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Reduced and irreducible simple algebraic
extensions of commutative rings

S.V. Mihovski

Abstract. Let A be a commutative ring with identity and α be an
algebraic element over A. We give necessary and sufficient conditions
under which the simple algebraic extension A[α] is without nilpotent or
without idempotent elements.

1. Introduction

Let A be a commutative ring with identity element 1. We shall say that
K is a commutative ring extension of A, or A is a subring of K, if A and K
are commutative rings with common identity element and A ⊆ K.

Suppose that K is a commutative ring extension of A and let α ∈ K be an
algebraic element overA. If α is a root of a nonzero polynomial f(x) ∈ A[x]
of a minimal degree n, then we shall say that f(x) is a minimal polynomial
of α over the ring A. The intersection of all subrings of K, containing A
and α, we shall denoted by A[α]. The ring A[α] is called a simple algebraic
extension of A, which is obtained by adjoining α to A.

Let f(x) be any nonzero polynomial over the ring A. If the leading coef-
ficient of f(x) is a0 = 1, then f(x) is said to be a monic polynomial over A.
And what is more, if the leading coefficient a0 of f(x) is a regular element
in A, i.e. a0 is not zero divisor in A, then we shall say that f(x) is a regular
polynomial over the ring A.

Recall that the ring A is called a reduced ring if A has no nonzero nilpo-
tent elements. The ring A is said to be irreducible if A has no nontrivial
idempotents.

A main result in [11] asserts that if A is a reduced commutative ring,
f(x) is a monic minimal polynomial of α over A and the discriminant ∆(f)
is a regular element in A, then the simple algebraic extension A[α] is a
reduced ring. Also in [11] is proved that if A is an irreducible ring and
the minimal polynomial f(x) of α is monic and irreducible over A, then
the simple algebraic extension A[α] again is irreducible. So here arises the
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problem to find necessary and sufficient conditions under which the ring
A[α] is reduced or irreducible. In this paper we solve these two problems in
the parts 3 and 4, respectively.

2. Preliminary lemmas and definitions

It is well known that every polynomial f(x) of degree n with coefficients
from a field F has at most n roots in every field extension of F . Moreover,
there exists a field extension F ⊇ F such that F contains exactly n roots of
f(x). But this fact does not hold for the ring extensions of F . For example,
let G be a direct product of m ≥ 2 cyclic groups of order n and let K = FG
be the group ring of the group G over the field F . Then K is a ring extension
of F and every element of G is a root of the polynomial f(x) = xn−1 ∈ F [x].
Thus f(x) has at least nm roots in K.

Let

(1) f (x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an (n ≥ 1)

be a polynomial over A of degree n. We shall say that the elements α1, α2,
. . . , αn form a canonical system roots of the polynomial f(x) ∈ A[x] if there
exists a commutative ring extension K ⊇ A such that α1, α2, . . . , αn ∈ K
and

(2) f(x) = a0(x− α1)(x− α2) · · · (x− αn).

Every regular polynomial over A has at last one canonical system roots [9].
But example shows that over some rings A there exist polynomials that
have not roots. Moreover, there exist polynomials which have roots, but
they have not canonical systems of roots. For more details see [9].

Later on we shall use the following two definitions. A discriminant of the
polynomial (1) we shall call the following determinant of order 2n− 1

∆(f) = ε

∣∣∣∣∣∣∣∣∣
1 a1 ... an 0 0 ... 0
0 a0 a1 ... an 0 ... 0
... ... ... ... ... ... ... ...
0 0 ... 0 a0 a1 ... an
n (n−1)a1 (n−2)a2 ··· an−1 0 ... 0
0 na0 (n−1)a1 ... 2an−2 an−1 ... 0
... ... ... ... ... ... ... ...
0 0 ... 0 na0 (n−1)a1 ... an−1

∣∣∣∣∣∣∣∣∣ ,

where ε = (−1)
n(n−1)

2 . So, for n = 1 and n = 2 we have ∆(f) = 1 and
∆(f) = a21 − 4a0a2, respectively. Let

(3) g(x) = b0x
m + b1x

m−1 + · · ·+ bm−1x+ bm (m ≥ 1)

be another polynomial over A. Then the determinant of order n+m
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R(f, g) =

∣∣∣∣∣∣∣∣∣
a0 a1 ... an 0 ... 0 0
0 a0 a1 ... an 0 ... 0
... ... ... ... ... ... ... ...
0 0 ... a0 a1 ... an−1 an
b0 b1 ... bm 0 ... 0 0
0 b0 b1 ... bm 0 ... 0
... ... ... ... ... ... ... ...
0 0 ... b0 b1 ... bm−1 bm

∣∣∣∣∣∣∣∣∣
is said to be a resultant of the polynomials f(x) and g(x) (see [3, 8, 13]).

If e1, e2, . . . , ek is a full orthogonal system idempotents of the ring A, that
is the ring A is a direct sum of the ideals eiA (i = 1, . . . , k), then for the
polynomials f(x), g(x) ∈ A[x] we put fi(x) = eif(x) and gi(x) = eig(x). So
from the definition of R(f, g) we conclude that

R(f, g) = R(f1, g1) +R(f2, g2) + · · ·+R(fk, gk).

Likewise,
∆(f) = ∆(f1) + ∆(f2) + · · ·+ ∆(fk).

Later on we shall use these facts without special stipulations.
Let α1, α2, . . . , αn be a canonical system roots of the polynomial (1). In

[9] it is proved that

(4) R(f, g) = am0 g(α1)g(α2) · · · g(αn)

for every polynomial g(x) ∈ A[x], even when g(x) does not have roots.
Moreover, if n ≥ 2 and f ′(x) is the prime derivative of f(x), then [10]

(5) ∆(f) = (−1)
n(n−1)

2 · an−20 · f ′(α1) · f ′(α2) · · · f ′(αn).

WhenA is a field, then (4) and (5) show the well known facts thatR(f, g) = 0
if and only if f(x) and g(x) have common roots and f(x) has multiple roots
if and only if ∆(f) = 0. For arbitrary polynomials f(x), g(x) ∈ A [x] we
have the following.

Lemma 1. (see [9], also [8] p.159 and [13] p. 130) Let A be any commutative
ring with identity. If (1) and (3) are polynomials over A, then

(i) There exist polynomials ϕ(x), ψ(x) ∈ A[x] such that degϕ(x) ≤ m−
1, degψ(x) ≤ n− 1 and

R(f, g) = ϕ(x)f(x) + ψ(x)g(x).

(ii) If n ≥ 2, then there exist polynomials u(x), v(x) ∈ A [x] such that
deg u(x) ≤ n− 2, deg v(x) ≤ n− 1 and

∆(f) = u(x)f(x) + v(x)f ′(x).

So we obtain

Corollary 1. [9] Let f(x) and g(x) be polynomials over the ring A.
(i) If f(x) and g(x) have common roots, then R(f, g) = 0.
(ii) If f(x) has multiple roots, then ∆(f) = 0.
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Examples show that the converse statements of the preceding corollary in
the general case are erroneous [9].

Let S be a multiplicatively closed set of regular elements in A, that is S
contains the product of every his two elements and every element of S is not
zero divisor in A. Then there exists a ring of quotients S−1A with respect
to S ([12], p. 146). Every element of S−1A is of the form s−1a, where s ∈ S,
a ∈ A. Thus all elements of S are invertible in S−1A. If S is the set of all
regular elements in A, then S−1A is said to be the classical ring of quotients,
that we shall denote by Q(A).

Lemma 2. Let A be a ring with identity and f(x) be a regular polynomial
over A of degree n ≥ 1. Then there exists a ring extension K ⊇ A such that
f(x) is a minimal polynomial over A of some element α ∈ K.

Proof. Let (1) be a regular polynomial over A. First, suppose that a0 = 1.
If deg f(x) = n = 1, then we put α = −a1 and the statements are trivial.
If n ≥ 2, then let K = A[y]/I be the quotient ring of the polynomial ring
A[y] modulo the principal ideal I, generated by the polynomial f(y). Thus
Ā = {a + I | a ∈ A} is a subring of K and, because a0 = 1, it is clear
that A and A are isomorphic rings. So A can be viewed as a subring of K.
Obviously, f(x) is a minimal polynomial of the element α = y + I ∈ K.

If a0 6= 1, then let P = Q(A) be the classical ring of quotients of A.
Now A ⊆ P , f(x) ∈ P [x] and a0 is an invertible element of P . Therefore
g(x) = a−10 f(x) is a monic polynomial over P and the statement for g(x)
holds. Thus we conclude that there exists a commutative ring extension
K ⊇ P such that g(x) is a minimal polynomial over P of some element
α ∈ K. Then it is clear that f(x) = a0g(x) is a minimal polynomial of α
over A, as was to be shoved. �

When α ∈ K and P = Q(A) ⊆ K, then by definition there exists the
simple ring extensions P [α] with A[α] ⊆ P [α]. But, if P 6⊂ K, then P [α] is
not defined in the general case. Later on we shall use the following

Lemma 3. Let K ⊇ A be a ring extension and α ∈ K be an algebraic
element over A with a regular minimal polynomial f(x) ∈ A[x]. Then there
exists a ring extension K1 ⊇ A such that Q(A) ⊆ K1, f(x) is a minimal
polynomial of some β ∈ K1 and A[α] ∼= A[β].

Proof. Let (1) be a minimal polynomial over A of the element α. If P =
Q(A) ⊆ K, then we put K1 = K and β = α. Suppose that P 6⊂ K. Since
f(x) ∈ P [x], by Lemma 2 it follows that there exists a commutative ring
extension K1 ⊇ P such that f(x) is a minimal polynomial over P of some
element β ∈ K1. Since A ⊆ P and f(x) ∈ A[x], it is clear that f(x) is a
minimal polynomial of β and over A. Now we shall prove that A[α] and
A[β] are isomorphic.

First we shall show that for g(x) ∈ A[x] the conditions g(α) = 0 and
g(β) = 0 are equivalent. Really, since the leading coefficient a0 is invertible
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in P = Q(A), we have

g(x) = f(x)q(x) + r(x), deg r(x) < deg f(x),

where the polynomials q(x) and r(x) are with coefficients in P . It is clear
that there exists a power ak0 (k ≥ 1) of the element a0 ∈ A such that ak0q(x)
and ak0r(x) to be elements of A[x]. Then

ak0g(x) = f(x)[ak0q(x)] + ak0r(x), deg(ak0r(x)) < deg f(x).

If g(α) = 0, then ak0r(α) = 0 and by the minimum condition of f(x) we
conclude that ak0g(x) = f(x)[ak0q(x)]. Therefore ak0g(β) = 0 and so g(β) = 0,
because ak0 is an invertible element of P . In similar way from g(β) = 0 we
receive g(α) = 0. Now it is easy to verify that the map g(α) 7→ g(β) for
all g(x) ∈ A[x] is an isomorphism between A[α] and A[β], as was to be
showed. �

Lemma 4. Let P = Q(A) be the classical ring of quotients of a commutative
reduced ring A and let f(x) ∈ A[x] be a regular minimal polynomial of the
algebraic element α. Then

(i) The rings A[α] and A = A[x]/(A[x]
⋂
f(x)P [x]) are isomorphic.

(ii) The ring A[α] is reduced if and only if the quotient ring
P = P [x]/f(x)P [x] is reduced.

Proof. In view the preceding lemma we may assume that Q(A) ⊆ K and
α ∈ K.

(i) The mapping Φ : A[x]→ A[α], defined by Φ(g(x)) = g(α) for all g(x) ∈
A[x], is a homomorphism of A[x] onto A[α] with ker Φ = A[x]

⋂
f(x)P [x].

Really, it is clear that A[x]
⋂
f(x)P [x] ⊆ ker Φ. If g(x) ∈ ker Φ, then g(α) =

f(α) = 0. Moreover, there exist polynomials q(x), r(x) ∈ P [x], such that

g(x) = f(x)q(x) + r(x) and deg r(x) < deg f(x).

Hence it follows that r(α) = 0. Since P = Q(A), for some regular element
a ∈ A we have ϕ(x) = ar(x) ∈ A[x]. But ϕ(α) = 0 and degϕ(x) < deg f(x)
imply ϕ(x) = 0. So we obtain r(x) = 0 and g(x) ∈ f(x)P [x], as was be
shown.

(ii) Let P be a reduced ring. Since

A = A[x]
/

(A[x]
⋂
f(x)P [x]) ∼= (A[x] + f(x)P [x])

/
f(x)P [x] ⊆ P ,

so we conclude that A is a reduced ring. Now by (i) we obtain that the
ring A[α] is reduced. Conversely, suppose that A[α] is reduced. If P is not
reduced and ϕ(x)+f(x)P [x] is its nontrivial nilpotent element, then we may
assume that 0 6= ϕ(x) ∈ P [x], degϕ(x) < deg f(x) and ϕk(x) ∈ f(x)P [x]
for some integer k > 1. Let a ∈ A be a nonzero regular element such that
0 6= aϕ(x) ∈ A[x]. Then it is clear that aϕ(x)+A[x]

⋂
f(x)P [x] is a nonzero

nilpotent element of A. This shows that A is not reduced ring and by (i)
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we receive that A[α] is not reduced, which is a contradiction. So the proof
is completed. �

Corollary 2. If the leading coefficient of the polynomial f(x) ∈ A[x] is an
invertible element of A and f(x) is a minimal polynomial of α, then the
rings A[α] and A[x]/f(x)A[x] are isomorphic.

Proof. Let P be as above. Since the leading coefficient of the polynomial
f(x) is invertible in A, it is easy to verify that f(x)A[x] ⊆ A[x]

⋂
f(x)P (x) ⊆

f(x)A[x]. Then the statement follows by Lemma 4(i). �

3. Simple algebraic extensions of reduced rings

Now let A be a reduced commutative ring and let f(x) ∈ A[x] be a
minimal polynomial of the algebraic element α. It is clear that A[α] is
reduced if and only if the ring B[α] is reduced for every finitely generated
subring B ⊆ A such that f(x) ∈ B[x]. Therefore it is sufficient to find
necessary and sufficient conditions A[α] to be reduce when A is a noetherian
ring. First we shall consider the case when A is a field.

Recall that a field F of characteristic p ≥ 0 is said to be perfect if p = 0, or
p > 0 and F p = F ([2], p. 137). So every finite field and every algebraically
closed field is perfect.

If F is a field and f(x), g(x) ∈ F [x], then as ever, by (f, g) we shall denote
the monic greatest common divisor over F of the polynomials f(x) and g(x).
Moreover, f(x) and g(x) are associated if f(x) = ag(x) for some non zero
element a ∈ F .

Lemma 5. Let F be a field of characteristic p ≥ 0 and let f(x) be a nonzero
polynomial over F . Then the following conditions are equivalent:

(i) The quotient ring F [x]/f(x)F [x] is reduced.
(ii) The polynomial f(x) is a product of distinct non associated irre-

ducible polynomials over the field of F .
(iii) Either (f, f ′) = 1, or F is not perfect field of characteristic p 6= 0 and

(f, f ′) is a products of distinct non associated irreducible polynomials
of the form ϕ(xp) ∈ F [x].

Proof. Let f(x) = afk11 (x)fk22 (x) · · · fkss (x) be a factorization of f(x) over
F , where f1(x), . . . , fs(x) are distinct non associated irreducible polynomials
over F and a ∈ F . Since (fi, fj) = 1 for all i 6= j, by the Chinese theorem
([8], p.88) we have

F [x]

/
f(x)F [x] ∼=

s∑
i=1

⊕F [x]
/
fkii (x)F [x].

It is clear that F [x]/f(x)F [x] is reduced if and only if k1 = k2 = · · · = ks =
1. So we obtain that (i) and (ii) are equivalent.
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Further, let f(x) = f1(x)f2(x) · · · fs(x) be a product of distinct non asso-
ciated irreducible polynomials over F . Denote by g(x) = f1(x) · · · fk(x) the
product of all factors of f(x), not having multiple roots. When k = 0 we
put g(x) = 1. If k < s, let d(x) = fk+1(x)fk+2(x) · · · fs(x) be the product
of all factors of f(x) which have multiple roots. This happens if p > 0 and
F is not perfect field (see ([2] p. 138). In such case fi(x) = ϕi(x

p), where
ϕi(x) ∈ F [x] for i = k + 1, k + 2, . . . , s. When k = s we put d(x) = 1. Thus
f(x) = g(x)d(x) and either d(x) = 1, or d(x) = ϕ(xp) with ϕ(x) ∈ F [x]
and degϕ(x) ≥ 1 (see [6] p. 162). Therefore we have d′(x) = 0. Since
f ′(x) = g′(x)d(x) and (g, g′) = 1, it is clear that d(x) = (f, f ′). So we see
that (ii) and (iii) are equivalent, as was to be shown. �

As an immediate consequence we obtain

Corollary 3. Let F be a field and let f(x) ∈ F [x] be a nonzero polynomial.
(i) If ∆(f) 6= 0, then the quotient ring F [x]/f(x)F [x] is reduced.
(ii) If F is a perfect field, then the ring F [x]/f(x)F [x] is reduced if and

only if ∆(f) 6= 0.

Really, it is sufficient to observe that the conditions (f, f ′) = 1 and ∆(f) 6=
0 are equivalent.

Now let A be a reduced commutative ring and let f(x) ∈ A[x] be a
minimal polynomial of the algebraic element α. As was mentioned above, it
is sufficient to find necessary and sufficient conditions under which A[α] is
reduce, when A is a noetherian ring.

Theorem 1. Let A be a reduced commutative noetherian ring with classical
ring of quotients P = Q(A) and let α be an algebraic element over A with
a minimal polynomial f(x) ∈ A[x]. If f(x) is a regular polynomial over A,
then the following statements are equivalent:

(i) The ring A[α] is reduced.
(ii) For every regular element a ∈ A the polynomial af(x) is not divisible

by squares of polynomials over A of degree t ≥ 1.
(iii) For every minimal idempotent e ∈ P the polynomial ef(x) is a prod-

uct of distinct non associated irreducible polynomials over the field
eP .

(iv) For every minimal idempotent e ∈ P , either (ef, ef ′) = e, or eP is
a field of characteristic p > 0, eP is not a perfect field and (ef, ef ′)
is a product of distinct non associated irreducible polynomials of the
form ϕ(xp) ∈ eP [x].

Proof. Suppose that A ⊆ K and α ∈ K. By Lemma 3, without loss of
generality, we may assume that P = Q(A) ⊆ K. Since A is a reduced
commutative notherian ring, by Goldie’s Theorem (see [1], Corollary 2, p.
323), the ring P is a finite direct sum

P = A1 ⊕A2 ⊕ · · · ⊕Ak
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of fields Ai with identity elements ei (i = 1, . . . , k). Then Ai = eiP and it is
clear that fi(x) = eif(x) is a minimal polynomial of α over the field Ai for
i = 1, . . . , k. Moreover,

A[α] ⊆ P [α] = A1[α]⊕A2[α]⊕ · · · ⊕Ak[α]

and P [α] ∼= P [x]/f(x)P [x]. Thus, by Lemma 4(ii) we obtain that A[α] is
reduced if and only if the rings A1[α], A2[α], . . . , Ak[α] are reduced. Hence,
by Lemma 5 we conclude that the statements (i), (iii) and (iv) are equivalent.
Therefore it is sufficient to prove that (i) and (ii) are equivalent.

Really, suppose that A[α] is a reduced ring but af(x) = p2(x)q(x) for
some regular element a ∈ A, where p(x), q(x) ∈ A[x] and deg p(x) ≥ 1.
Then

p(x) = e1p(x) + e2p(x) + · · ·+ ekp(x)

and without loss of generality we may assume that deg e1p(x) ≥ 1. Thus
the equality af(x) = p2(x)q(x) shows that

e1af(x) = (e1p(x))2e1q(x)

and

1 ≤ deg(e1p(x)q(x)) < deg(e1af(x)) = deg f1(x),

where f1(x) = e1f(x). Therefore, e1p(x)q(x) + f1(x)A1[x] is a nonzero
nilpotent element of the quotient ring A1[x]/f1(x)A1[x]. As far as f1(x) is
a minimal polynomial of α over A1, by Corollary 2 we receive that A1[α] is
not reduced, which is impossible. Conversely, if A[α] is not reduced ring,
then P [α] is not reduced and without loss of generality we may assume that
A1[α] is not reduced. Then by Corollary 2 and Lemma 5 we obtain that
f1(x) = p21(x)q1(x), where p1(x), q1(x) ∈ A1[x] and deg p1(x) ≥ 1. Now we
put

p(x) = p1(x) + e2 + · · ·+ ek,

q(x) = q1(x) + f2 + · · ·+ fk

and thus we receive f(x) = p2(x)q(x), where p(x), q(x) ∈ P [x] and deg p(x) ≥
1. Since P is a ring of quotients, it follows that there exist regular elements
b, c ∈ A such that bp(x) and cq(x) are elements of A[x]. Then a = b2c is a
regular element in A and af(x) is divisible by the square of bp(x) ∈ A[x], as
was to be showed.

As was mentioned above, the main result of [11] asserts that if ∆(f) is
a regular element in A, then A[α] is a reduced ring. But A[α] may be
reduced even when ∆(f) = 0. Indeed, let α be a root of the polynomial
f(x) = xp − y ∈ A[x], where A = F (y) is the ring of quotients of the
polynomial ring F [y] over a field F of characteristic p > 0. Then ∆(f) = 0,
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f(x) is irreducible over A (see [2], p. 165) and A[α] is reduced by Corollary
2 and Lemma 5. �

We shall say that the reduced commutative ring A is locally perfect if
for every finitely generated subring B ⊆ A and every minimal idempotent
e ∈ Q(B) the field eQ(B) is perfect. If the additive group of the reduced
ring A is either torsion free, or locally finite, then A is a locally perfect ring.
Thus we have the following

Corollary 4. Let α be an algebraic element over the commutative ring A
with a regular minimal polynomial f(x) ∈ A[x] and let ∆(f) be the discrim-
inant of f(x).

(i) If ∆(f) is a regular element in A, then the ring A[α] is reduced if
and only if A is reduced.

(ii) If A is a reduced locally perfect ring, then A[α] is reduced if and only
if ∆(f) is a regular element in A.

Proof. (i) Assume that A is reduced and ∆(f) is regular in A, but A[α] is
not reduced. If β is a nonzero nilpotent element of A[α], then let B be the
subring of A, generated by the coefficients of β and f(x). Thus f(x) ∈ B[x]
and β ∈ B[α]. Hence by the preceding theorem it follows that for some
minimal idempotent e ∈ Q(B) the polynomial ef(x) has multiple roots and
therefore ∆(ef) = 0. Since ∆(ef) = e∆(f), we obtain that the element
∆(f) is a proper divisor of zero, which is a contradiction. As far as the
converse statement is trivial, the part (i) is proved.

(ii) In view of (i) it is sufficient to prove that if A[α] is reduced, then ∆(f)
is regular. Assume for moment that ∆(f)a = 0 and 0 6= a ∈ A. Let B be
the finitely generated subring of A, generated by the coefficients of f(x) and
the element a ∈ A. Thus f(x) ∈ B[x] and a ∈ B. Let e1, e2, . . . , en be a full
orthogonal system minimal idempotents of Q(B). Then

∆(f) = ∆(e1f) + ∆(e2f) + · · ·+ ∆(enf),

where ∆(eif) ∈ eiQ(B) for i = 1, 2, . . . , n. Since each eiQ(B) is a field
and ∆(f) is a proper divisor of zero in B, we conclude that for some i
(1 ≤ i ≤ n) we have ∆(eif) = 0. This implies that eif(x) has multiple
roots. But eiQ(B) is a perfect field and by Corollary 2 and Lemma 5 we
obtain that eiQ(B)[α] is not reduced and therefore Q(B)[α] is not reduced
ring, which is a contradiction. So the proof is completed. �

Let K be any ring extension of the commutative ring A where K is not
necessary commutative. If the element α ∈ K centralizes A, that is α.a =
a.α for all a ∈ A, then we may to consider the simple commutative ring
extension A[α]. So we have the following

Corollary 5. Let F be a perfect field and let S be an element of the n× n
matrix ring M(n, F ). If F contains all characteristic values of S, then the
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ring F [S] is reduced if and only if for some non-singular matrix T ∈M(n, F )
the matrix TST−1 is diagonal.

Proof. By Corollary 2 and Corollary 3(ii) the ring F [S] is reduced if and
only if ∆(f) 6= 0 where f = f(λ) is the minimal polynomial of S in F [λ].
Since f(λ) is the last invariant factor of the characteristic matrix S − λE
(see [5], p. 389), this condition is equivalent with the condition the Jordan’s
normal form of S to be diagonal. �

4. Simple algebraic extensions of
irreducible commutative rings

In this part we shall study the problem who the ring A[α] contains nontriv-
ial idempotent elements. Later on we shall say that the idempotent E of the
ringA[α] (respectively ofA[x]/f(x)A[x]) is a trivial idempotent if E is an ele-
ment of the subring A (respectively of the subring (A+f(x)A[x])/f(x)A[x]).

As usually we shall say that the polynomial p(x) ∈ A[x] divides the poly-
nomial f(x) ∈ A[x] over the ring A if there exists a polynomial q(x) ∈ A[x]
such that f(x) = p(x)q(x). The polynomial p(x) ∈ A[x] is said to be a
trivial divisor of f(x) if p(x) divides f(x) and there exists an element a ∈ A
such that

p(x) + f(x)A[x] = a+ f(x)A[x],

that is f(x) divides p(x) − a over A. For example, if e ∈ A is a nontrivial
idempotent of A, then every polynomial f(x) ∈ A[x] has a trivial decompo-
sition

f(x) = [ef(x) + (1− e)][e+ (1− e)f(x)].

The decomposition f(x) = p(x)q(x) over A is said to be nontrivial decompo-
sition if over A the polynomials p(x) and q(x) are nontrivial divisors of f(x).
Also, the decomposition f(x) = p(x)q(x) is an essential decomposition over
A if p(x) and q(x) are nontrivial divisors of f(x) and deg p(x) < deg f(x),
deg q(x) < deg f(x). We shall say that the polynomial f(x) is irreducible
over the ring A if f(x) has no nontrivial decomposition over A.

Recall that if F is a field and ϕ(x), ψ(x) ∈ F [x], then for the greatest
common divisor (ϕ,ψ) there exist polynomials u(x), v(x) ∈ F [x] such that

(ϕ,ψ) = u(x)ϕ(x) + v(x)ψ(x)

and deg u(x) < degψ(x), deg v(x) < degϕ(x). Likewise, if A is any com-
mutative ring and ϕ(x), ψ(x) ∈ A[x], then by Lemma 1 it follows that for
the resultant R(ϕ,ψ) there exist polynomials u(x), v(x) ∈ A[x] such that

R(ϕ,ψ) = u(x)ϕ(x) + v(x)ψ(x) ∈ A
and deg u(x) < degψ(x), deg v(x) < degϕ(x). From here on we shall use
these facts without special stipulations.
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Let f(x) be a minimal polynomial over the field F of the algebraic ele-
ment α. Since the rings F [α] and F [x]/f(x)F [x] are isomorphic, by Chain’s
theorem it follows that F [α] contains nontrivial idempotents if and only if
f(x) is not associated with a power of some irreducible polynomial over F .
Now we shall prove the following lemma, which gives the idempotents of
F [α] in explicit form.

Lemma 6. Let α be an algebraic element over the field F with a minimal
polynomial f(x) ∈ F [x]. Then

(i) The ring F [α] is irreducible if and only if f(x) is associated with a
power of an irreducible polynomial of F [x].

(ii) The elements E1(α) and E2(α) of F [α] form a full orthogonal system
idempotents if and only if over F there exists a decomposition f(x) =
ϕ(x)ψ(x) such that

(ϕ,ψ) = u(x)ϕ(x) + v(x)ψ(x) = 1,

where deg(u(x)ϕ(x)) < deg f(x) and

E1(α) = u(α)ϕ(α), E2(α) = v(α)ψ(α).

(iii) The elements E1(α) and E2(α) of F [α] form a nontrivial full or-
thogonal system idempotents if and only if over F there exists an
essential decomposition f(x) = ϕ(x)ψ(x) such that

R(ϕ,ψ) = u1(x)ϕ(x) + v1(x)ψ(x) 6= 0

and

E1(α) = R(ϕ,ψ)−1u1(α)ϕ(α), E2(α) = R(ϕ,ψ)−1v1(α)ψ(α).

Proof. (i) Let F [α] be an irreducible ring and let

f(x) = apk11 (x)pk22 (x) · · · pkss (x)

be the canonical decomposition of f(x) over the field F . Since F [α] and
F [x]/f(x)F [x] are isomorphic rings, by the Chinese theorem we obtain that
f(x) = apk11 (x) and therefore f(x) is associated with a power of irreducible
polynomial over F . Conversely, if f(x) is associated with a power of an ir-
reducible polynomial over F and f(x) = apk(x), then f(x)F [x] = pk(x)F [x]
and p(x)F [x]

/
pk(x)F [x] is a nilideal of F [x]

/
pk(x)F [x]. Since

(F [x]
/
pk(x)F [x])

/
(p(x)F [x]

/
pk(x)F [x]) ∼= F [x]/p(x)F [x]

and F [x]/p(x)F [x] is a field, by [4], Proposition 11.5.1 we conclude that (i)
follows.
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(ii)Suppose that the elements E1(α) and E2(α) form a full orthogonal
system idempotents of F [α]. Since the rings F [α] and F̄ [x] = F [x]

/
f(x)F [x]

are isomorphic, it follows that in F̄ [x] there exist elements

Ē1(x) = e1(x) + f(x)F [x], Ē2(x) = e2(x) + f(x)F [x]

such that Ē1(x) and Ē2(x) form a full orthogonal system idempotents of
F̄ [x] and e1(α) = E1(α), e2(α) = E2(α). Without loss of generality we may
to assume that deg ei(x) < deg f(x) for i = 1, 2. Obviously, Ē1(x) and Ē2(x)
form a full orthogonal system idempotents if and only if e1(x) + e2(x) = 1
and e1(x)e2(x) = f(x)q(x) for some q(x) ∈ F [x]. If Ē1(x) and Ē2(x) form
a trivial system orthogonal idempotents of F̄ [x] and e1(x) = 0, e2(x) = 1,
then we put ϕ(x) = f(x), ψ(x) = 1 and u(x) = 0, v(x) = 1. Suppose that
Ē1(x) and Ē2(x) form a nontrivial system orthogonal idempotents. Since
F [x] is a factorial ring (see [8], p. 142), we conclude that

f(x) = ϕ(x)ψ(x), e1(x) = u(x)ϕ(x), e2(x) = v(x)ψ(x),

where ϕ(x) = (e1, f) and ψ(x) = (e2, f). Moreover, the polynomials u(x)
and v(x) in F [x] are uniquely determined. Since the converse statement is
trivial, so (ii) is proved.

(iii) When Ē1(x) and Ē2(x) form a nontrivial system orthogonal idempo-
tents of F̄ [x], it is clear that 0 < deg ei(x) < deg f(x) for i = 1, 2. Thus we
obtain that the decomposition f(x) = ϕ(x)ψ(x) is nontrivial and therefore
degϕ(x) ≥ 1, degψ(x) ≥ 1. As far e1(x) + e2(x) = 1, we have (ϕ,ψ) = 1
and hence we receive

R(ϕ,ψ) = u1(x)ϕ(x) + v1(x)ψ(x) 6= 0,

where, by Lemma 1, deg u1(x) < degψ(x) and deg v1(x) < degϕ(x). Now
it is easy to verify that u(x) = R(ϕ,ψ)−1u1(x) and v(x) = R(ϕ,ψ)−1v1(x).
So we prove and the statement (iii). �

The following lemma is an analog of the parts (ii) and (iii) of the preceding
lemma for commutative artinian rings.

Lemma 7. Let α be an algebraic element over the reduced commutative
artinian ring A with a regular minimal polynomial f(x) ∈ A[x]. Then

(i) The element E(α) is a nontrivial idempotent in A[α] if and only if
over A there exists a nontrivial decomposition f(x) = ϕ(x)ψ(x) such
that

u(x)ϕ(x) + v(x)ψ(x) = 1

for some polynomials u(x) and v(x) of A[x], where deg(u(x)ϕ(x)) <
deg f(x) and E(α) = u(α)ϕ(α).

(ii) The ring A[α] contains nontrivial idempotents if and only if for some
nonzero idempotent e ∈ A over the ring eA there exists an essential
decomposition ef(x) = ϕ(x)ψ(x) such that R(ϕ,ψ) is a nonzero el-
ement of eA.
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Proof. By Wedderburn-Artin theorem, A = F1 ⊕ F2 ⊕ · · · ⊕ Fm is a finite
direct sum of fields Fi with identity elements ei (i = 1, . . . ,m). So we have
the decomposition

A[α] = F1[α]⊕ F2[α]⊕ · · · ⊕ Fm[α].

(i) Suppose that E(α) is a nontrivial idempotent of A[α]. Then the ele-
ments E1(α) = E(α) and E2(α) = 1− E(α) have the decompositions

(6) Ek(α) = Ek1(α) + Ek2(α) + · · ·+ Ekm(α) (k = 1, 2),

where E1i(α) and E2i(α) form a full orthogonal system idempotents of Fi[α].
Obviously fi(x) = eif(x) is a minimal polynomial of α over the field Fi =
eiA for all i = 1, 2, . . . ,m. By Lemma 6(ii) it follows that over Fi there
exists a decomposition eif(x) = ϕi(x)ψi(x) such that

(ϕi, ψi) = ui(x)ϕi(x) + vi(x)ψi(x) = ei,

where deg(ui(x)ϕi(x)) < deg f(x) and

E1i(α) = ui(α)ϕi(α), E2i(α) = vi(α)ψi(α)

for i = 1, 2, . . . ,m. Then f(x) = ϕ(x)ψ(x), where

ϕ(x) = ϕ1(x) + ϕ2(x) + · · ·+ ϕm(x),

ψ(x) = ψ1(x) + ψ2(x) + · · ·+ ψm(x).

Moreover, u(x)ϕ(x) + v(x)ψ(x) = 1, where

u(x) = u1(x) + u2(x) + · · ·+ um(x),

v(x) = v1(x) + v2(x) + · · ·+ vm(x).

Obviously, deg(u(x)ϕ(x)) < deg f(x) and E(α) = u(α)ϕ(α). Since the
converse statement is evident, so (i) is proved.

(ii) If E(α) is a nontrivial idempotent of A[α], then again we put E1(α) =
E(α) and E2(α) = 1 − E(α). Suppose that E1(α) and E2(α) have the de-
compositions (6). Without loss of generality we may to assume that E11(α)
and E21(α) form a full nontrivial orthogonal system idempotents of F1[α],
where f1(x) = ef(x) is a minimal polynomial of α over the field F1 = eA
and e = e1. Then by Lemma 6(ii), over F1 there exists an essential decom-
position ef = ϕ(x)ψ(x) such that R(ϕ,ψ) 6= 0.

Conversely, if for some idempotent e ∈ A over the ring eA there exists an
essential decomposition ef(x) = ϕ(x)ψ(x) such that R(ϕ,ψ) 6= 0, we shall
have the decompositions

ϕ(x) = ϕ1(x) + ϕ2(x) + · · ·+ ϕm(x),

ψ(x) = ψ1(x) + ψ2(x) + · · ·+ ψm(x),

where ϕi(x) = eiϕ(x) and ψi(x) = eiψ(x) for i = 1, . . . ,m. Since
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R(ϕ,ψ) = R(ϕ1, ψ1) +R(ϕ2, ψ2) + · · ·+R(ϕm, ψm) 6= 0,

it follows that for some k (1 ≤ k ≤ m) we have R(ϕk, ψk) 6= 0. Then

ekef(x) = ekf(x) = ϕk(x)ψk(x)

is an essential decomposition over the field Fk and by Lemma 6(ii) it follows
that Fk[α] contains nontrivial idempotents. Since Fk[α] ⊆ A[α], we conclude
that A[α] contains nontrivial idempotents, as was to be shoved. �

Let I be an ideal of A and let I[α] be the simple algebraic extension of
I, which is obtained by adjoining of α to I. As for A[x]/f(x)A[x], we shall
say that an idempotent E of the ring A[α]/I[α] is trivial if E is an element
of the subring (A+ I[α])/I[α].

Lemma 8. Let A[α] be any simple ring extension of the commutative ring
A and let I be a nil-ideal of A.

(i) All idempotents of A[α] are trivial if and only if all idempotents of
the quotient ring A[α]/I[α] are trivial.

(ii) If α is an algebraic element over the ring A with a regular minimal
polynomial

f (x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an (n ≥ 1),

then there exists a simple algebraic extension Ā[β] of the quotient
ring Ā = A/I, such that A[α]

/
I[α] ∼= Ā[β] and

f̄(x) = ā0x
n + ā1x

n−1 + · · ·+ ān−1x+ ān (āk = ak + I)

is a regular minimal polynomial over Ā of the element β.

Proof. (i) Suppose that all idempotents of A[α] are trivial and let E(α) =
u(α) + I[α] be an idempotent of A[α]/I[α]. Then u(α)2 − u(α) ∈ I[α]
and, since I[α] is a nil-ideal of A[α], by ([4], Proposition 11.5.1) it follows
that there exists an idempotent e(α) ∈ A[α] such that e(α) − u(α) ∈ I[α].
Therefore E(α) = e(α) + I[α] and, since all idempotents of A[α] are trivial,
we have e(α) = e ∈ A. So we conclude that all idempotents of A[α]/I[α]
are trivial. Conversely, assume that all idempotents of A[α]/I[α] are trivial.
If e(α) is an idempotent of A[α], then e(α) + I[α]is a trivial idempotent of
A[α]/I[α] and hence for some element a ∈ A we have e(α) + I[α] = a+ I[α].
Since e(α)2 − e(α) = 0, we obtain that a2 − a ∈ I. Then again by ([4],
Proposition 11.5.1) we obtain that there exists an idempotent e ∈ A, such
that a− e ∈ I. As far I ⊆ I[α], we receive

e(α) + I[α] = e+ I[α].

Suppose that e(α) = e+v(α), where v(α) ∈ I[α] is a nilpotent element. Then
e(α)e = e + v(α)e is an invertible element of the ring eA[α]. But e(α)e is
simultaneously an idempotent of eA[α]. Thus we obtain that e(α)e = e and
v(α)e = 0. Now e(α)(1− e) = v(α)(1− e) is simultaneously an idempotent
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and a nilpotent element of (1− e)A[α]. So we conclude that v(α)(1− e) = 0
and hence

v(α) = v(α)e+ v(α)(1− e) = 0.

Therefore e(α) = e is a trivial idempotent of A[α] and thus (i) is proved.
(ii) Obviously, A[α]

/
I[α] = Ã[α̃] is a simple ring extension of the subring

Ã = (A+ I[α])/I[α], obtained by adjoining of the element α̃ = α + I[α] to
Ã . Since f(α) = 0, it is clear that α̃ is a root of

f̃(x) = ã0x
n + ã1x

n−1 + · · ·+ ãn−1x+ ãn (ãk = ak + I[α]).

Therefore Ã[α̃] is a simple algebraic extension of Ã. If

g̃(x) = b̃0x
m + b̃1x

m−1 + · · ·+ b̃m−1x+ b̃m (b̃k = bk + I[α] ∈ Ã)

is a minimal nonzero polynomial of α̃ over Ã, then b0 /∈ I and m ≤ n.
Suppose that m < n. As far g̃(α̃) = g(α) + I[α] = I[α], we conclude that

g(α) = b0α
m + b1α

m−1 + · · ·+ bm−1α+ bm

= c0α
s + c1α

s−1 + · · ·+ cs−1α+ cs (ck ∈ I),

where b0 6= c0. Now we use the fact that a0 is an invertible element in the
ring of quotients Q(A) and f(α) = 0. So without loss of generality we may
to suppose that s < n and c0, c1, . . . , cs ∈ NilQ(A). Therefore there exists
a regular element a ∈ A such that abi ∈ A (i = 1, . . . ,m) and acj ∈ I
(j = 1, . . . , s). Thus we obtain that α is a root of a nonzero polynomial
of degree t = min{m, s} < n, which is impossible. Hence m = n and
f̃(x) is a minimal polynomial of α̃ overÃ. By a similar way we prove that
A
⋂
I[α] = I. Then it is easy to verify that ã0 is a regular element of Ã.

Moreover,

Ã = (A+ I[α])/I[α] ∼= A
/

(A
⋂
I[α]) = A

/
I = Ā.

Let f̄(x) be a minimal polynomial of some element β over the ring Ā. Then
the mapping Ã[α̃]→ Ā[β], defined by α̃ 7→ β and a+ I[α] 7→ a+ I for a ∈ A
is an isomorphism, as was to be showed. �

Now by Lemma 8(ii) we shall prove following theorem.

Theorem 2. Let α be an algebraic element over an artinian commutative
ring A with a regular minimal polynomial f(x) ∈ A[x]. If Ā = A/NilA and
f̄(x) is the natural image of f(x) into Ā[x], then

(i) A[α] is irreducible if and only if Ā is a field and f̄(x) is associated
with a power of some irreducible polynomial over Ā.

(ii) A[α] contains only trivial idempotents if and only if for every min-
imal idempotent ē ∈ Ā the polynomial ēf̄(x) is associated with a
power of some irreducible polynomial over the field ēĀ.
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Proof. If A is an artinian commutative ring, then Ā = A/NilA is a finite
direct sum of fields [6, 7]. Since A is irreducible if and only if Ā is irre-
ducible, by Lemma 8 we obtain that A[α] is irreducible if and only if Ā[β] is
irreducible, where Ā is a field and f̄(x) is a regular minimal polynomial of
β over the field Ā. Then the statement (i) follows by Lemma 7(i). Again by
Lemma 8 it follows that A[α] contains only trivial idempotents if and only
if Ā[β] contains only trivial idempotents. Since Ā is a finite direct sum of
fields, by Lemma 7(i) we conclude that for every minimal idempotent ē ∈ Ā
the ring ēĀ[β] contains only trivial idempotents. So by Lemma 8 we obtain
and the statement (ii). �

Theorem 3. Let α be an algebraic element over a commutative noetherian
ring A with a monic minimal polynomial f(x) ∈ A[x] and let P = Q(Ā)
be the ring of quotients of Ā = A/NilA. The ring A[α] contains non-
trivial idempotents if and only if over the ring P̄ there exists a nontrivial
decomposition f̄(x) = ϕ̄(x)ψ̄(x) such that ū(x)ϕ̄(x) + v̄(x)ψ̄(x) = 1̄ for
some polynomials ū(x), v̄(x) ∈ P [x], where deg(ū(x)ϕ̄(x)) < deg f̄(x) and
ū(x)ϕ̄(x) ∈ Ā[x].

Proof. Suppose that A[α] contains a nontrivial idempotent E(α). Then
by Lemma 8(i) it follows that E(α) + I[α] is a nontrivial idempotent of
A[α]/I[α], where I = NilA. Now by Lemma 8(ii) we conclude that there
exists a nontrivial idempotent Ē(β) of the ring Ā[β], where f̄(x) ∈ Ā[x] is a
minimal polynomial of β. Without loss of generality, by Lemma 3 we may
assume that Ē(β) is a nontrivial idempotent of P [β]. Since P is a reduced
artinian ring, by Lemma 7(i) we conclude that over the ring P there exists a
nontrivial decomposition f̄(x) = ϕ̄(x)ψ̄(x) such that ū(x)ϕ̄(x)+ v̄(x)ψ̄(x) =
1̄ for some polynomials ū(x) and v̄(x) of P [x], where deg(ū(x)ϕ̄(x)) <
deg f̄(x) and Ē(β) = ū(β)ϕ̄(β) ∈ Ā[β]. Since f̄(x) ∈ Ā[x] is a monic
minimal polynomial of β over Ā and deg(ū(x)ϕ̄(x)) < deg f̄(x), it is clear
that Ē(β) = ū(β)ϕ̄(β) ∈ Ā[β] implies ū(x)ϕ̄(x) ∈ Ā[x].

Conversely, suppose that the polynomial f(x) ∈ A[x] satisfy the con-
ditions of the theorem and let g(x) be a polynomial in A[x] such that
ḡ(x) = ū(x)ϕ̄(x). If β is an algebraic element over Ā with a minimal poly-
nomial f̄(x) ∈ B̄[x], then by Lemma 8(ii) it follows that A[α]/I[α] and Ā[β]
are isomorphic rings. Since ḡ(β) = ū(β)ϕ̄(β) is a nontrivial idempotent in
Ā[β], the element g(α) + I[α] is a nontrivial idempotent in A[α]/I[α] (see
the proof of Lemma 8(ii)). If u = g2(α) − g(α), then by Proposition 3.6.1
[7] we conclude that E(α) = g(α)− x[1− 2g(α)] is a nontrivial idempotent
of A[α], where

x =
1

2

(
2u−

(
4
2

)
u2 +

(
6
3

)
u3 − · · ·

)
.

So the theorem is proved. �
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It is easy to verify that in the preceding theorem the condition f(x) to
be a monic polynomial is not necessary. Really, let f(x) = 4x2 − 1 be a
minimal polynomial of the algebraic element α over the integer ring Z. Then
f(x) = (2x−1)(2x+1) is a nontrivial decomposition over the field Q = Q(Z)
and 2−1(2x + 1) − 2−1(2x− 1) = 1. Thus e(x) = 2−1(2x + 1) = x + 2−1 is
not element of Z[x], but

e(α) = α+ 2−1 = α+ 2α2

is an idempotent of Z[α].
For regular minimal polynomials we have the following

Corollary 6. Let A be a commutative noetherian ring and let P = Q(Ā)
be the ring of quotients of Ā = A/NilA. Suppose that f(x) is a regular
minimal polynomial of an algebraic element α over the ring A. If for every
minimal idempotent e ∈ P the polynomial ef(x) is associated with a power
of some irreducible polynomial over the field eP , then all idempotents of the
ring A[α] are trivial.

The proof of this corollary is as the proof of Theorem 3.
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