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Approximate fixed point theorems of
cyclical contraction mapping

S.A.M. Mohsenialhosseini

Abstract. LetXi; i = 1, ...,m are subsets of a metric spaceX and also
T : ∪mi=1Xi → ∪mi=1Xi and T (X1) ⊆ X2, ..., T (Xm−1) ⊆ Xm, T (Xm) ⊆
X1.We are going to consider element x ∈ ∪mi=1Xi such that d(x, Tx) ≤ ε
for some ε > 0. The existence results regarding approximate fixed points
proved for the several operators such as Chatterjea and Zamfirescu on
metric space (not necessarily complete). These results can be exploited
to establish new approximate fixed point theorems for cyclical contrac-
tion maps. In addition, there is a new class of cyclical operators and
contraction mapping on metric space (not necessarily complete) which
do not need to be continuous. Finally, some examples are presented
to illustrate our results for new approximate fixed point theorems on
cyclical contraction maps.

1. Introduction

One of the most important results used in nonlinear analysis is the well-
known Banach’s contraction principle which is a very popular tool in solving
existing problems in many branches of Mathematical Analysis and its ap-
plications. Nowadays, there are plenty of problems in applied mathematics
which can be solved by means of fixed point theory such as physics, chem-
istry, economics. In physics and engineering, fixed point technique has been
used in areas like image retrieval, signal processing, and the existence and
uniqueness of solutions for a class of nonlinear integral equations was studied.
Still, practice proves that in many real situations an approximate solution is
more than sufficient, so the existence of fixed points is not strictly required,
but that of “nearly” fixed points.

In 1968, Kannan (see [1, 4]) proved a fixed point theorem for operators
which need not be continuous. A similar type of contractive condition has
been studied by Chatterjea (see [3]). In 1972, by combining the above three
independent contraction conditions, Zamfirescu (see [10]) obtained another
fixed point result for operators which satisfy the following. In [1], the author
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obtained a different contraction condition, also he formulated a correspond-
ing fixed point theorem. In 2001, Rus (see [9]) defined α−contraction, and
in 2006, Berinde (see [2]) obtained some result on α− contraction for ap-
proximate fixed point on metric space.

In 2011, Mohsenalhosseini et al [6], introduced the approximate best prox-
imity pairs and proved the approximate best proximity pairs property for
it. Also, In 2012 , Mohsenalhosseini et al [7], introduced the approximate
fixed point for completely norm space and map Tα and proved the approxi-
mate fixed point property for it. In 2014 , Mohsenalhosseini [8] introduced
the Approximate best proximity pairs on metric space for contraction maps.
This paper, on the other hand aims at introducing the new classes of cycli-
cal operators and contraction maps (not necessarily continuous) regarding
approximate fixed point on metric spaces.

2. Preliminaries

This section recalls the following notations and notions that will be used
in what follows. In 2003, Kirk et al. [5], obtained an extension of Banach’s
fixed point theorem by considering a cyclical operator.

Definition 2.1 ([5]). Let {Xi}mi=1 be nonempty subsets of a complete met-
ric space X. A mapping T : ∪mi=1Xi → ∪mi=1Xi satisfies the following condi-
tion(where Xi+1 = X1)

T (X1) ⊆ X2, . . . , T (Xm−1) ⊆ Xm, T (Xm) ⊆ X1,

is called a cyclical operator.

Definition 2.2 ([7]). Let T : X → X, ε > 0, x0 ∈ X. Then x0 ∈ X is an
ε−fixed point for T if ‖Tx0 − x0‖ < ε.

Remark 2.1 ([7]). In this paper the set of all ε− fixed points of T , for a
given ε, is denoted by:

Fε(T ) = {x ∈ X| x is an ε-fixed point of T}.
Definition 2.3 ([7]). Let T : X → X. Then T has the approximate fixed
point property (a.f.p.p) if ∀ε > 0, Fε(T ) 6= ∅.

Theorem 2.1 ([7]). Let (X, ‖.‖) be a completely norm space, T : X → X,
x0 ∈ X and ε > 0 . If ‖Tn(x0)−Tn+k(x0)‖ → 0 as n→∞ for some k > 0,
then T k has an ε− fixed point.

Now an important lemma by Berinde [2] regarding the existence of ε−
fixed point of an operator is being recalled here.

Lemma 2.1 ([2]). Let (X, d) be a metric space, T : X → X such that T is
asymptotically regular, i.e.,

lim
n→∞

d(Tn(x), Tn+1(x)) = 0, for all x ∈ X.

Then T has the approximate fixed point property.
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Lemma 2.2 ([2]). Let (X, d) be a metric space, T : X → X a operator and
ε > 0. We assume that:

(i) Fε(T ) 6= ∅;
(ii) ∀θ > 0, ∃φ(θ) > 0 such that

d(x, y)− d(Tx, Ty) ≤ θ ⇒ d(x, y) ≤ φ(θ), ∀x, y ∈ Fε(T ) 6= ∅.
Then:

δ(Fε(T )) ≤ φ(2ε).

3. Approximate fixed point for cyclical operators

The section begins with three lemmas which will be used in order to prove
all the results given in the second and in the third sections.

Definition 3.1. Let {Xi}mi=1 be nonempty susets of a metric space X. A
cyclical operator T : ∪mi=1Xi → ∪mi=1Xi is said to be asymptotically regular
at a point x ∈ ∪mi=1Xi, if

lim
n→∞

d(Tn(x), Tn+1(x)) = 0,

where Tn denotes the nth iterate of T at x.

Lemma 3.1. Let {Xi}mi=1 be nonempty subsets of a metric space X and
T : ∪mi=1Xi → ∪mi=1Xi be a cyclical operator. Let x0 ∈ ∪mi=1Xi and ε > 0. If
T : ∪mi=1Xi → ∪mi=1Xi is asymptotically regular at each point x0 ∈ ∪mi=1Xi,
then T has an ε− fixed point.

Proof. Let ε > 0 be given and x0 ∈ ∪mi=1Xi such that lim
n→∞

d(Tnx0, T
n+1x0) =

0, then there exists N0 > 0 such that

∀n ≥ N0 : d(T
nx0, T

n+1x0) < ε.

If n = N0, then d(TN0(x0), T (T
N0(x0))) < ε, and TN0(x0) ∈ Fε(T ). So for

each ε > 0 there exists an ε−fixed point of T in ∪mi=1Xi. �

Lemma 3.2. Let {Xi}mi=1 be nonempty subsets of a metric space X and
T : ∪mi=1Xi → ∪mi=1Xi be a cyclical operator. Let x0 ∈ ∪mi=1Xi and ε > 0.
If d(Tn(x0), Tn+k(x0)) → 0 as n → ∞ for some k > 0, then T k has an ε−
fixed point.

Proof. The proof of Lemma is the same as the proof of Theorem 2.1 for
x ∈ ∪mi=1Xi. �

Definition 3.2. Let {Xi}mi=1 be nonempty closed subsets of a metric space
X, T : ∪mi=1Xi → ∪mi=1Xi a cyclical operator and ε > 0. We define diameter
of the set Fε(T ), i.e.,

δ(Fε(T )) = sup{d(x, y) : x, y ∈ Fε(T )}.

Lemma 3.3. Let {Xi}mi=1 be nonempty subsets of a metric space X, T :
∪mi=1Xi → ∪mi=1Xi a cyclical operator and ε > 0. We assume that:
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(i) Fε(T ) 6= ∅;
(ii) ∀θ > 0, ∃φ(θ) > 0 such that

d(x, y)− d(Tx, Ty) ≤ θ ⇒ d(x, y) ≤ φ(θ), ∀x, y ∈ Fε(T ) 6= ∅.

Then:
δ(Fε(T )) ≤ φ(2ε).

Proof. The proof of Lemma is the same as the proof of Lemma 2.2 for
x ∈ ∪mi=1Xi. �

4. Approximate fixed point for
several operator on metric spaces

In this section a series of qualitative and quantitative results will be ob-
tained regarding the properties of approximate fixed point. Also, by using
Lemma 3.1 and 3.2 we prove approximate fixed point theorems for a new
class of cyclical operators on metric spaces.

Definition 4.1. [9] A mapping T : X → X is a α−contraction if there
exists α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y),∀x, y ∈ X.

Definition 4.2. Let {Xi}mi=1 be nonempty subsets of a metric space X,
T : ∪mi=1Xi → ∪mi=1Xi is a α−cyclical contraction if there exists α ∈ (0, 12)
such that

d(Tx, Ty) ≤ αd(x, y) ∀x ∈ Xi, y ∈ Xi+1.

Theorem 4.1. Let {Xi}mi=1 be nonempty subsets of a metric space X and
Suppose T : ∪mi=1Xi → ∪mi=1Xi is a α−cyclical contraction. Then T has an
ε−fixed point.

Proof. Let ε > 0 and x ∈ ∪mi=1Xi.

d(Tnx, Tn+1x) = d(T (Tn−1x), T (Tnx))

≤ αd(Tn−1x, Tnx)

...
≤ (α)nd(x, Tx).

But α ∈ (0, 12). Hence

lim
n→∞

d(Tn, Tn+1) = 0,∀x ∈ ∪mi=1Xi.

Hence by Lemma 3.1 it follows that Fε(T ) 6= ∅,∀ε > 0. �

In 1972, Chatterjea (see [3]) considered another operator in which conti-
nuity is not imposed. Now, the approximate fixed point theorems by using
cyclical operators are obtained.
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Definition 4.3. Let {Xi}mi=1 be nonempty subsets of a metric space X, T :
∪mi=1Xi → ∪mi=1Xi is a Chatterjea cyclical operator if there exists α ∈ (0, 12)
such that

d(Tx, Ty) ≤ α[d(x, T (y)) + d(y, T (x))], ∀x, y ∈ ∪mi=1Xi.

Theorem 4.2. Let {Xi}mi=1 be nonempty subsets of a metric space X. Sup-
pose that the mapping T : ∪mi=1Xi → ∪mi=1Xi is a Chatterjea cyclical operator.
Then T has an ε−fixed point.

Proof. Let ε > 0 and x ∈ ∪mi=1Xi.

d(Tnx, Tn+1x) = d(T (Tn−1x), T (Tnx))

≤ α[d(Tn−1x, T (Tnx)) + d(Tnx, T (Tn−1x))]

= α[d(Tn−1x, Tn+1x) + d(Tnx, Tnx)] = αd(Tn−1x, Tn+1x).

On the other hand

d(Tn−1x, Tn+1x) ≤ d(Tn−1x, Tnx) + d(Tnx, Tn+1x).

Then
(1− α)d(Tnx, Tn+1x) ≤ αd(Tn−1x, Tnx),

hence

d(Tnx, Tn+1x) ≤ α

1− α
d(Tn−1x, Tnx)

...

≤
(

α

1− α

)n
d(x, Tx).

But α ∈ (0, 12) hence
α

1−α ∈ (0, 1). Therefore

lim
n→∞

d(Tnx, Tn+1x) = 0, ∀x ∈ ∪mi=1Xi.

Now by Lemma 3.1 it follows that Fε(T ) 6= ∅, ∀ε > 0. �

Definition 4.4. Let {Xi}mi=1 be nonempty subsets of a metric space X,
T : ∪mi=1Xi → ∪mi=1Xi is a Mohseni cyclical operator if there exists

α ∈ (0,
1

2
) such that

d(Tx, Ty) ≤ α[d(x, y) + d(Tx, Ty)] ∀x ∈ Xi, y ∈ Xi+1.

Theorem 4.3. Let {Xi}mi=1 be nonempty subsets of a metric space X and
Suppose T : ∪mi=1Xi → ∪mi=1Xi is a Mohseni cyclical operator. Then T has
an ε−fixed point.

Proof. Let ε > 0 and x ∈ ∪mi=1Xi.

d(Tnx, Tn+1x) = d(T (Tn−1x), T (Tnx))

≤ α[d(Tn−1x, Tnx) + d(Tn, Tn+1)].
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Therefore,
(1− α)d(Tnx, Tn+1x) ≤ αd(Tn−1, Tn).

So,

d(Tnx, Tn+1x) ≤ α

1− α
d(Tn−1, Tn)

...

≤
(

α

1− α

)n
d(x, Tx).

But α ∈ (0, 12), therefore ( α
1−α) ∈ (0, 1). Hence

lim
n→∞

d(Tn, Tn+1) = 0, ∀x ∈ ∪mi=1Xi.

Hence by Lemma 3.1 it follows that Fε(T ) 6= ∅, ∀ε > 0. �

Example 4.1. Consider the sets: X1 = { 1k}
∞
k=1 ∪ {

−1
2k }
∞
k=1 and

X2 = {−1k }
∞
k=1 ∪ {

1
2k−1}

∞
k=1. Define the map T : X1 ∪ X2 → X1 ∪ X2

as

Tx =


−x
x+ 4

, if x ∈ X1

−x
4
, if x ∈ X2.

It is easily to be checked that T (X1) ⊆ X2 and T (X2) ⊆ X1. For any x ∈ X1

and y ∈ X2 we have the chain of inequalities

d(Tx, Ty) =

∣∣∣∣ x

x+ 4
− y

4

∣∣∣∣ ≤ 1

3

(
|x|+ |y|

)
≤ 1

3

(
|x− y|+

∣∣∣∣ x

x+ 4
− y

4

∣∣∣∣)
=

1

3

(
d(x, y) + d(Tx, Ty)

)
.

So T satisfies all the conditions of Theorem 4.1 and thus it has a approx-
imate fixed point.

Example 4.2. Let X be a subset in R endowed with the usual metric.
Suppose X1 =]0, 0.8] and X2 =]0, 12 ]. Define the map T : X1∪X2 → X1∪X2

as Tx = x
4 for all x ∈ X1 ∪X2 It is easily to be checked that T (X1) ⊆ X2

and T (X2) ⊆ X1. For any x, y ∈ X1 ∪X2 we have the chain of inequalities

d(Tx, Ty) = |x
4
− y

4
| ≤ 1

3

(
|x− y|+

∣∣∣x
4
− y

4

∣∣∣)
=

1

3

(
d(x, y) + d(Tx, Ty)

)
.
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So T satisfies all the conditions of Theorem 4.1 and thus for every ε > 0,
Fε(T )) 6= ∅. On the other hand take 0 < ε < 1

2 and select x0 ∈ X1∪X2 such
that x0 < 4

3ε. Then

d(Tx, x) =
∣∣∣x
4
− x
∣∣∣ ≤ ε.

So T has an approximate fixed point which implies that Fε(T )) 6= ∅. On the
contrary, there is no fixed point of T in X1 ∪X2.

By combining the three independent contraction conditions: α−cyclical
contraction, Mohseni cyclical, and Chatterjea cyclical operators we obtain
another approximate fixed point result for operators which satisfy the fol-
lowing.

Definition 4.5. Let {Xi}mi=1 be nonempty subsets of a metric space X,
T : ∪mi=1Xi → ∪mi=1Xi is a Mohsenialhosseini cyclical operator if there
exists α, β, γ ∈ R, α ∈ [0, 1[, β ∈ [0, 12 [, γ ∈ [0, 12 [ such that for all x, y ∈
∪mi=1Xi at least one of the following is true:

(i) d(Tx, Ty) ≤ αd(x, y);
(ii) d(Tx, Ty) ≤ β

[
d(x, y) + d(Tx, Ty)

]
;

(iii) d(Tx, Ty) ≤ γ
[
d(x, T (y)) + d(y, T (x))

]
.

Theorem 4.4. Let {Xi}mi=1 be nonempty subsets of a metric space X and
Suppose T : ∪mi=1Xi → ∪mi=1Xi is a Mohsenialhosseini cyclical operator.
Then T has an ε−fixed point.

Proof. Let x, y ∈ ∪mi=1Xi. Supposing ii) holds, we have that:

d(Tx, Ty) ≤ β
[
d(x, y) + d(Tx, Ty)

]
≤ β

[
d(x, Tx) + d(Tx, y) + d(Tx, Ty)

]
≤ β

[
d(x, Tx) + d(Tx, x) + d(x, y) + d(Tx, Ty)

]
= 2βd(x, Tx) + βd(x, y) + βd(Tx, Ty)

Thus

(1) d(Tx, Ty) ≤ 2β

1− β
d(x, Tx) +

β

1− β
d(x, y).

Supposing iii) holds, we have that:

d(Tx, Ty) ≤ γ
[
d(x, Ty) + d(y, Tx)

]
≤ γ

[
d(x, y) + d(y, Ty)

]
+ γ
[
d(y, Ty) + d(Ty, Tx)

]
= γd(Tx, Ty) + 2γd(y, Ty) + γd(x, y).

Thus

(2) d(Tx, Ty) ≤ 2γ

1− γ
d(y, Ty) +

γ

1− γ
d(x, y).
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Similarly:

d(Tx, Ty) ≤ γ
[
d(x, Ty) + d(y, Tx)

]
≤ γ

[
d(x, Tx) + d(Tx, Ty)

]
+ γ
[
d(y, x) + d(x, Tx)

]
= γd(Tx, Ty) + 2γd(x, Tx) + γd(x, y).

Then

(3) d(Tx, Ty) ≤ 2γ

1− γ
d(x, Tx) +

γ

1− γ
d(x, y).

Therefore for T satisfying at least one of the conditions (i), (ii), (iii) we
have that

(4) d(Tx, Ty) ≤ 2ηd(x, Tx) + ηd(x, y),

and

(5) d(Tx, Ty) ≤ 2ηd(y, Ty) + ηd(x, y),

where η := max{α, β
1−β ,

γ
1−γ }, hold. Using these conditions implied by (i) -

(iii) and taking x ∈ ∪mi=1Xi, we have:

d(Tnx, Tn+1x) = d
(
T (Tn−1x), T (Tnx)

)
(3.4)

≤ 2ηd(Tn−1x, T (Tn−1x)) + ηd(Tn−1x, Tnx)

= 3ηd(Tn−1x, Tnx).

Then
d(Tnx, Tn+1x) ≤ · · · ≤ (3η)nd(x, Tx).

Therefore
lim
n→∞

d(Tnx, Tn+1x) = 0, ∀x ∈ ∪mi=1Xi.

Now by Lemma 3.1 it follows that Fε(T ) 6= ∅, ∀ε > 0. �

Example 4.3. Let X = [0,∞) and let d be usual metric on X. Suppose
X1 = [0.1, 2] and X2 = [0.1, 1]. Fix β ∈ (0, 1) and define T : X1 ∪ X2 →
X1 ∪X2 as

Tx =


0, x ∈ [0, 1− β),
x

4
, x ∈ [1− β, 1),

1− β
4

, x ∈ [1, 2].

It is easy to check that T (X1) ⊆ X2 and T (X2) ⊆ X1. For any x, y ∈ X1∪X2

there exists α ∈ (0, 12) such that holds at least one of the condition Theorem
4.4. Thus by Theorem 4.4 for every ε > 0, Fε(T ) 6= ∅.



S.A.M. Mohsenialhosseini 133

Definition 4.6. Let {Xi}mi=1 be nonempty subsets of a metric space X,
T : ∪mi=1Xi → ∪mi=1Xi is a Mohseni-semi cyclical operator if there exists
α ∈]0, 12 [ such that

d(Tx, Ty) ≤ α
[
d(x, y) + d(x, T (x))

]
, ∀x, y ∈ ∪mi=1Xi.

Theorem 4.5. Let {Xi}mi=1 be nonempty subsets of a metric space X and
Suppose T : ∪mi=1Xi → ∪mi=1Xi is a Mohseni-semi cyclical operator. Then:

∀ε > 0, Fε(T ) 6= ∅.

Proof. Let x ∈ ∪mi=1Xi.

d(Tnx, Tn+1x) = d
(
T (Tn−1x), T (Tnx)

)
≤ αd(Tn−1x, Tnx) + αd(Tn−1x, Tnx)

= 2αd(Tn−1x, Tnx) ≤ · · · ≤ (2α)nd(x, Tx).

But α ∈]0, 12 [. Therefore

lim
n→∞

d(Tnx, Tn+1x) = 0, ∀x ∈ ∪mi=1Xi.

Now by Lemma 3.1, it follows that Fε(T ) 6= ∅, ∀ε > 0. �

Example 4.4. Let X be a subset in R endowed with the usual metric.
Suppose X1 = [0.01, 0.8] and X2 = [0.01, 12 ]. Define the map T : X1 ∪X2 →
X1 ∪ X2 as Tx = x

4 for all x ∈ X1 ∪ X2. It is easily to be checked that
T (X1) ⊆ X2 and T (X2) ⊆ X1. For any x, y ∈ X1 ∪X2 we have the chain of
inequalities

d(Tx, Ty) =
∣∣∣x
4
− y

4

∣∣∣ ≤ 1

3

(
|x− y|+

∣∣∣x− x

4

∣∣∣)
=

1

3

(
d(x, y) + d(x, Tx)

)
.

So T satisfies all the conditions of Theorem 4.5 and thus for every ε > 0,
Fε(T )) 6= ∅.

5. Diameter approximate fixed point for
several operator on metric spaces

In this section, using Lemma 3.3, quantitative results for new cyclical op-
erators will be formulated and proved, and some results regarding diameter
approximate fixed point of such operators on metric spaces were given.

Theorem 5.1. Let {Xi}mi=1 be nonempty subsets of a metric space X. Sup-
pose that T : ∪mi=1Xi → ∪mi=1Xi is a Mohseni cyclical operator. Then for
every ε > 0,

δ(Fε(T )) ≤
2ε(1 + α)

1− 2α
.
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Proof. Let ε > 0. and x ∈ ∪mi=1Xi. Condition (i) in Lemma 3.3 is satisfied, as
one can see in the proof of Theorem 4.1. Now we only verify that condition
(ii) in Lemma 3.3, holds.

Let θ > 0 and x, y ∈ Fε(T ), and assume that d(x, y) − d(Tx, Ty) ≤ θ.
Then:

d(x, y) ≤ α
[
d(x, y) + d(Tx, Ty)

]
+ θ.

Therefore

d(x, y) ≤ α
[
d(x, y) + d(Tx, x) + d(x, y) + d(y, Ty)

]
+ θ.

As x, y ∈ Fε(T ), we know that

d(x, Tx) ≤ ε, d(y, Ty) ≤ ε.

Therefore,

d(x, y) ≤ 2αε+ θ

1− 2α
.

So for every θ > 0 there exists φ(θ) =
2αε+ θ

1− 2α
> 0 such that

d(x, y)− d(Tx, Ty) ≤ θ ⇒ d(x, y) ≤ φ(θ).

Now by Lemma 3.3, it follows that

δ(Fε(T )) ≤ φ(2ε), ∀ε > 0,

which means exactly that

δ(Fε(T )) ≤
2ε(1 + α)

1− 2α
. �

Example 5.1. Let X be a subset in R endowed with the usual metric.
Suppose X1 = [0.01, 0.8] and X2 = [0.01, 12 ]. Define the map T : X1 ∪X2 →
X1 ∪X2 as Tx = x

4 for all x ∈ X1 ∪X2.
By example 4.2 T : ∪mi=1Xi → ∪mi=1Xi is a Mohseni cyclical operator. So

T satisfies all the conditions of Theorem 5.1 and thus for every ε > 0,

δ(Fε(T )) ≤
2ε(1 + α)

1− 2α
.

Theorem 5.2. Let {Xi}mi=1 be nonempty subsets of a metric space X. Sup-
pose that T : ∪mi=1Xi → ∪mi=1Xi is a Mohsenialhosseini cyclical operator.
Then for every ε > 0,

δ(Fε(T )) ≤ 2ε
1 + η

1− η
,

where η := max{α, β
1−β ,

γ
1−γ }, and α, β, γ as in Definition 4.5

Proof. In the proof of Theorem 4.4, we have already shown that if T satisfies
at least one of the conditions (i), (ii), (iii) from Definition 4.5, then

d(Tx, Ty) ≤ 2ηd(x, Tx) + ηd(x, y),



S.A.M. Mohsenialhosseini 135

and
d(Tx, Ty) ≤ 2ηd(y, Ty) + ηd(x, y),

hold.
Let ε > 0.We will only verify that condition (ii) in Lemma 3.3 is satisfied,

as (i) holds, see the Proof of Theorem 4.4.
Let θ > 0 and x, y ∈ Fε(T ), and assume that d(x, y) − d(Tx, Ty) ≤ θ.

Then

d(x, y) ≤ d(Tx, Ty) + θ ⇒
d(x, y) ≤ 2ηd(x, Tx) + ηd(x, y) + θ ⇒

(1− η)d(x, y) ≤ 2ηε+ θ ⇒

d(x, y) ≤ 2ηε+ θ

1− η
.

So for every θ > 0 there exists φ(θ) =
2ηε+ θ

1− η
> 0 such that

d(x, y)− d(Tx, Ty) ≤ θ ⇒ d(x, y) ≤ φ(θ).
Now by Lemma 3.3, it follows that

δ(Fε(T )) ≤ φ(2ε), ∀ε > 0,

which means exactly that

δ(Fε(T )) ≤ 2ε
1 + η

1− η
, ∀ε > 0. �

Example 5.2. Let X = [0,∞) and let d be usual metric on X. Suppose
X1 = [0.1, 2] and X2 = [0.1, 1]. Fix β ∈ (0, 1) and define T : X1 ∪ X2 →
X1 ∪X2 as

Tx =


0, x ∈ [0, 1− β),
x

4
, x ∈ [1− β, 1),

1− β
4

, x ∈ [1, 2].

By Example 4.3, T : ∪mi=1Xi → ∪mi=1Xi is a Mohsenialhosseini cyclical
operator. So, T satisfies all the conditions of Theorem 5.2 and thus for
every ε > 0, it is easy to check that T (X1) ⊆ X2 and T (X2) ⊆ X1.

For any x, y ∈ X1 ∪ X2 there exists α ∈ (0, 12) such that holds at least
one of the condition Theorem 4.4. Thus, by Theorem 4.4 for every ε > 0,
Fε(T ) 6= ∅.

Theorem 5.3. Let {Xi}mi=1 be nonempty subsets of a metric space X. Sup-
pose that T : ∪mi=1Xi → ∪mi=1Xi is a Mohseni-semi cyclical operator. Then
for every ε > 0

δ(Fε(T )) ≤ ε
2 + α

1− α
.
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Proof. Let ε > 0. We will only verify that condition 2) in Lemma 3.3 is
satisfied. Let θ > 0 and x, y ∈ Fε(T ), and assume that d(x, y)−d(Tx, Ty) ≤
θ. Then

d(x, y) ≤ d(Tx, Ty) + θ ⇒
d(x, y) ≤ α[d(x, y) + d(x, T (x))] + θ ⇒

(1− α)d(x, y) ≤ αd(x, T (x)) + θ ⇒

d(x, y) ≤ αε+ θ

1− α
.

So, for every θ > 0 there exists φ(θ) =
αε+ θ

1− α
> 0 such that

d(x, y)− d(Tx, Ty) ≤ θ ⇒ d(x, y) ≤ φ(θ).

Now by Lemma 3.3, it follows that

δ(Fε(T )) ≤ φ(2ε), ∀ε > 0,

which means exactly that

δ(Fε(T )) ≤ ε
2 + α

1− α
, ∀ε > 0. �

Remark 5.1. Examples 4.2 and 4.3 holds in Theorem 5.3.
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