonempty
collection K of subsets of X ×X which satisfies the following conditions:

(i) 4 ⊆ U, for any U ∈ K,
(ii) if U ∈ K, then U−1 ∈ K,

(iii) if U ∈ K, then there exist V ∈ K such that V ◦ V ⊆ U ,
(iv) if U, V ∈ K then U ∩ V ∈ K,
(v) if U ∈ K and U ⊆ V ⊆ X ×X, then V ∈ K.

The pair (X,K) is called a uniform structure (uniform space).

Let x ∈ X and U ∈ K. Define U [x] = {y ∈ X : (x, y) ∈ U}.

Definition 2.3 ([11]). A BE-algebra is an algebra (X, ∗, 1) of type (2, 0)
such that satisfying the following axioms:

(1) x ∗ x = 1 for all x ∈ X,
(2) x ∗ 1 = 1 for all x ∈ X,
(3) 1 ∗ x = x for all x ∈ X,
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.
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A relation ≤ on X is defined by x ≤ y if and only if x ∗ y = 1. If X is a
BE-algebra and x, y ∈ X, then x ∗ (y ∗ x) = 1.

Definition 2.4 ([11]). We say that a BE-algebra X is commutative if (x ∗
y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X.
Proposition 2.1 ([1]). Let X be a commutative BE-algebra and x, y, z ∈ X.
Then,

(5) x ∗ y = y ∗ x = 1⇒ x = y,
(6) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1.

Definition 2.5 ([11]). We say that a BE-algebra X is transitive if (y ∗ z) ≤
(x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.
Proposition 2.2 ([11]). If X is a commutative BE-algebra, then it is tran-
sitive.

Definition 2.6 ([11]). Let A be a BE-algebra. A filter is a nonempty set
F ⊆ X such that for all x, y ∈ A

(i) 1 ∈ F ,
(ii) x ∈ F and x ∗ y ∈ F imply y ∈ F .
Let F be a filter in X. If x ∈ F and x ≤ y then y ∈ F.

Definition 2.7 ([11]). A filter F of a BE-algebra X is said to be normal if
it satisfies the following condition:

x ∗ y ∈ F ⇒ [(z ∗ x) ∗ (z ∗ y) ∈ F and (y ∗ z) ∗ (x ∗ z) ∈ F ]

for all x, y, z ∈ X.
Proposition 2.3 ([11]). If X is a transitive BE-algebra, then every filter of
X is normal.

Proposition 2.4 ([11]). Let F be a normal filter of a BE-algebra X. Define

x ≡F y ⇔ x ∗ y , y ∗ x ∈ F.
Then

(i) ≡F is a congruence relation on X, i.e., it is a equivalence relation
on X such that for each a, b, c, d ∈ X if a ≡F b and c ≡F d, then
a ∗ c ≡F b ∗ d.

(ii) Let x
F = {y ∈ x : x ≡F y} be an equivalence class of x and X

F = { xF :

x ∈ X}. Then X
F is a BE-algebra under the binary operations given

by:
x

F
∗ y
F

=
x ∗ y
F

.

Definition 2.8 ([2]). Let X be a BE-algebra. If there exists an element 0
satisfying 0 ≤ x (or 0 ∗ x = 1) for all x ∈ X, then X is called a bounded
BE-algebra.

Notation. From now, in this paper (X, ∗, 1) is a commutative BE-algebra.
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3. Uniform topology on BE-algebras

Theorem 3.1 ([8]). Let Λ be an arbitrary family of filters of a BE-algebra
X which is closed under intersection. If UF = {(x, y) ∈ X × X : x ≡F y}
and K∗ = {UF : F ∈ Λ}, then K∗ satisfies in the conditions (i) ∼ (iv) of
Definition 2.2.

Theorem 3.2 ([8]). Let K = {U ⊆ X ×X : UF ⊆ U, for some UF ∈ K∗}.
Then the pair (X,K) is an uniform structure.

Theorem 3.3 ([8]). Given a BE-algebra X, then

τ = {G ∈ X : ∀x ∈ G ∃U ∈ K s.t. U [x] ⊆ G}
is a topology on X.

Definition 3.1. Let (X,K) be an uniform structure. Then the topology τ
is called an uniform topology on X induced by K.
We denote the uniform topology obtained by a family Λ, by τΛ and if Λ =
{F}, then we denote it by τF .

Note that for any x ∈ X, U [x] is an open neighborhood of x.

Theorem 3.4 ([8]). The pair (X, τΛ) is a topological BE-algebra.

Notation. Let Λ be a family of filters of a BE-algebra X which is closed un-
der intersection and F ∈ Λ and A ⊆ X. Then we define UF [A] =

⋃
a∈A UF [a].

Theorem 3.5. Let Λ be a family of filters of a BE-algebra X which is
closed under intersection and F ∈ Λ and A ⊆ X. Then the closure of A is⋂
{UF [A] : UF ∈ K∗} and it is denoted by A in the topological space (X, τΛ).

Proof. Let x ∈ A. Then UF [x] is an open neighborhood of x and we have
UF [x]∩A 6= ∅, for all F ∈ Λ. Hence there exists y ∈ A such that y ∈ UF [x].
Hence (x, y) ∈ UF for all F ∈ Λ. Thus x ∈ UF [y] ⊆ UF [A] for all F ∈ Λ.
Conversely, let x ∈ UF [A] for all F ∈ Λ. Then there exists y ∈ A such that
x ∈ UF [y] and so UF [x] ∩A 6= ∅ for all F ∈ Λ. Therefore x ∈ A. �

Theorem 3.6. Let Λ be a family of filters of a BE-algebra X which is
closed under intersection, K be a compact subset of X and W be an open
set containing K. Then K ⊆ UF [K] ⊆W.
Proof. SinceW is an open set containingK, for each k ∈ K we have UFk

[k] ⊆
W for some Fk ∈ Λ. Hence K ⊆

⋃
k∈K UFk

[k] ⊆ W. Since K is a compact
subset of X, there exist k1, k2, ..., kn such that

K ⊆ UFk1
[k1] ∪ UFk2

[k2] ∪ · · · ∪ UFkn
[kn].

Put F =
⋂n
i=1 Fki . We claim that UF [K] ⊆ W for each k ∈ K. Let

k ∈ K. Then there exists 1 ≤ i ≤ n such that k ∈ UFKi
[Ki] and hence

k ≡FKi ki. Now, let y ∈ UF [k], then y ≡F k. Therefore we have y ≡FKi ki
and hence y ∈ UFKi

[Ki] ⊆ W. Hence UF [k] ⊆ W for any k ∈ K. Thus
K ⊆ UF [K] ⊆W. �
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Theorem 3.7. Let Λ be a family of filters of a BE-algebra X which is closed
under intersection, K be a compact subset of X and C be a closed subset of
X. If K ∩ C = ∅, then UF [K] ∩ UF [C] = ∅ for some F ∈ Λ.

Proof. Since K ∩ C = ∅ and C is closed, X \ C is an open set containing
K. By Theorem 3.6 there exists F ∈ Λ such that UF [K] ⊆ X \ C. If
UF [K] ∩ UF [C] 6= ∅, then there exists y ∈ X such that y ∈ UF [k] and
y ∈ UF [c] for some k ∈ K and c ∈ C, respectively. Hence k ≡F c and then
c ∈ UF [k] ⊆ UF [K]. This contradicts to the fact that UF [K] ⊆ X \C. Hence
UF [K] ∩ UF [C] = ∅. �

4. Topological BE-algebras

Theorem 4.1. Let F be a family of filters in a BE-algebra X such that for
each F1, F2 ∈ F , there exists F3 ∈ F such that F3 ⊆ F1 ∩ F2. Then there is
a topology τ on X such that (X, ∗, τ) is a topological BE-algebra.

Proof. Define τ = {U ⊆ X : ∀x ∈ U ∃F ∈ F s.t. x/F ⊆ U}. For each
x ∈ X and F ∈ F , the set x/F ∈ τ, because if y is an arbitrary element
of x/F then y/F ⊆ x/F. It is easy to see that τ is a topology on X. We
prove that ∗ is continuous. For this, suppose x ∗ y ∈ U ∈ τ. Then for some
F ∈ F , x∗yF ⊆ U . Now, x/F and y/F are two open neighborhoods of x and
y, respectively, such that x/F ∗ y/F ⊆ x∗y

F ⊆ U. �

Example 4.1. Let X = {a, b, c, d, 1}. Define a binary operation ∗ on X as
follow:

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

Easily we can check that (X, ∗, 1) is a BE-algebra [9]. Let
τ = {{1, a, c}, {b, d}, X, ∅}. Then (X, ∗, τ) is a topological BE-algebra [8].

Theorem 4.2. Let (X, ∗, τ) be a topological BE-algebra.
(i) (X, τ) is discrete if and only if {1} is open.

(ii) (X, τ) is Hausdorff if and only if {1} is closed.

Proof. (i) Let {1} be an open subset of X. Then by (1), x ∗ x = 1 ∈
{1} for all x ∈ X. Since (X, ∗, τ) is a topological BE-algebra, there exist
neighborhoods U and V of x such that U ∗ V ⊆ {1}. Put W = U ∩ V. Then
1 = x ∗ x ∈ W ∗W ⊆ U ∗ V ⊆ {1} and so W ∗W = {1}. We claim that
W = {x}. Let y ∈W. Then x ∗ y ∈W ∗W = {1} and y ∗ x ∈W ∗W = {1}.
Hence x = y and so W = {x}. The converse is trivial.
(ii) Suppose that (X, ∗, τ) is a Hausdorff space. We show that X \ {1}
is an open subset of X. Let x ∈ X \ {1}. Then x 6= 1. Hence there exist
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neighborhoods U of x and V of 1 such that U∩V = ∅. Thus 1 /∈ U. Therefore
x ∈ U ⊆ X \ {1} and so X \ {1} is an open subset of X.
Conversely, let {1} be closed and x, y ∈ X such that x 6= y. Then x∗y 6= 1 or
y∗x 6= 1. Let x∗y 6= 1. Then x∗y ∈ X\{1}. SinceX\{1} is open, there exist
neighborhoods U of x and V of y such that U ∗V ⊆ X \ {1}. We claim that
U ∩V = ∅. Let U ∩V 6= ∅. Let y ∈ U ∩V. Hence 1 = y ∗y ∈ U ∩V ⊆ X \{1}
which is a contradiction. Therefore (X, τ) is a Hausdorff space. �

Theorem 4.3. Let (X, ∗, τ) be a topological BE-algebra. Then the following
are equivalent:

(i) (X, τ) is a Hausdorff space,
(ii) (X, τ) is T1,

(iii) (X, τ) is T0.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are clear.
(iii)⇒ (i) Let x, y ∈ X and x 6= y. Then x∗y 6= 1 or y∗x 6= 1. Let x∗y 6= 1.
Since X is a T0 space, there is an neighborhood U of x ∗ y such that 1 /∈ U.
Since (X, ∗, τ) is a topological BE-algebra, there exist neighborhoods V of x
andW of y such that V ∗W ⊆ U.We claim that V ∩W = ∅. Let V ∩W 6= ∅.
Let z ∈ V ∩W. Hence 1 = z ∗z ∈ V ∗W ⊆ U. This is a contradiction. Hence
(X, τ) is a Hausdorff space. �

Theorem 4.4. Let (X, ∗, τ) be a topological BE-algebra and F be a filter of
X. Then 1 is an interior point of F if and only if F is open.

Proof. Suppose that 1 is an interior point of F . Then there exists a neigh-
borhood U of 1 such that U ⊆ F. Let x ∈ F be an arbitrary element. Since
x ∗ x = 1, there exist neighborhoods V,W of x such that V ∗W ⊆ U ⊆ F.
Now, for each y ∈ W, we have x ∗ y ∈ F. Since F is a filter and x ∈ F , we
have y ∈ F. Hence W ⊆ F and so F is open. The converse is trivial. �

Theorem 4.5. Let (X, ∗, τ) be a topological BE-algebra and F be a filter of
X. If F is open, then F is closed.

Proof. Let F be a filter of X which is open in (X, τ). We show that X \ F
is open. Let x ∈ X \ F. Since F is open, by Theorem 4.4, 1 is an interior
point of F . Hence there exists a neighborhood U of 1 such that U ⊆ F. Since
x∗x = 1, there exist neighborhoods V andW of x such that V ∗W ⊆ U ⊆ F.
We claim that V ⊆ X \F. Let V * X \F. Then there exists y ∈ V ∩F. For
each z ∈W, we have y ∗z ∈ V ∗W ⊆ F. Since y ∈ F and F is a filter, z ∈ F.
Hence W ⊆ F and so x ∈ F which is a contradiction. �

In Theorem 4.9 we will prove that the converse of Theorem 4.5 is also
true.

Theorem 4.6. Let (X, ∗, τ) be a topological BE-algebra. If 1 ∈
⋂
U∈τ U,

then B ⊆ X is open if and only if 1 is an interior point of B.
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Proof. If B is open, clearly, 1 is an interior point of B. Let 1 be an interior
point of B and x ∗ x = 1, there is an open neighborhood V of 1 such that
x ∗ x = 1 ∈ V ⊆ B. Since ∗ is continuous, there exists an open set W
containing x such that W ∗ W ⊆ V. By hypothesis, 1 ∈ W, and hence
x ∈W ⊆W ∗W ⊆ V ⊆ B. This proves that x is an interior point of B. �

Theorem 4.7. Let (X, ∗, τ) be a topological BE-algebra and F1 the least
open set containing 1. If x ∈ F1, then F1 is the least open set containing x.

Proof. Let x ∈ F1 and U be an open set such that x ∈ U. Since 1∗x = x ∈ U,
there exist open neighborhoods V of 1 and W of x such that V ∗W ⊆ U.
We have 1 = x ∗ x ∈ F1 ∗W ⊆ V ∗W ⊆ U. Therefore 1 ∈ U. Since F1 is the
least open set such that 1 ∈ F1, F1 ⊆ U. �

Theorem 4.8. Let (X, ∗, τ) be a topological BE-algebra and F1 the least
open set containing 1. Then F1 is a filter of X.

Proof. Let x, x∗y ∈ F1. By Theorem 4.7, F1 is the least open set containing
x. Since x ∗ y ∈ F1, there exist open neighborhoods U of x and V of y such
that U ∗ V ⊆ F1. Hence y = 1 ∗ y ∈ F1 ∗ V ⊆ U ∗ V ⊆ F1 and therefore
y ∈ F1. �

Theorem 4.9. Let (X, ∗, τ) be a topological BE-algebra and F a filter in X.
If F is closed then F is open.

Proof. Suppose that F is closed filter but not open. By Theorem 4.4, 1 is
not an interior point of F. Hence F1 * F , where F1 is the least open set such
that 1 ∈ F1. If (X \F )∩F1 = ∅, then F1 ⊆ F . Hence (X \F )∩F1 6= ∅. Since
(X \F )∩F1 is open, by Theorem 4.7, (X \F )∩F1 = F1. Thus F1 ⊆ X \F
and so 1 ∈ X \ F which is a contradiction. �

5. Comparsion τ and τΛ

In this section we assume that (X, ∗, τ) is a topological BE-algebra and
1 6= x ∈ X. The least open set containing x is denoted by Ux.

Lemma 5.1. If x ∗ y /∈ F1, then y /∈ Ux and x /∈ Uy.

Proof. Let y ∈ Ux. Then {x, y} ⊆ Ux. Since x ∗ y ∈ Ux∗y, there exist open
neighborhoods V1 of x and V2 of y such that V1 ∗ V2 ⊆ Ux∗y. We have
y ∈ Ux ⊆ V1, y ∈ Uy ⊆ V2 and then 1 = y ∗ y ∈ Ux ∗ Uy ⊆ Ux∗y. Put
z = x ∗ y. Since z ∗ z = 1 ∈ F1, there exist open neighborhoods W1,W2 of z
suchW1∗W2 ⊆ F1. Then 1∗z ∈ Uz∗Uz ⊆W1∗W2 ⊆ F1. Hence x∗y = z ∈ F1

which is a contradiction. Similarly, we can show that x /∈ Uy. �

Theorem 5.1. Let (X, ∗, τ) be a topological BE-algebra and τF1 be the uni-
form topology induced by filter F1. Then τ is finer than τF1 .



8 On topological BE-algebras

Proof. We will show that UF1 [x] =
⋃
y∈F1[x] Uy for all x ∈ X. Let y ∈ UF1[x]

and z ∈ Uy. If z ∗ y /∈ F1 or y ∗ z /∈ F1, then by Lemma 5.1, z /∈ Uy. Thus
z ∗ y ∈ F1 and y ∗ z ∈ F1. By (6), (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1 ∈ F1.
Since x ∗ y ∈ F1, we have (y ∗ z) ∗ (x ∗ z) ∈ F1 and so x ∗ z ∈ F1 because
y ∗ z ∈ F1. Similarly, we can show that z ∗ x ∈ F1. Hence z ∈ UF1 [x].
Therefore Uy ⊆ UF1 [x] for all y ∈ UF1 [x] and so

⋃
y∈F1[x] Uy ⊆ UF1 [x]. It is

clear that UF1 [x] ⊆
⋃
y∈F1[x] Uy. �

Theorem 5.2. Let (X, ∗, τ) be a topological BE-algebra and τF1 be a uniform
topology induced by filter F1. If there exists U ∈ τ such that U /∈ τF1 , then
there exist x ∈ U and y ∈ UF1 [x] such that y /∈ U and the following properties
holds:

(i) x, y /∈ F1.
(ii) a ∗ y /∈ UF1 [x] ∩ U, for all a ∈ F1.

(iii) If d ∈ UF1 [x] ∩ U, then a ∗ d 6= y, for all a ∈ F1.

Proof. (i) If x ∈ F1, then by Theorem 4.7, F1 ⊆ U. Since x ∈ F1 , y ∈ UF1 [x]
and F1 is a filter, we have y ∈ F1 ⊆ U which is a contradiction. Let y ∈ F1.
Since y ∈ UF1 [x] and F1 is a filter, then x ∈ F1 which is a contradiction.
(ii) Suppose that there exists some a ∈ F1 such that a∗y ∈ UF1 [x]∩U. There
exist open neighborhoods V1 of a and V2 of y such that V1 ∗V2 ⊆ UF1 [x]∩U.
By Theorem 4.7, F1 ⊆ V1. Then y = 1 ∗ y ∈ F1 ∗ V2 ⊆ UF1 [x] ∩ U. Hence
y ∈ UF1 [x] ∩ U which is a contradiction.
(iii) Suppose that there exists a ∈ F1 such that a ∗ d = y for some d ∈
UF1 [x] ∩ U. Since 1 ∗ d = d ∈ UF1 [x] ∩ U. there exist open neighborhoods V1

of 1 and V2 of d such that V1 ∗ V2 ⊆ UF1 [x]∩U. Then y = a ∗ d ∈ F1 ∗ V 2 ⊆
V1 ∗ V2 ⊆ UF1 [x] ∩ U. Hence y ∈ UF1 [x] ∩ U which is a contradiction. �

Lemma 5.2. Let (X, ∗, τ) be a topological BE-algebra and τF1 be the uniform
topology induced by filter F1. If τF1 $ τ, then there exists ∅ 6= U ∈ τ such
that U $ UF1 [x] for some x ∈ X \ F1.

Proof. If τF1 $ τ, then there exists V1 ∈ τ such that V1 /∈ τF1 . By definition
of uniform topology, there exists x ∈ V1 such that UF1 [x] * V1. Hence
UF1 [x] ∩ V1 $ UF1 [x]. Put U = UF1 [x] ∩ V1. Then U ∈ τ and U $ UF1 [x].
Suppose that x ∈ F1. Then UF1 [x] = F1. Hence x ∈ U. By Theorem 4.7,
UF1 [x] = F1 ⊆ U which is a contradiction. �

Theorem 5.3. Let {0, a, b, 1} be a bounded BE-algebra and let (X, ∗, τ) be
a topological bounded BE-algebra and τF1 be the uniform topology induced by
filter F1. Then τ = τF1 .

Proof. Case 1. If F1 = {1} or F1 = X, then it is clear that τ = τF1 .
Case 2. Suppose that F1 = {x, 1} where x ∈ {a, b} and τF1 $ τ. Without
less of generality, we assume that F1 = {a, 1}. By Lemma 5.3, there exists
U ∈ τ such that U $ UF1 [y] for some y ∈ X \ F1 = {0, b}. If UF1 [y] = {y},
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then U = ∅ which is a contradiction. So UF1 [y] = UF1 [0] = UF1 [b] = {0, b}.
Hence b ∗ 0 ∈ F1 and 0 ∗ b ∈ F1. Then b ∗ 0 = a. If a ∗ 0 ∈ F1, then 0 ∈ F1

and F1 = X which is a contradiction. Hence a ∗ 0 = b. Therefore U = {0}
or U = {b}. Consider the following cases:

(1) Suppose that U = {0}. Since 1 ∗ 0 = 0 ∈ U, there exist V,W ∈ τ
such that 1 ∈ V, 0 ∈W and V ∗W ⊆ U. So

{0, b} = {1 ∗ 0, a ∗ 0} ⊆ F1 ∗ U ⊆ V ∗W ⊆ U,

which is a contradiction.
(2) Suppose that U = {b}. Since a ∗ 0 = b ∈ U, there exist V,W ∈ τ

such that a ∈ V, 0 ∈ W and V ∗W ⊆ U. By Theorem 4.7, F1 ⊆ V
and hence

{0, b} = {1 ∗ 0, a ∗ 0} ⊆ F1 ∗W ⊆ V ∗W ⊆ U,

which is a contradiction.
Case 3. Suppose that F1 = {a, b, 1} and τF1 ⊆ τ. By Lemma 5.2, there
exists U ∈ τ such that ∅ 6= U $ UF1 [y] for some y ∈ X \ F1. Therefore
U $ UF1 [0] = {0} which is a contradiction.

Hence τF1 = τ for all cases. �

Lemma 5.3. Let X = {0, x, y, z, 1} be a bounded BE-algebra and F = {x, 1}
be a filter of X. Then y ∗ z 6= x or z ∗ y 6= x.

Proof. Let y ∗ z = z ∗ y = x. Then x ∗ (y ∗ z) = x ∗ (z ∗ y) = x ∗ x = 1.
Consider following cases:

(1) Suppose that x ∗ y = 0. Since 1 = x ∗ (z ∗ y) = z ∗ (x ∗ y), we get
z ∗ 0 = 1 and so z ≤ 0. Since 0 ≤ z, we have z = 0 which is a
contradiction.

(2) Suppose that x ∗ y = y. Since 1 = x ∗ (z ∗ y) = z ∗ (x ∗ y), we have
z ∗ y = 1 which is a contradiction.

(3) Suppose that x∗ y = z. Since y ∗ (x∗ y) = 1, we have y ∗ z = 1 which
is contradiction.

(4) If x ∗ y = x or x ∗ y = 1, then y ∈ F which is a contradiction. �

Lemma 5.4. Let X = {0, x, y, z, 1} be a bounded BE-algebra and F = {x, 1}
be a filter of X. Then

(i) if UF [y] = {0, y}, then x ∗ 0 = y,
(ii) if UF [y] = {y, z}, then x ∗ y = z or x ∗ z = y,

(iii) if UF [y] = {0, y, z}, then (x ∗ y = z and x ∗ 0 = z) or (x ∗ z = y and
x ∗ 0 = y).

Proof. (i) Let UF [y] = {0, y}, where y 6= 0. Then y ∗ 0 ∈ F and 0 ∗ y ∈ F.
Therefore y ∗x = x. If x∗0 ∈ F, then 0 ∈ F which is a contradiction. Hence
x ∗ 0 = z or x ∗ 0 = y. Now, let x ∗ 0 = z. Then z ∗ (x ∗ 0) = z ∗ z = 1 and
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hence x ∗ (z ∗ 0) = 1. Therefore x ≤ z ∗ 0. Since F is a filter, z ∗ 0 ∈ F. Also
0 ∗ z = 1 ∈ F. Hence

(z ∗ 0) ∗ ((0 ∗ y) ∗ (z ∗ y)) = 1,

(y ∗ 0) ∗ ((0 ∗ z) ∗ (y ∗ z)) = 1.

Therefore z ∗ y ∈ F and y ∗ z ∈ F and so z ∈ UF [y] which is a contradiction.
Hence x ∗ 0 = y.
(ii) By Lemma 5.3, y ∗ z = 1, z ∗ y = x or y ∗ z = x, z ∗ y = 1. Let
y ∗ z = 1, z ∗y = x. Hence y ≤ z and z ≤ x∗y because x∗ (z ∗y) = x∗x = 1
hence z ∗ (x ∗ y) = 1 and so z ≤ x ∗ y. If x ∗ y ∈ F, then y ∈ F which is
a contradiction. Since 0 ≤ y ≤ z ≤ x ∗ y and x ∗ y /∈ F, then x ∗ y = z.
Similarly, if y ∗ z = x, z ∗ y = 1, then x ∗ z = y.
(iii) Let UF [y] = {0, y, z}. Then y ∗ 0 = x, z ∗ 0 = x, y ∗ z ∈ F and z ∗ y ∈ F.
By Lemma 5.3, y ∗ z = 1, z ∗ y = x or y ∗ z = x, z ∗ y = 1. If y ∗ z = 1
and z ∗ y = x, then x ∗ y = z similar to part (2). Since y ≤ z ≤ x ∗ 0 and
x ∗ 0 /∈ F, then x ∗ 0 = z. If y ∗ z = x and z ∗ y = 1, then x ∗ z = y similar
to part (2). Since z ≤ y ≤ x ∗ 0 and x ∗ 0 /∈ F, then x ∗ 0 = y. �

Theorem 5.4. Let X be a bounded BE-algebra where |X| = 5. If (X, ∗, τ)
is a topological BE-algebra and F = {x, 1} is a filter in X, then τ = τF .

Proof. Suppose that τ 6= τF . By Lemma 5.2, there exists U ∈ τ such that
U $ UF [y] for some y ∈ X \ F. Consider the following cases:
Case (1). UF [y] = {y}. Then U = ∅.
Case (2). UF [y] = {0, y}, where y 6= 0. By Lemma 5.4 part (1), x ∗ 0 = y.
Since U $ UF [y], then U = {0} or U = {y}.

(1) Suppose that U = {0}. Since 1 ∗ 0 = 0 ∈ U, there exist V,W ∈ τ
such that 1 ∈ V, 0 ∈W and V ∗W ⊆ U. Then we have

{0, y} = {1 ∗ 0, x ∗ 0} ⊆ F ∗ U ⊆ V ∗W ⊆ U.
Hence y ∈ U , which is a contradiction.

(2) Suppose that U = {y}. Since x ∗ 0 = y, then there exist V,W ∈ τ
such that x ∈ V, 0 ∈W and V ∗W ⊆ U. Then we have

{0, y} = {1 ∗ 0, x ∗ 0} ⊆ F ∗W ⊆ V ∗W ⊆ U.
Hence 0 ∈ U , which is a contradiction.

Case (3). Suppose that UF [y] = {y, z}, where y, z 6= 0. By Lemma 5.3,
y ∗ z = 1, z ∗ y = x or y ∗ z = x, z ∗ y = 1. Let y ∗ z = 1, z ∗ y = x. Then
by Lemma 5.4 part (2), x ∗ y = z. Since U $ UF [y], we have U = {y} or
U = {z}.

(1) Suppose that U = {y}. Since 1 ∗ y = y ∈ U, there exist V,W ∈ τ
such that 1 ∈ V, y ∈W and V ∗W ⊆ U.

{y, z} = {1 ∗ y, x ∗ y} ⊆ F ∗ U ⊆ V ∗W ⊆ U,
which is a contradiction.
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(2) Suppose that U = {z}. Since x ∗ y = z ∈ U, there exist V,W ∈ τ
such that x ∈ V, y ∈W and V ∗W ⊆ U.

{y, z} = {1 ∗ y, x ∗ y} ⊆ F ∗W ⊆ V ∗W ⊆ U,

which is a contradiction.
Case (4). Suppose that UF [y] = {0, y, z}. By Lemma 5.3, y∗z = 1, z∗y = x
or y ∗ z = x, z ∗ y = 1. Let y ∗ z = 1 and z ∗ y = x. By Lemma 5.4 part (3),
x ∗ y = z and x ∗ 0 = z. Then

(1) Suppose that U = {0}. Since 1 ∗ 0 = 0 ∈ U, there exist V,W ∈ τ
such that 1 ∈ V, 0 ∈W and V ∗W ⊆ U.

{0, z} = {1 ∗ 0, x ∗ 0} ⊆ F ∗ U ⊆ V ∗W ⊆ U = {0},

which is a contradiction.
(2) Suppose that U = {y}. Since 1 ∗ y = y ∈ U, there exist V,W ∈ τ

such that 1 ∈ V, y ∈W and V ∗W ⊆ U.

{y, z} = {1 ∗ y, x ∗ y} ⊆ F ∗ U ⊆ V ∗W ⊆ U,

which is a contradiction.
(3) Suppose that U = {z}. Since x ∗ y = z ∈ U, there exist V,W ∈ τ

such that x ∈ V, y ∈W and V ∗W ⊆ U.

{y, z} = {1 ∗ y, x ∗ y} ⊆ F ∗W ⊆ V ∗W ⊆ U,

which is a contradiction.
(4) Suppose that U = {0, z}. Since x ∗ y = z ∈ U, there exist V,W ∈ τ

such that x ∈ V, z ∈W and V ∗W ⊆ U.

{y, z} = {1 ∗ y, x ∗ y} ⊆ F ∗W ⊆ V ∗W ⊆ U,

which is a contradiction.
(5) Suppose that U = {0, y}. Since 1 ∗ y = y ∈ U, there exist V,W ∈ τ

such that 1 ∈ V, y ∈W and V ∗W ⊆ U.

{y, z} = {1 ∗ y, x ∗ y} ⊆ F ∗W ⊆ V ∗W ⊆ U,

which is a contradiction.
(6) Suppose that U = {y, z}. Since x ∗ 0 = z ∈ U, then there exist

V,W ∈ τ such that x ∈ V, 0 ∈W and V ∗W ⊆ U.

{0, z} = {1 ∗ 0, x ∗ 0} ⊆ F ∗W ⊆ V ∗W ⊆ U,

which is a contradiction.
Hence τ = τF . �

Theorem 5.5. Let X be a bounded BE-algebra where |X| = 5. If (X, ∗, τ)
is a topological BE-algebra, then τ = τF1 .
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Proof. Case (1). If F1 = {1} or F1 = X, then it is clear τ = τF1 .
Case (2). If F1 = {x, 1}, then τ = τF1 by Theorem 5.4.
Case (3). Suppose that F1 = {z, x, 1} but τ 6= τF1 . By Lemma 5.2, there
exists U ∈ τ such that U $ UF1 [a] for some a ∈ X \ F1 = {0, y}. Then

(i) If UF1 [a] = {a}, then U = ∅.
(ii) If UF1 [a] = UF1 [y] = {0, y}, then y ≤ x ∗ 0. Since x ∗ 0 /∈ F1, thus

x ∗ 0 = y. Since U $ UF1 , we have U = {y} or U = {0}.
(1) Suppose that U = {y}. Since x ∗ 0 = y ∈ U, there exist V,W ∈ τ

such that x ∈ V, 0 ∈W and V ∗W ⊆ U.
{0, y} ⊆ {1 ∗ 0, x ∗ 0} ⊆ F ∗W ⊆ V ∗W ⊆ U,

which is a contradiction.
(2) Suppose that U = {0}. Since 1 ∗ 0 = 0 ∈ U, there exist V,W ∈ τ

such that 1 ∈ V, 0 ∈W and V ∗W ⊆ U.
{0, y} = {1 ∗ 0, x ∗ 0} ⊆ F1 ∗ U ⊆ V ∗W ⊆ U,

which is a contradiction.
Case (4). If F1 = {z, y, x, 1}, then τF1 = τ by Lemma 5.2. �
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