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Reduced and irreducible simple algebraic
extensions of commutative rings

S.V. MIHOVSKI

ABSTRACT. Let A be a commutative ring with identity and o be an
algebraic element over A. We give necessary and sufficient conditions
under which the simple algebraic extension A[«] is without nilpotent or
without idempotent elements.

1. INTRODUCTION

Let A be a commutative ring with identity element 1. We shall say that
K is a commutative ring extension of A, or A is a subring of K, if A and K
are commutative rings with common identity element and A C K.

Suppose that K is a commutative ring extension of A and let o € K be an
algebraic element overA. If a is a root of a nonzero polynomial f(z) € Alx]
of a minimal degree n, then we shall say that f(z) is a minimal polynomial
of a over the ring A. The intersection of all subrings of K, containing A
and «, we shall denoted by A[a]. The ring A[a] is called a simple algebraic
extension of A, which is obtained by adjoining « to A.

Let f(z) be any nonzero polynomial over the ring A. If the leading coef-
ficient of f(x) is ap = 1, then f(z) is said to be a monic polynomial over A.
And what is more, if the leading coefficient ag of f(x) is a regular element
in A, i.e. ap is not zero divisor in A, then we shall say that f(x) is a regular
polynomial over the ring A.

Recall that the ring A is called a reduced ring if A has no nonzero nilpo-
tent elements. The ring A is said to be irreducible if A has no nontrivial
idempotents.

A main result in [11] asserts that if A is a reduced commutative ring,
f(z) is a monic minimal polynomial of o over A and the discriminant A(f)
is a regular element in A, then the simple algebraic extension Ala] is a
reduced ring. Also in [11] is proved that if A is an irreducible ring and
the minimal polynomial f(x) of « is monic and irreducible over A, then
the simple algebraic extension Ala] again is irreducible. So here arises the
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problem to find necessary and sufficient conditions under which the ring
Ala] is reduced or irreducible. In this paper we solve these two problems in
the parts 3 and 4, respectively.

2. PRELIMINARY LEMMAS AND DEFINITIONS

It is well known that every polynomial f(x) of degree n with coefficients
from a field F' has at most n roots in every field extension of F'. Moreover,
there exists a field extension F O F such that F contains exactly n roots of
f(x). But this fact does not hold for the ring extensions of F'. For example,
let G be a direct product of m > 2 cyclic groups of order n and let K = FG
be the group ring of the group G over the field F'. Then K is a ring extension
of F and every element of G is a root of the polynomial f(z) = 2" —1 € Flx].
Thus f(x) has at least n™ roots in K.

Let

(1) f(x) =apz" + a2 '+ +a,_1x+ay, (n>1)

be a polynomial over A of degree n. We shall say that the elements a1, ao,
..., ap form a canonical system roots of the polynomial f(z) € A[x] if there

exists a commutative ring extension KX O A such that ay,as,...,a, € K
and
(2) f(z) = ao(z —a1)(z —az) - (z — an).

Every regular polynomial over A has at last one canonical system roots [9].
But example shows that over some rings A there exist polynomials that
have not roots. Moreover, there exist polynomials which have roots, but
they have not canonical systems of roots. For more details see [9].

Later on we shall use the following two definitions. A discriminant of the
polynomial (1) we shall call the following determinant of order 2n — 1

1 a an, 0 0 0

0 ao ai an 0 0

0 0 o0 ap ai an
A(f) =&l n (n—1)a1 (n—2)az n_1 0 0 >

0 nap (n—1)ax 2ap—2 Ap-_1 0

0 0 . 0 nag (n;l.)al n—1

n(n—1)

where ¢ = (—=1)" 2 . So, for n = 1 and n = 2 we have A(f) = 1 and
A(f) = a2 — 4apaz, respectively. Let

3)  g(x) =box™ +bra™ "+ + by + by, (m>1)

be another polynomial over A. Then the determinant of order n + m
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apg ai ... ap, 0 ... O 0

0 agar ... an 0 ... 0

|00 T ap a1 anl1 an
R(f,9)= bty b o0 .. 0 o0
0 by b1 ... by O ... 0

00 .o bo b1 . b1 bm

is said to be a resultant of the polynomials f(z) and g(z) (see [3, 8, 13]).

If e1,eq,..., e is a full orthogonal system idempotents of the ring A, that
is the ring A is a direct sum of the ideals ¢,A (i =1,...,k), then for the
polynomials f(z),g(z) € Alx] we put fi(z) = e;f(z) and g;(x) = e;g(x). So
from the definition of R(f,g) we conclude that

R(f>g) = R(fval) + R(fZ?.gQ) +-+ R(fkagk')
Likewise,
A(f) = A(f1) + A(f2) + -+ A(fr)-

Later on we shall use these facts without special stipulations.
Let o, g, ...,a, be a canonical system roots of the polynomial (1). In
[9] it is proved that

(4) R(f,9) = ag'g(a1)g(oz) - g(an)

for every polynomial g(x) € A[z], even when g(z) does not have roots.

Moreover, if n > 2 and f’(x) is the prime derivative of f(z), then [10]
n(n—1)

(5) A(f)=(=1)"= ~ag 2 f'(er) - f(az) -~ f'(an).

When A is a field, then (4) and (5) show the well known facts that R(f,g) =0
if and only if f(z) and g(z) have common roots and f(z) has multiple roots
if and only if A(f) = 0. For arbitrary polynomials f(x),g(x) € Alx] we
have the following.

Lemma 1. (see [9], also [8] p.159 and [13] p. 130) Let A be any commutative
ring with identity. If (1) and (3) are polynomials over A, then
(i) There exist polynomials p(x), ¥ (x) € Alx] such that degp(x) < m —
1, degy(z) <n—1 and
R(f,g) = o(x)f(z) + ¢(x)g(z).
(ii) If n > 2, then there exist polynomials u(x),v(x) € Alx] such that
degu(z) <n—2, degv(x) <n—1 and
A(f) = u(@)f(z) + v(@)f(2)-
So we obtain

Corollary 1. [9] Let f(x) and g(x) be polynomials over the ring A.

(i) If f(x) and g(x) have common roots, then R(f,g) = 0.
(ii) If f(z) has multiple roots, then A(f) = 0.
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Examples show that the converse statements of the preceding corollary in
the general case are erroneous [9].

Let S be a multiplicatively closed set of regular elements in A, that is S
contains the product of every his two elements and every element of S is not
zero divisor in A. Then there exists a ring of quotients S~'A with respect
to S ([12], p. 146). Every element of S~1A is of the form s~'a, where s € S,
a € A. Thus all elements of S are invertible in S~'A. If S is the set of all
regular elements in A, then S~ A is said to be the classical ring of quotients,

that we shall denote by Q(A).

Lemma 2. Let A be a ring with identity and f(x) be a regular polynomial
over A of degree n > 1. Then there exists a ring extension K O A such that
f(z) is a minimal polynomial over A of some element o € K.

Proof. Let (1) be a regular polynomial over A. First, suppose that ap = 1.
If deg f(x) = n = 1, then we put @ = —a; and the statements are trivial.
If n > 2, then let K = A[y]/I be the quotient ring of the polynomial ring
Aly] modulo the principal ideal I, generated by the polynomial f(y). Thus
A ={a+1I|a € A} is a subring of K and, because ay = 1, it is clear
that A and A are isomorphic rings. So A can be viewed as a subring of K.
Obviously, f(x) is a minimal polynomial of the element a« =y + 1 € K.

If ag # 1, then let P = Q(A) be the classical ring of quotients of A.
Now A C P, f(x) € P[z] and ag is an invertible element of P. Therefore
g(z) = ag' f(z) is a monic polynomial over P and the statement for g(x)
holds. Thus we conclude that there exists a commutative ring extension
K D P such that g(z) is a minimal polynomial over P of some element
a € K. Then it is clear that f(x) = apg(x) is a minimal polynomial of «
over A, as was to be shoved. Il

When o € K and P = Q(A) C K, then by definition there exists the
simple ring extensions Pla] with Ala] C Pla]. But, if P ¢ K, then Pla] is
not defined in the general case. Later on we shall use the following

Lemma 3. Let K O A be a ring extension and o € K be an algebraic
element over A with a regular minimal polynomial f(x) € Alz]. Then there
exists a ring extension K1 2 A such that Q(A) C K, f(x) is a minimal
polynomial of some B € Ky and Ala] = A[f].

Proof. Let (1) be a minimal polynomial over A of the element a. If P =
Q(A) C K, then we put K1 = K and § = a.. Suppose that P ¢ K. Since
f(z) € Plx], by Lemma 2 it follows that there exists a commutative ring
extension Ky O P such that f(z) is a minimal polynomial over P of some
element § € Kj. Since A C P and f(z) € Alx], it is clear that f(x) is a
minimal polynomial of 8 and over A. Now we shall prove that A[a] and
Al[B] are isomorphic.

First we shall show that for g(x) € A[z] the conditions g(ar) = 0 and
g(8) = 0 are equivalent. Really, since the leading coefficient ag is invertible
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in P =Q(A), we have
g(x) = f(x)q(x) +r(z),  degr(z) <degf(z),

where the polynomials ¢(z) and r(z) are with coefficients in P. It is clear
that there exists a power af (k > 1) of the element ag € A such that afq(x)
and afr(z) to be elements of A[x]. Then

agg(z) = f(x)laga(x)] + agr(z), deg(agr(x)) < deg f().

If g(a) = 0, then afr(a) = 0 and by the minimum condition of f(x) we
conclude that afg(x) = f(z)[akq(x)]. Therefore akg(3) = 0 and so g(3) = 0,
because af is an invertible element of P. In similar way from g(8) = 0 we
receive g(a) = 0. Now it is easy to verify that the map g(a) — ¢(8) for
all g(x) € A[z] is an isomorphism between A[a] and A[fS], as was to be
showed. O

Lemma 4. Let P = Q(A) be the classical ring of quotients of a commutative
reduced ring A and let f(x) € Alx] be a regular minimal polynomial of the
algebraic element . Then
(i) The rings Ala] and A = Alx]/(Alx] () f(z)P[x]) are isomorphic.
(i1) The ring Ala] is reduced if and only if the quotient ring
P = P[z]/f(x)P[z] is reduced.

Proof. In view the preceding lemma we may assume that Q(A) C K and
a€ K.

(1) The mapping ® : A[x] — Ala], defined by ®(g(x)) = g(«) for all g(z) €
Alz], is a homomorphism of A[x]| onto A[a] with ker ® = A[z] () f(z)P]x].
Really, it is clear that A[z] () f(x)P[z] C ker ®. If g(x) € ker ®, then g(«) =
f(a) = 0. Moreover, there exist polynomials ¢(z),r(x) € P[z], such that

g(z) = f(z)g(x) +r(z)  and  degr(z) < degf(z).

Hence it follows that r(a) = 0. Since P = Q(A), for some regular element
a € A we have p(z) = ar(x) € Alz]. But p(a) = 0 and deg p(z) < deg f(x)
imply ¢(z) = 0. So we obtain r(z) = 0 and g(x) € f(z)P|x], as was be
shown.

(ii) Let P be a reduced ring. Since

A= A[w]/(A[l‘] () f(@)P[a]) = (Afe] + f(2)P[2])/ f (z)Plz] C P,

so we conclude that A is a reduced ring. Now by (i) we obtain that the
ring A[a] is reduced. Conversely, suppose that Ala] is reduced. If P is not
reduced and ¢(x)+ f(x)P[z] is its nontrivial nilpotent element, then we may
assume that 0 # op(z) € P[z], degp(z) < deg f(z) and ¢*(z) € f(x)P[z]
for some integer k > 1. Let a € A be a nonzero regular element such that
0 # ap(x) € Alz]. Then it is clear that ap(x)+ Alx] () f(z) P[x] is a nonzero

nilpotent element of A. This shows that A is not reduced ring and by (i)
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we receive that A[a] is not reduced, which is a contradiction. So the proof
is completed. O

Corollary 2. If the leading coefficient of the polynomial f(x) € Alx] is an
invertible element of A and f(x) is a minimal polynomial of c, then the
rings Ala] and Alz]/ f(z)Alz] are isomorphic.

Proof. Let P be as above. Since the leading coefficient of the polynomial
f(z) is invertible in A, it is easy to verify that f(z)A[z] C Alz]() f(x)P(x) C
f(z)A[z]. Then the statement follows by Lemma 4(i). O

3. SIMPLE ALGEBRAIC EXTENSIONS OF REDUCED RINGS

Now let A be a reduced commutative ring and let f(x) € A[z] be a
minimal polynomial of the algebraic element «. It is clear that Al«] is
reduced if and only if the ring B[a] is reduced for every finitely generated
subring B C A such that f(z) € Blz]. Therefore it is sufficient to find
necessary and sufficient conditions Ala] to be reduce when A is a noetherian
ring. First we shall consider the case when A is a field.

Recall that a field F' of characteristic p > 0 is said to be perfect if p = 0, or
p>0and FP = F ([2], p. 137). So every finite field and every algebraically
closed field is perfect.

If Fis afield and f(x), g(x) € F[x], then as ever, by (f, g) we shall denote
the monic greatest common divisor over F’ of the polynomials f(x) and g(x).
Moreover, f(x) and g(x) are associated if f(z) = ag(z) for some non zero
element a € F.

Lemma 5. Let F' be a field of characteristic p > 0 and let f(x) be a nonzero
polynomial over F'. Then the following conditions are equivalent:
(i) The quotient ring F[z]/ f(x)F[z] is reduced.
(i1) The polynomial f(x) is a product of distinct non associated irre-
ducible polynomials over the field of F.
(i) Either (f, f") =1, or F is not perfect field of characteristic p # 0 and
(f, 1) is a products of distinct non associated irreducible polynomials
of the form p(zP) € Fz].

Proof. Let f(z) = aff(z)f¥2(x) - f5(z) be a factorization of f(z) over
F, where f1(x),..., fs(x) are distinct non associated irreducible polynomials
over F' and a € F. Since (f;, f;) =1 for all i # j, by the Chinese theorem
(|8], p-88) we have

Fla] / J(@)Fla] = 3" @F[a] / 1 (2)Flal.
=1

It is clear that F[z]/f(z)F[z] is reduced if and only if ky = ko = -+ = ks =
1. So we obtain that (i) and (ii) are equivalent.
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Further, let f(x) = fi(z)fa(x) - - - fs(x) be a product of distinct non asso-
ciated irreducible polynomials over F'. Denote by g(z) = fi(x)--- fx(z) the
product of all factors of f(z), not having multiple roots. When k& = 0 we
put g(z) = 1. If k < s, let d(z) = frr1(x) fraa(x) - fs(x) be the product
of all factors of f(z) which have multiple roots. This happens if p > 0 and
F is not perfect field (see ([2] p. 138). In such case f;j(z) = ¢;(zP), where
pi(r) € Flx] fori=k+1,k+2,...,s. When k = s we put d(x) = 1. Thus
f(z) = g(z)d(z) and either d(z) = 1, or d(x) = @(2P) with ¢(x) € F|[z]
and degp(x) > 1 (see [6] p. 162). Therefore we have d'(x) = 0. Since
f(xz) = ¢'(x)d(x) and (g,¢") = 1, it is clear that d(z) = (f, f'). So we see
that (ii) and (iii) are equivalent, as was to be shown. O

As an immediate consequence we obtain

Corollary 3. Let F be a field and let f(z) € F[z] be a nonzero polynomial.
(i) If A(f) # 0, then the quotient ring Fx]/f(z)F|x] is reduced.
(ii) If F is a perfect field, then the ring F[z]/f(x)F[z] is reduced if and
only if A(f) # 0.

Really, it is sufficient to observe that the conditions (f, f’) = 1 and A(f) #
0 are equivalent.

Now let A be a reduced commutative ring and let f(x) € A[z] be a
minimal polynomial of the algebraic element «. As was mentioned above, it
is sufficient to find necessary and sufficient conditions under which Al«] is
reduce, when A is a noetherian ring.

Theorem 1. Let A be a reduced commutative noetherian ring with classical
ring of quotients P = Q(A) and let a be an algebraic element over A with
a minimal polynomial f(z) € Alz]. If f(x) is a regular polynomial over A,
then the following statements are equivalent:

(i) The ring Ala] is reduced.

(ii) For every regular element a € A the polynomial af(x) is not divisible
by squares of polynomials over A of degree t > 1.

(iii) For every minimal idempotent e € P the polynomial ef(x) is a prod-
uct of distinct mon associated irreducible polynomials over the field
eP.

(iv) For every minimal idempotent e € P, either (ef,ef’) = e, or eP is
a field of characteristic p > 0, eP is not a perfect field and (ef,ef")
1s a product of distinct non associated irreducible polynomials of the
form (aP) € ePlx].

Proof. Suppose that A C K and a € K. By Lemma 3, without loss of
generality, we may assume that P = Q(A) C K. Since A is a reduced
commutative notherian ring, by Goldie’s Theorem (see [1], Corollary 2, p.
323), the ring P is a finite direct sum

P=A10A® - ® A
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of fields A; with identity elements e; (i = 1,...,k). Then A; = e; P and it is
clear that f;(x) = e;f(x) is a minimal polynomial of o over the field A; for
t=1,..., k. Moreover,

Ala] C Pla] = Ai[a] ® Asla] @ - -+ & Ax[a]

and Pla] = Plz]/f(x)Plz]. Thus, by Lemma 4(ii) we obtain that A[a] is
reduced if and only if the rings Ai[a], As]a], ..., Ag[a] are reduced. Hence,
by Lemma 5 we conclude that the statements (i), (iii) and (iv) are equivalent.
Therefore it is sufficient to prove that (i) and (ii) are equivalent.

Really, suppose that A[a] is a reduced ring but af(x) = p*(z)q(x) for
some regular element a € A, where p(z), q(z) € Alz] and degp(z) > 1.
Then

p(z) = e1p(z) + e2p(z) + -+ + exp(2)
and without loss of generality we may assume that degej;p(z) > 1. Thus
the equality af(z) = p?(x)q(x) shows that

eraf(z) = (e1p(x))’e1q(x)
and

1 < deg(eip(x)q(x)) < deg(eraf(z)) = deg fi(x),

where fi(x) = ejf(z). Therefore, e;p(x)q(z) + fi(x)Ai[z] is a nonzero
nilpotent element of the quotient ring Ay[z]/ f1(z)Ai[z]. As far as fi(z) is
a minimal polynomial of a over Aj, by Corollary 2 we receive that Aj[a] is
not reduced, which is impossible. Conversely, if A[a] is not reduced ring,
then P[a] is not reduced and without loss of generality we may assume that
Aila] is not reduced. Then by Corollary 2 and Lemma 5 we obtain that
fi(z) = pt(x)qi(x), where pi(z), qi(2) € Aifz] and degpi(z) > 1. Now we
put

p1(z) +e2+--- + e,
q(x) =q(x)+ fo+ -+ fi

and thus we receive f(z) = p?(x)q(x), where p(z), ¢(x) € Plx] and deg p(z) >
1. Since P is a ring of quotients, it follows that there exist regular elements
b,c € A such that bp(x) and cq(x) are elements of A[z]. Then a = b%c is a
regular element in A and af(z) is divisible by the square of bp(z) € A[x], as
was to be showed.

As was mentioned above, the main result of [11]| asserts that if A(f) is
a regular element in A, then Afa] is a reduced ring. But A[a] may be
reduced even when A(f) = 0. Indeed, let @ be a root of the polynomial
f(x) = 2P —y € Alz], where A = F(y) is the ring of quotients of the
polynomial ring F'[y| over a field F' of characteristic p > 0. Then A(f) =0,

=
&
I
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f(z) is irreducible over A (see [2], p. 165) and A[«] is reduced by Corollary
2 and Lemma 5. 0

We shall say that the reduced commutative ring A is locally perfect if
for every finitely generated subring B C A and every minimal idempotent
e € Q(B) the field eQ(B) is perfect. If the additive group of the reduced
ring A is either torsion free, or locally finite, then A is a locally perfect ring.
Thus we have the following

Corollary 4. Let o be an algebraic element over the commutative ring A
with a regular minimal polynomial f(x) € Alz] and let A(f) be the discrim-
inant of f(x).
(i) If A(f) is a regular element in A, then the ring Ala] is reduced if
and only if A is reduced.
(ii) If A is a reduced locally perfect ring, then Ala] is reduced if and only
if A(f) is a regular element in A.

Proof. (i) Assume that A is reduced and A(f) is regular in A, but Ala] is
not reduced. If 5 is a nonzero nilpotent element of A[«], then let B be the
subring of A, generated by the coefficients of 5 and f(x). Thus f(x) € B|x]
and B € Bla]. Hence by the preceding theorem it follows that for some
minimal idempotent e € Q(B) the polynomial ef(x) has multiple roots and
therefore A(ef) = 0. Since A(ef) = eA(f), we obtain that the element
A(f) is a proper divisor of zero, which is a contradiction. As far as the
converse statement is trivial, the part (i) is proved.

(ii) In view of (i) it is sufficient to prove that if A[a] is reduced, then A(f)
is regular. Assume for moment that A(f)a = 0 and 0 # a € A. Let B be
the finitely generated subring of A, generated by the coefficients of f(x) and
the element a € A. Thus f(z) € B[z] and a € B. Let e, ea, ..., ey, be a full
orthogonal system minimal idempotents of Q(B). Then

A(f) = Alerf) + Aleaf) + -+ Alenf),
where A(e;f) € e;Q(B) for i = 1,2,...,n. Since each ¢,Q(B) is a field
and A(f) is a proper divisor of zero in B, we conclude that for some ¢
(1 < i < n) we have A(e;f) = 0. This implies that e;f(x) has multiple
roots. But e;Q(B) is a perfect field and by Corollary 2 and Lemma 5 we
obtain that e;Q(B)[«a] is not reduced and therefore Q(B)[a] is not reduced
ring, which is a contradiction. So the proof is completed. U

Let K be any ring extension of the commutative ring A where K is not
necessary commutative. If the element o € K centralizes A, that is a.a =
a.a for all a € A, then we may to consider the simple commutative ring
extension Ala]. So we have the following

Corollary 5. Let F' be a perfect field and let S be an element of the n x n
matriz ring M(n, F). If F' contains all characteristic values of S, then the
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ring F[S] is reduced if and only if for some non-singular matric T € M (n, F)
the matriz TST ™' is diagonal.

Proof. By Corollary 2 and Corollary 3(ii) the ring F[S] is reduced if and
only if A(f) # 0 where f = f(\) is the minimal polynomial of S in F[)].
Since f(A) is the last invariant factor of the characteristic matrix S — AE
(see |5], p. 389), this condition is equivalent with the condition the Jordan’s
normal form of S to be diagonal. U

4. SIMPLE ALGEBRAIC EXTENSIONS OF
IRREDUCIBLE COMMUTATIVE RINGS

In this part we shall study the problem who the ring A[a] contains nontriv-
ial idempotent elements. Later on we shall say that the idempotent E of the
ring Alo] (respectively of A[z]/ f(x)A[z]) is a trivial idempotent if E is an ele-
ment of the subring A (respectively of the subring (A+ f(z)A[z])/ f(x)Alz]).

As usually we shall say that the polynomial p(x) € Alz| divides the poly-
nomial f(z) € Alx] over the ring A if there exists a polynomial ¢(z) € A|x]
such that f(z) = p(z)g(x). The polynomial p(x) € Alz] is said to be a
trivial divisor of f(x) if p(x) divides f(z) and there exists an element a € A
such that

p(x) + f(x)Alz] = a + f(x)Alz],
that is f(z) divides p(z) — a over A. For example, if e € A is a nontrivial

idempotent of A, then every polynomial f(z) € A[x] has a trivial decompo-
sition

f(x) = lef(z) + (1 —e)lle + (1 —e) f(2)].

The decomposition f(x) = p(x)g(z) over A is said to be nontrivial decompo-
sition if over A the polynomials p(x) and g(x) are nontrivial divisors of f(x).
Also, the decomposition f(x) = p(x)q(z) is an essential decomposition over
A if p(z) and g(z) are nontrivial divisors of f(x) and degp(x) < deg f(x),
degq(xz) < deg f(x). We shall say that the polynomial f(z) is irreducible
over the ring A if f(x) has no nontrivial decomposition over A.

Recall that if F' is a field and ¢(z), ¢(x) € F[z], then for the greatest
common divisor (¢, ) there exist polynomials u(x),v(x) € F[z] such that

(0, ) = u(@)p(x) + v(z)(z)
and degu(z) < degy(x), degv(x) < degy(x). Likewise, if A is any com-

mutative ring and p(z), ¢ (z) € Alz], then by Lemma 1 it follows that for
the resultant R((p, 1)) there exist polynomials u(z), v(z) € A[z] such that

R(p,¥) = u(z)p(z) +v(z)P(z) € A
and degu(z) < degv(z), degv(zr) < dege(x). From here on we shall use
these facts without special stipulations.
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Let f(x) be a minimal polynomial over the field F' of the algebraic ele-
ment «. Since the rings F[a] and F[z]/f(x)F[z] are isomorphic, by Chain’s
theorem it follows that F'[a] contains nontrivial idempotents if and only if
f(x) is not associated with a power of some irreducible polynomial over F'.
Now we shall prove the following lemma, which gives the idempotents of
F[a] in explicit form.

Lemma 6. Let o be an algebraic element over the field F with a minimal
polynomial f(z) € Flx]. Then

(i) The ring Fla] is irreducible if and only if f(x) is associated with a
power of an irreducible polynomial of F[x].

(ii) The elements E1(«) and Eo(a) of Fla] form a full orthogonal system
idempotents if and only if over F' there exists a decomposition f(x) =
o(x)(z) such that

(0, ¥) = u(z)p(x) + v(x)p(z) = 1,
where deg(u(x)p(z)) < deg f(x) and

Ei() = u(a)p(a),  Ea(a) =v(a)p(a).

(iii) The elements Eq1(a) and Es(a) of Fla] form a nontrivial full or-
thogonal system idempotents if and only if over F there exists an
essential decomposition f(x) = @(x)(x) such that

R(p,¢) = ua(x)p(x) + vi(2)i(x) # 0

and

Ei(a) = R(p, ) tui(@)p(a),  Ba(a) = R, ) vi(@)(a).
Proof. (i) Let F[a] be an irreducible ring and let

f(x) = ap (2)py? () - " (2)
be the canonical decomposition of f(x) over the field F. Since Fla] and
Flz]/ f(z)F[z] are isomorphic rings, by the Chinese theorem we obtain that
f(x) = ap’ () and therefore f(z) is associated with a power of irreducible
polynomial over F'. Conversely, if f(x) is associated with a power of an ir-
reducible polynomial over I and f(x) = ap®(z), then f(z)F[z] = p*(x)F[z]
and p(z)F[z]/p*(z)F[z] is a nilideal of F[z]/p*(z)F[x]. Since

(Pla] /p* (@) Fla]) / (0(2)Fla] /b (2) Fla]) = Fla] /p(x) Flz]

and Fz]/p(z)F|x] is a field, by [4], Proposition 11.5.1 we conclude that (i)
follows.
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(ii)Suppose that the elements Fj(«) and Es(a) form a full orthogonal
system idempotents of F[]. Since the rings F|o] and Fz] = F[z]/ f (z) F[x]
are isomorphic, it follows that in F[z] there exist elements

Ei(z) =ei(z) + f(z)Flz],  Ea(x) = ea(z) + f(2)Fz]

such that Ej(z) and Es(z) form a full orthogonal system idempotents of
Flz] and e1(a) = E1(a), ea(a) = Ey(a). Without loss of generality we may
to assume that dege;(z) < deg f(x) fori = 1,2. Obviously, F;(z) and E(z)
form a full orthogonal system idempotents if and only if ej(x) + ea(x) = 1
and e (w)ez(z) = f(x)q(x) for some q(z) € F[z]. If E1(x) and Ez(z) form
a trivial system orthogonal idempotents of F[x] and ej(z) = 0, ea(z) = 1,
then we put ¢(z) = f(z), ¢¥(z) =1 and u(z) = 0, v(z) = 1. Suppose that
Ei(x) and E3(w) form a nontrivial system orthogonal idempotents. Since
F[z] is a factorial ring (see [8], p. 142), we conclude that

f(@) = p(@)p(z),  elr) =u@)p(x),  exr) =v(@)y(x),
where p(x) = (e1, f) and ¢¥(x) = (e, f). Moreover, the polynomials u(x)
and v(z) in F[x] are uniquely determined. Since the converse statement is
trivial, so (ii) is proved.

(iii) When E4(z) and Fs(z) form a nontrivial system orthogonal idempo-
tents of F[x], it is clear that 0 < dege;(z) < deg f(x) for i = 1,2. Thus we
obtain that the decomposition f(x) = ¢(x)1(x) is nontrivial and therefore
degp(z) > 1, degyp(z) > 1. As far ej(x) + ea(z) = 1, we have (¢,7) =1
and hence we receive

R(p, ) = wi(x)p(x) + vi(x)p(z) # 0,
where, by Lemma 1, degu;(z) < deg(x) and degvi(z) < degy(x). Now
it is easy to verify that u(z) = R(p,v) tui(z) and v(x) = R(p, ) Loy ().
So we prove and the statement (iii). O

The following lemma is an analog of the parts (ii) and (iii) of the preceding
lemma for commutative artinian rings.

Lemma 7. Let o be an algebraic element over the reduced commutative
artinian ring A with a regular minimal polynomial f(z) € Alz|. Then

(i) The element E(«) is a nontrivial idempotent in Ala] if and only if
over A there ezists a nontrivial decomposition f(x) = @(x)p(x) such
that

u(@)e(x) +o(@)P(z) =1
for some polynomials u(x) and v(z) of Alx|, where deg(u(x)p(x)) <
deg f(z) and E(a) = u(a)p(a).

(i1) The ring Ala] contains nontrivial idempotents if and only if for some
nonzero idempotent e € A over the ring eA there exists an essential
decomposition ef (x) = p(x)p(x) such that R(p,) is a nonzero el-
ement of eA.
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Proof. By Wedderburn-Artin theorem, A = F; & F» & --- ® F}, is a finite
direct sum of fields F; with identity elements e; (i = 1,...,m). So we have
the decomposition

Ala] = Fila] ® Fala) @ -+ & Fla].
(i) Suppose that E(«) is a nontrivial idempotent of A[a]. Then the ele-
ments E(a) = E(a) and E2(a) =1 — E(«) have the decompositions

(6) Ek(a) = Ekl(a) + EkQ(a) +---+ Ekm(a) (k = 1, 2),

where E1;(a) and Eg;(a) form a full orthogonal system idempotents of F;[a].
Obviously fi(z) = e;f(z) is a minimal polynomial of « over the field F; =
e;A for all i = 1,2,...,m. By Lemma 6(ii) it follows that over F; there
exists a decomposition e; f(x) = @;(x)Y;(z) such that

(i, i) = ui(x)pi(x) + vi(x)Pi(z) = ei,
where deg(u;(x)pi(z)) < deg f(z) and

Eri(a) = ui(a)pi(a), Eyi(a) = vi(a)i(a)
fori=1,2,...,m. Then f(x) = ¢(x)(x), where

p(@) = p1(x) + o2(2) + - + pm(2),
Y(z) = Y1) +P2(2) + - + Y ().
Moreover, u(z)p(z) + v(x)(z) = 1, where

w(@) = ur(x) + uz() + - + um(2),
v(x () +v2(z) + - + vy ().

(x) =

Obviously, deg(u(xz)p(x)) < deg f(x) and E(a) = u(a)p(a). Since the
converse statement is evident, so (i) is proved.

(ii) If E(«) is a nontrivial idempotent of Ala], then again we put E(«) =
E(a) and Ey(a) = 1 — E(«). Suppose that Fj(a) and Ea(«) have the de-
compositions (6). Without loss of generality we may to assume that Ey;(«)
and FEs1(«) form a full nontrivial orthogonal system idempotents of F[a],
where f1(z) = ef(x) is a minimal polynomial of « over the field F; = eA
and e = e;. Then by Lemma 6(ii), over Fj there exists an essential decom-
position ef = ¢(x)1(z) such that R(yp, 1) # 0.

Conversely, if for some idempotent e € A over the ring eA there exists an
essential decomposition ef(z) = ¢(x)y(x) such that R(p,1) # 0, we shall
have the decompositions

p(r) = e1(2) + p2(2) + - + pm(@),
V(@) =Pi(x) + P2(z) + - + Pm(),
where p;(z) = e;p(z) and ¢;(z) = e;p(z) for i = 1,...,m. Since

—_~ o~
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R(p,¢) = R(p1,91) + R(p2,¢2) + -+ - + R(om, ¥m) # 0,
it follows that for some k(1 < k < m) we have R(¢k,x) 7 0. Then

exef(x) = epf(x) = pr(x)vp(z)
is an essential decomposition over the field Fj, and by Lemma 6(ii) it follows
that Fj[a] contains nontrivial idempotents. Since Fy[a] C A[a], we conclude
that Ala] contains nontrivial idempotents, as was to be shoved. 0

Let I be an ideal of A and let I[a] be the simple algebraic extension of
I, which is obtained by adjoining of o to I. As for A[z]/f(x)A[z], we shall
say that an idempotent E of the ring A[a]/I[a] is trivial if E is an element
of the subring (A + I[a])/I[a].

Lemma 8. Let Ala] be any simple ring extension of the commutative ring
A and let I be a nil-ideal of A.

(i) All idempotents of Ala] are trivial if and only if all idempotents of
the quotient ring Alal/I[a] are trivial.

(ii) If a is an algebraic element over the ring A with a regular minimal
polynomial

F(2) = apx" + a4+ ap 12 +ay (n=1),

then there exists a simple algebraic extension A[B] of the quotient
ring A= A/I, such that Ala]/I[a] = A[B] and

f(z) = apx™ + @™t + - 4 Gp_1x + Gy, (@ = ay + 1)
is a reqular minimal polynomial over A of the element 3.

Proof. (i) Suppose that all idempotents of A[a] are trivial and let E(«a) =
u(a) + I[a] be an idempotent of A[a]/I[a]. Then u(a)? — u(a) € I[q]
and, since I[a] is a nil-ideal of Afa], by ([4], Proposition 11.5.1) it follows
that there exists an idempotent e(a) € Ala] such that e(a) — u(a) € I[a].
Therefore E(a) = e(a) + I[a] and, since all idempotents of A[a] are trivial,
we have e(a) = e € A. So we conclude that all idempotents of Ala]/I[«]
are trivial. Conversely, assume that all idempotents of A[«a]/I[a] are trivial.
If e(«) is an idempotent of A[a], then e(a) + I]alis a trivial idempotent of
Ala]/I[a] and hence for some element a € A we have e(a) + I[a] = a+ I]a].
Since e(a)? — e(a) = 0, we obtain that a> —a € I. Then again by ([4],
Proposition 11.5.1) we obtain that there exists an idempotent e € A, such
that a — e € I. As far I C I[a], we receive

e(a) + Ia] = e+ I[al.
Suppose that e(a) = e4v(«a), where v(«) € I[a] is a nilpotent element. Then
e(a)e = e + v(a)e is an invertible element of the ring eA[a]. But e(a)e is

simultaneously an idempotent of eA[a]. Thus we obtain that e(a)e = e and
v(a)e = 0. Now e(a)(1 —e) = v(a)(1 — e) is simultaneously an idempotent
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and a nilpotent element of (1 —e)A[a]. So we conclude that v(a)(1 —e) =0
and hence
v(a) =v(a)e +v(a)(l —e) =0.
Therefore e(a) = e is a trivial idempotent of A[a] and thus (i) is proved.
(ii) Obviously, A[«] / I[a] = Ala] is a simple ring extension of the subring

/:l = (A + I[a])/I[a], obtained by adjoining of the element & = a + I[a] to
A . Since f(«) =0, it is clear that & is a root of

f(@) = apz" + ara™ - a1z + ay, (@ = ax + 1[o]).

Therefore A[@] is a simple algebraic extension of A. If

g(m) = I;o.%'m + lem—l + -+ Bm_ll' + Bm (i)k =by + I[a] € /I)

is a minimal nonzero polynomial of & over A, then by ¢ I and m < n.
Suppose that m < n. As far §g(&) = g(a) + I[a] = I[a], we conclude that

gla) =bpa™ +b1a™ 4+ by 1a+ by
=coa® +er® o+ e (e € 1),

where by # ¢g. Now we use the fact that ag is an invertible element in the
ring of quotients Q(A) and f(a) = 0. So without loss of generality we may
to suppose that s < n and cg,cy,...,cs € NIQ(A). Therefore there exists
a regular element a € A such that ab; € A (i = 1,...,m) and ac; € I
(j = 1,...,s). Thus we obtain that « is a root of a nonzero polynomial
of degree t = min{m,s} < n, which is impossible. Hence m = n and
f (z) is a minimal polynomial of & overA. By a similar way we prove that
AN I[a] = I. Then it is easy to verify that ag is a regular element of A.
Moreover,

A= (A+Ia])/I[0] = A/(Aﬂ[[a]) = A/l =A

Let f(z) be a minimal polynomial of some element 3 over the ring A. Then
the mapping A[a] — A[A], defined by & + B and a+I[a] + a+ 1 for a € A
is an isomorphism, as was to be showed. O

Now by Lemma 8(ii) we shall prove following theorem.

Theorem 2. Let a be an algebraic element over an artinian commutative
ring A with a regular minimal polynomial f(x) € Alz]. If A= A/MIA and
f(z) is the natural image of f(x) into Alz], then
(i) Ala] is irreducible if and only if A is a field and f(x) is associated
with a power of some irreducible polynomial over A.
(i1) Ala] contains only trivial idempotents if and only if for every min-
imal idempotent € € A the polynomial ef(x) is associated with a
power of some irreducible polynomial over the field €A.
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Proof. If A is an artinian commutative ring, then A = A/MIIA is a finite
direct sum of fields [6, 7]. Since A is irreducible if and only if A is irre-
ducible, by Lemma 8 we obtain that A[a] is irreducible if and only if A[A] is
irreducible, where A is a field and f(z) is a regular minimal polynomial of
3 over the field A. Then the statement (i) follows by Lemma 7(i). Again by
Lemma 8 it follows that A[a] contains only trivial idempotents if and only
if A[B] contains only trivial idempotents. Since A is a finite direct sum of
fields, by Lemma 7(i) we conclude that for every minimal idempotent & € A
the ring €A[S] contains only trivial idempotents. So by Lemma 8 we obtain
and the statement (ii). O

Theorem 3. Let a be an algebraic element over a commutative noetherian
ring A with a monic minimal polynomial f(z) € Alz] and let P = Q(A)
be the ring of quotients of A = A/MilA. The ring Ala] contains non-
trivial idempotents if and only if over the ring P there exists a nontrivial
decomposition f(x) = @(x)p(x) such that u(x)@(z) + v(x)Y(x) = 1 for
some polynomials @(x),v(x) € Plz], where deg(u(z)p(w)) < deg f(z) and

u(z)p(z) € Alx].

Proof. Suppose that Ala] contains a nontrivial idempotent F(«). Then
by Lemma 8(i) it follows that E(«a) + I[a] is a nontrivial idempotent of
Ala]/I[a], where I = MilA. Now by Lemma 8(ii) we conclude that there
exists a nontrivial idempotent £(3) of the ring A[3], where f(z) € A[z] is a
minimal polynomial of 3. Without loss of generality, by Lemma 3 we may
assume that F(j) is a nontrivial idempotent of P[3]. Since P is a reduced
artinian ring, by Lemma 7(i) we conclude that over the ring P there exists a
nontrivial decomposition f(z) = @(z)v () such that u(x)@(z) +v(z)Y(z) =
1 for some polynomials @(x) and v(x) of P[z], where deg(u(z)p(z)) <
deg f(z) and E(B) = u(B)p(B) € A[B]. Since f(z) € Alx] is a monic
minimal polynomial of 8 over A and deg(u(z)@(x)) < deg f(x), it is clear
that B(8) = u(8)(8) € A[8) mplies a(x)p(z) € Alz].

Conversely, suppose that the polynomial f(z) € A[x] satisfy the con-
ditions of the theorem and let g(x) be a polynomial in A[z] such that
g(z) = u(z)p(z). If B is an algebraic element over A with a minimal poly-
nomial f(x) € Blz], then by Lemma 8(ii) it follows that A[a]/I[a] and A[g]
are isomorphic rings. Since g(f) = u(8)@(S) is a nontrivial idempotent in
A[B], the element g(a) + I[a] is a nontrivial idempotent in Ala]/I[a] (see
the proof of Lemma 8(ii)). If u = g(a) — g(«), then by Proposition 3.6.1
[7] we conclude that E(«) = g(a) — z[1 — 2¢(«)] is a nontrivial idempotent

of Ala], where
1 4 2 6 3
T <2u—(2>u +(3>u —)

So the theorem is proved. O
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It is easy to verify that in the preceding theorem the condition f(z) to
be a monic polynomial is not necessary. Really, let f(z) = 422 — 1 be a
minimal polynomial of the algebraic element « over the integer ring Z. Then
f(z) = (2z—1)(2z+1) is a nontrivial decomposition over the field Q = Q(Z)
and 27122+ 1) — 2712z —1) = 1. Thus e(x) =272z + 1) =2 + 271 is
not element of Z[z], but

e(a) =a+271 =a+2a°

is an idempotent of Z[a].
For regular minimal polynomials we have the following

Corollary 6. Let A be a commutative noetherian ring and let P = Q(A)
be the ring of quotients of A = A/MIlA. Suppose that f(x) is a regular
minimal polynomial of an algebraic element o over the ring A. If for every
minimal idempotent e € P the polynomial ef(x) is associated with a power
of some irreducible polynomial over the field eP, then all idempotents of the
ring Ala] are trivial.

The proof of this corollary is as the proof of Theorem 3.
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