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A fixed point theorem for (y,)-generalized
f-weakly contractive mappings in
partially ordered 2-metric spaces”

NGUYEN TRUNG HIEU AND HUuyNH NGoC CAM

ABSTRACT. The purpose of this paper is to introduce the notion of
a (u,v¥)-generalized f-weakly contractive mapping in partially ordered
2-metric spaces and state a fixed point theorem for this mapping in
complete, partially ordered 2-metric spaces. The main results of this
paper are generalizations of the main results of [4, 10]. Also, some
examples are given to illustrate the obtained results.

1. INTRODUCTION AND PRELIMINARIES

In 1972, Chatterjea |5] introduced the notion of a C-contraction in metric
spaces as follows.

Definition 1.1 ([5]). Let (X,d) be a metric space and T : X — X be a
mapping. Then, T is called a C-contraction if there exists « € |0, %) such
that for all z,y € X,

d(Tz,Ty) < ald(z, Ty) + d(y, Tz)].

This notion was generalized to a weak C-contraction in metric spaces
by Choudhury [6] and a (u,))-generalized f-weakly contractive mapping
in metric spaces by Chandok [3]. After that, there were some fixed point
results for (u,1)-generalized f-weakly contractive mappings in complete
metric spaces [3, Theorem 2.1] and in complete, partially ordered metric
spaces |4, Theorem 2.1].

Denote by ¥ the family of lower semi-continuous functions 1 : [0, 00)? —
[0, 00) such that ¢ (x,y) = 0 if and only if x =y = 0.
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Definition 1.2 ([6], Definition 1.3). Let (X,d) be a metric space and T :
X — X be a mapping. Then, T is called a weak C-contraction if there
¥ € U such that for all z,y € X,

d(Tz, Ty) < %[d(x, Ty) + d(y, T:J:)] — w(d(:c, Ty),d(y, T:U))

Definition 1.3 (|15]). A function yx : [0,00) — [0, 00) is called an altering
distance function if the following properties are satisfied.

(1) p is monotone increasing and continuous.
(2) p(t) =0 if and only if ¢t = 0.

Definition 1.4 ([3]|). Let (X,d) be a metric space and T, f : X — X be
two mappings. Then, T is called a (u,v)-generalized f-weakly contractive
mapping if there exist ¢ € ¥ and p which is an altering distance function
such that for all z,y € X,

p(d(Te, Ty) < p(Gld(f2. Ty) +d(fy. Ta)]) — w(d(f2. Ty). d(fy. T)).

Remark 1.1. If f and p are two identify mappings, then a (u, 1)-generalized
f-weakly contractive mapping becomes a weak C-contraction.

There were some generalizations of a metric such as a 2-metric, a D-
metric, a G-metric, a cone metric and a complex-valued metric [2]. Note
that in the above generalizations, only a 2-metric space has not been known
to be topologically equivalent to an ordinary metric. In addition, the fixed
point theorems on 2-metric spaces and metric spaces may be unrelated easily
[10]. There are many fixed point results on 2-metric spaces were stated and
generalized, the readers may refer to 1, 8,9, 11, 13, 17, 18, 19] and references
therein.

In 2013, Dung and Hang [10] introduced the notion of a weak C-contraction
mapping in partially ordered 2-metric spaces and state some fixed point re-
sults for these mappings in complete, partially ordered 2-metric spaces [10,
Theorem 2.3, Theorem 2.4, Theorem 2.5]. The notion of a weak C-contraction
mapping in partially ordered 2-metric spaces was introduced in [10] as fol-
lows.

Definition 1.5 ([10], Definition 2.1). Let (X, d, <) be a partially ordered
2-metric space and T': X — X be a mapping. Then, T is called a weak
C-contraction if there exists v € ¥ such that for all z,y,a € X with x = y
orz Xy,

A(Tw. Ty.a) < L [d(x. Ty.a) + d(y. Tw.a)] ~(d(, Ty.0).d(y. T, a)).

The purpose of this paper is to introduce the notion of a (u, 1)-generalized
f-weakly contractive mapping in partially ordered 2-metric spaces and state
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a fixed point theorem for this mapping in complete, partially ordered 2-
metric spaces. The main results of this paper are generalizations of the main
results of [4, 10]. Also, some examples are given to illustrate the obtained
results.

First, we recall some notions and lemmas which will be useful in what
follows.

Definition 1.6 (|[12]). Let X be a non-empty set andlet d : X x X xX — R
be a mapping satisfying the following conditions.

(1) For every pair of distinct points z,y € X, there exists a point z € X
such that d(z,y, z) # 0;
(2) If at least two of three points x, y, z are the same, then d(z,y, z) = 0;
(3) The symmetry: d(w,y,z) = d(m,z,y) = d(yaq}:z) = d(y,z,:):) =
d(z,z,y) = d(z,y,z) for all x,y,z € X
(4) The rectangle inequality: d(x,y, z) < d(z,y,t) +d(y, z,t) + d(z,z,t)
for all z,y,z,t € X.
Then, d is called a 2-metric on X and (X, d) is called a 2-metric space which
will be sometimes denoted by X if there is no confusion. Every member
x € X is called a point in X.

Definition 1.7 ([13]). Let {xy,} be a sequence in a 2-metric space (X, d).
Then

(1) {x,} is called convergent to x in (X,d), written as lim z, = z, if
n—oo

for all a € X, li_>m d(xp,x,a) =0.
(2) {zyn} is called Cauchy in X if for alla € X, lim d(zy,zm,a) =0,

n,M—00
that is, for each £ > 0, there exists ng such that d(z,, zm,,a) < ¢ for
all n,m > ng.
(3) (X,d) is called complete if every Cauchy sequence in (X,d) is a
convergent sequence.

Definition 1.8 ([16], Definition 8). A 2-metric space (X, d) is called compact
if every sequence in X has a convergent subsequence.

Lemma 1.1 ([16], Lemma 3). Every 2-metric space is a T -space.
Lemma 1.2 ([16], Lemma 4). lim z,, = x in a 2-metric space (X,d) if and
n—o0

only if nl;rglo T = x in the 2-metric topological space X .

Lemma 1.3 ([16], Lemma 5). If T : X — Y is a continuous map from
a 2-metric space X to a 2-metric space Y, then lim xz, = x in X implies

n—o0
lim Tz, =Tx inY.
n—oo

Remark 1.2. (1) It is straightforward from Definition 1.6 that every

2-metric is non-negative and every 2-metric space contains at least
three distinct points.
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(2) A 2-metric d(z,y,z) is sequentially continuous in one argument.
Moreover, if a 2-metric d(z,y, z) is sequentially continuous in two
arguments, then it is sequentially continuous in all three arguments,
see [19, p.975].

(3) A convergent sequence in a 2-metric space need not be a Cauchy
sequence, see [19, Remark 01 and Example 01]

(4) In a 2-metric space (X,d), every convergent sequence is a Cauchy
sequence if d is continuous, see [19, Remark 02].

(5) There exists a 2-metric space (X,d) such that every convergent se-
quence is a Cauchy sequence but d is not continuous, see [19, Remark
02 and Example 02].

Definition 1.9 ([7], Definition 2.1). Let (X, <) is a partially ordered set
and T, f : X — X be two mappings. Then, T is called monotone f-
nondecreasing if for all z,y € X, fa < fy implies Tx X Ty. If f is an
identity mapping, then T is called monotone nondecreasing.

Definition 1.10 ([14]). Let (X, d) be a metric space and T, f : X — X
be two mappings. Them, the pair (7, f) is called weakly compatible if they
commute at their coincidence points, that is, T fx = fTx for all x € X with
Tr = fx.

2. MAIN RESULTS

First, we introduce the notion of a (u, 1)-generalized f-weakly contractive
mapping in partially ordered 2-metric spaces.

Definition 2.1. Let (X,d, <) be a partially ordered 2-metric space and
T,f: X — X be two mappings. Then, T is called a (u,1)- generalized
f-weakly contractive mapping if there exist ¢ € ¥ and p which is an altering
distance function such that for all z,y,a € X with fx = fy or fz < fy,

(1) w(d(Tw,Ty,a)

< M(%[d(fx, Ty,a) 4+ d(fy, Tz, a)]> — w(d(fx, Ty, a),d(fy, Tz, a)).

Remark 2.1. If f and p are two identify mappings, then a (u, ¥)-generalized
f-weakly contractive mapping in partially ordered 2-metric spaces becomes
a weak C-contraction mapping in partially ordered 2-metric spaces in Defi-
nition 1.5.

The following result is a sufficient condition for the existence and the
uniqueness of the common fixed point for (p,))- generalized f-weakly con-
tractive mappings in partially ordered 2-metric spaces.

Theorem 2.1. Let (X, <,d) be a complete, partially ordered 2-metric space
and T, f : X — X be two mappings such that

(1) TX C fX and fX is closed.
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(2) T is a monotone f-nondecreasing mapping.

(3) T is a (u,v)-generalized f-weakly contractive mapping.

(4) If {fzn} C X is a nondecreasing sequence such that li_>m fxn =

n [o.¢]
fz € fX, then fr, =< fz and fz < f(fz) for every n € NU {0}.

(5) There exists xog € X such that fxg < Txg.
Then, T and f have coincidence point. Further, if T and f are weakly
compatible, then T and f have a common fixed point. Moreover, the set of
common fized points of T and f is well ordered if and only if T and f have
one and only one common fixed point.

Proof. Let x¢g € X such that fxg =< Txg. Since TX C fX, we can choose
x1 € X such that fx; = Txg. Since Tz, € fX, there exists z9 € X such
that fzg = Tx;. By induction, we construct a sequence {z,} in X such
that fx,41 = Tz, for all n € NU{0}.

Since fxg X Txg = fx1 and T is a monotone f-nondecreasing mapping,
we have Txg < T'z;. Continuing, we obtain

Trg 2Tz =X.. Ty STy <.

Then, fzp41 = fx, for all n € NU{0}. Due to T is a (u,))-generalized
f-weakly contractive mapping, we get

u(d(Tﬂ:nH, Tx,, a))

IN

p(Gld(f 1, T @)+ d(f 20, T, 0)])

_w(d(fxn—‘rl, Txn, CL), d(fxn, Twn—i—l, CL))

1
= p(Gld(Ten. Tan,a) + d(Ten-1, Tans, 0)))

Y (d(T:Un, Tz, a),d(Txn—1,TTni1, a))

1
= u(§d(Txn_1,Txn+1,a)) —¢(0,d(Txn-1,TTn41,0))

1

(2) < M(id(T$n—1,T$n+1, a))

for all @ € X. Since p is a monotone increasing, from (2), we get

1
(3) d(Tﬁ:’n+1, T.%'n, a) < id(T[BTL—la T$n+1, a/)

foralla € X. By choosing a = Tx,,—1 in (3), we get d(Txp41, Ty, Trp—1) <
0 and hence

(4) d(Tzpy1, Ty, Txp—1) =0.
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It follows from (3) and (4) that
d(Tzpy1, Txp, a)

< —d(Txp-1,TrHi1,0)

< (d(Txp-1,Trp,a) + dTxn, Trni1,a) + d(Txp-1,TTns1, Txy))

— N RN

(5) < = (dTxp-1,Trn,a)+dTxn, Trni1,a)).

\)

It implies that

(6) d(Txpi1, Tap,a) < d(Txp—1,TTn, a).

Thus, {d(Txn, Txn+1,a)} is a decreasing sequence of non-negative real num-
bers and hence it is convergent. Let

(7) lim d(Txp, Txpt1,a) =1

n—oo
Taking the limit as n — oo in (5) and using (7), we get

1 .
r < §nh_>rr;o d(Txp—1,TTpyi1,0) <

(r+r)=r.

DN |

It implies that
(8) lim d(Txp—1,TTp41,a) = 2r.

n—oo
Taking the limit as n — oo in (2) and using (7), (8), we get

p(r) < p(r) = 9(0,2r) < p(r).
It implies that ¢(0,2r) = 0, that is, r = 0. Then, (7) becomes
(9) lim d(Txp, Txps1,a) = 0.

n—oo

From (6), if we have d(T'zy,—1, Txp,a) = 0, then d(Txy, Txp11,a) = 0. Since
d(Txo, Tx1,Txo) = 0, we have d(Txy, Txni1,Tzo) = 0 for all n € NU{0}.
Since d(Txpm—1, Txm, TTy) = 0, we get
(10) d(Txp, Txpi1, Tam) =0

forallm > m —1. For all 0 < n < m — 1, noting that m —1 > n — 1,
from (10), we obtain

Ad(Txm—1,TTm, Txps1) = d(Tpm—1, T, Txy) = 0.
It implies that
d(Txy, Txpni1, Trp,)
d(Txp, Trpi1, Tom—1) + d(Txps1, T, TTm-1) + A(T Ty, Ty, T—1)
d(Txp, Txpi1, TTm—1).

IN
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It implies that

(11) d(Txp, Txpi1, Tey) < d(Txp, Trps1, Txni1)
for all 0 <n <m — 1. Since d(Txn, Txpt1, TTp+1) =0, from (11), we have
(12) d(Txp, Txpi1, Tam) =0

forall 0 <n <m—1. From (10) and (12), we have d(Txy, T@n+1, Txm) =0
for all n,m € NU{0}. Now for all i, j,k € N with i < j, we have

d(Tzj—1,Txj,Tx;) = d(Txj—1, Tz, Try) = 0.
Therefore,
d(Tz;, Txj,Try) < d(Tz;,Txj,Txj1)+dTx;, Tay, Taxj_1)
+d(Txy, T, Txj—1)
= d(Tx;, Txj_1,Txy)

= d(Tx;, Tx;, Txy)
= 0.

This proves that for all i, 7,k € NU {0},

(13) d(Tz;, Tx;, Txy) = 0.

In what follows, we will prove that {T'z,} is a Cauchy sequence. Suppose
to the contrary that {T'xz,} is not a Cauchy sequence. Then there exists
e > 0 for which we can find subsequences {7z, )} and {Tx,)} where
n(k) is the smallest integer such that n(k) > m(k) > k and

(14) d(Txn(k)aTxm(k)v (1) >€
for all £ € N. Therefore,
(15) d(Txn(k)_l,T:Cm(k), a) < e.

By using (13), (14) and (15), we have

ATy Ty, @)

(T k), T iy—1,a) + AT Ty 1) —1, T (1), @)
+d(T k), T () s T (k) -1)

€

VANRIVAN

AT Ty (k) TTn(r) -1, @) + ATy -1, TTrm 1y @)
(16) < d(TJL‘n(k), Tl‘n(k),l, a) +e.
Taking the limit as £ — oo in (16) and using (9), we have

1 li T T = li T T =c.
(A7) lim d(Tzpr), Tomry, a) = m d(Tzp) -1, Teme),a) =€
Also, from (13), we have

ATy, Ty ()1, @)
< d(Txm(k)v Txm(k)—la (1) + d(Txm(k)—b Txn(k:)—la a)
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Fd(T T (1), T (k) =15 T T () —1)
= ATy, TTm)-1,0) + AT 1)—1, TTp 1)1, )
ATy, T (k)—1, @) + ATy —1, TT (1) @)
(T (k)—1, T (k) @) + AT Ty =1, T k)1, TTr(k))
ATy, TTrn(k)—1, ) + AT Ty -1, T (), @)
+d(Txp ) -1, T (), @)

IN

(18)

and
d(T:Em(k)—la Txn(k)? CL)
< ATy =1, Tk @) + d(T Ty, TTrn (1), @)
+Ad(T Ty (y—1, T k), Tk

(19) = d(Trpp)y—1, TTmr), a) + AT Tp@), Ty, a)-
Taking the limit as £ — oo in (18), (19) and using (9), (17), we obtain

2 li T T =ec.
(20) Jim d(Tz k)1, Tanr),a) = ¢

Since n(k) > m(k), we have frpg)_1 = fTy,@w-1- Since T is a (u,1)-
generalized f-weakly contractive mapping, we have

M(E) < M(Tmm(k%T:En(k)’a)

1
< Gl Tmrys Tongrys @) + d(fnge), TEmr), o))

(d Lm(k)> xn(k)aa)7d<fxn(k)7Txm(k)va))
1
= (§d )1 Ty, @) + AT y—1, Ty, a)])

(21) —w(d(Txm )15 Ty, @), A(T k)1, T (), @) )
Taking the limit as & — oo in (21) and using (17), (20) and the property
of p, 1, we have u(e) < u(e) — (e, e) and consequently (e, e) < 0, which
is contradiction. Thus, {Tx,} is a Cauchy sequence. Since fx, = Tx,_1,
{fx,} is also a Cauchy sequence in fX. Since fX is closed, there exists
z € X such that

(22) lim fa,i1 = li_>m Txy, = fz.

n—
Since {fx,} is a nondecreasing sequence and lim fz,;1 = fz, by the as-
n—oo

sumption 4, we have fz, <X fz and fz < f(fz) for all n > 0. On the other
hand, we have

w(d(Tz, frpir,a)) = p(d(Tz T, a))

,u(;[d(fz, Ty, a)+d(fe,, Tz, a)])
(23) —¢(d(fz,Txn,a),d(fxn,Tz,a)).

IN
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Taking the limit as k¥ — oo in (23) and using (22) and the property of u, ),
we have

w(d(Tz, fz,a))
1

,u(i[d(fz, fz,a)+ d(fz,Tz,a)]) — w(d(fz,fz,a),d(fz,Tz,a))

IN

= ,u(;d(fz, Tz, a)) — w(O, d(fz,Txz, a))

1
< u(id(fzv TZ7 a))

This implies that d(T'z, fz,a) = 0 for all @ € X. Therefore Tz = fz, that
is, z is a coincidence point of T" and f.

Now, suppose that 7" and f are weakly compatible. Let w = fz = Tz.
Then Tw =T(fz) = f(Tz) = f(w). Since fz = f(fz) = f(w) and T is a
(11, 1)-generalized f-weakly contractive mapping, we have

u(d(Tz,Tw,a))
< M(%[d(fz,Tw,a) +d(fw, Tz, a)]) — ¢(d(fz,Tw, a), d(fw,Tz,a))

= u(%[d(Tz, Tw,a)+ d(Tw,Tz, a)]) - w(d(Tz, Tw,a),d(Tw, Tz, a))
= M(d(Tw,Tz,a)]) — w(d(Tz,Tw,a),d(Tw,Tz,a)).

It implies that d(Tz,Tw,a) = 0 for all @ € X. Therefore Tz = Tw = w,
that is, Tw = fw = w. It means w is a common fixed point of T and f.

Now, suppose that the set of common fixed points of T and f is well
ordered. We claim that common fixed points of T' and f is unique. If
otherwise, then there exists u # v such that Tu = fu =w and Tv = fv = v.
Then

p(d(u,v,a))
= u(d(Tu,Tv,a))
< M(%[d(fu, Tv,a) + d(fv, Tu,a)]) — ¢ (d(fu,Tv,a),d(fv,Tu,a))
= u(%[d(u, v,a) +d(v,u,a)]) — ¥(d(u,v,a),d(v,u,a)).

This implies that d(u,v,a) = 0 for all a € X. Therefore u = v, that is, that
common fixed points of T and f is unique. Conversely, if 7" and f have only
one common fixed point then the set of common fixed points of T" and f
being singleton is well ordered. (|

From Theorem 2.1, we get the following corollary.
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Corollary 2.1. Let (X,d, <) be a complete, partially ordered 2-metric space
and T : X — X be a mapping such that

(1) T is a monotone nondecreasing mapping.
(2) There exist 1 € U and p which is an altering distance function such
that for all x,y,a € X withx =y orxz <y,

,U(d(Txa Tya a))

(24) < ,u(;[d(a?, Ty,a) + d(y, Tz, a)]) — w(d(:c, Ty,a),d(y, Tx, a)).

(3) If{xn} C X is a nondecreasing sequence such that lim x, =z € X,
n—o0

then x,, < z for every n € NU{0} or T is continuous.
(4) There exists an xo € X with g = Txg.

Then, T has a fized point. Moreover, if for arbitrary two points x,y € X,
there exists w € X such that w is comparable with both x and y, then T has
a unique fized point.

Proof. We assume that if {z,,} C X is a nondecreasing sequence such that
lim z, = z € X, then z,, < z for every n € NU{0}. By using Theorem 2.1

n—oo

with f is an identity mapping, we conclude that T has a fixed point. Now,
we assume that 7' is continuous. Then, the proceeding as in Theorem 2.1
with f is an identity mapping we see that {Tx,} is a Cauchy sequence.

Then, there exists z € X such that lim x,y; = lim Tz, = z. Since T is
n—oo n—oo
continuous, we have z = lim T, = T'( lim xz,) = Tz, that is, z is a fixed
n—oo n—oo
point of T'.

Now, let © and v be two fixed points of T" such that u # v. We consider
the following two cases.
Case 1. wu and v are comparable. Then, from (24), we have

p(d(u,v,a)) = p(d(Tu,Tv,a))

< ,u(%[d(u, Tv,a) + d(v, Tu, a)]) — ¢(d(u, Tv,a),d(v, Tu, a)))

= ,u(;[d(u,’u, a) + d(v, u,a)]) — w(d(u,fu, a),d(v,u, a)))

= ,u(d(v,u,a)) — w(d(u,v,a),d(v,u, a))).

It implies that d(u,v,a) = 0 for all @ € X. Therefore u = v.

Case 2. u and v are not comparable. Then, there exists w € X such
that w is comparable with both v and v. If u is comparable with w, then
u = T™u is comparable with T"w for each n € NU{0}. From (24), we have

p(d(u, T"w, a))
= u(d(T"u,T”w, a))
= ,u(d(TT”_lu,TT”_lw, a))
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IN

1
,u(i[d(Tnflu, T"w,a) + d(T" 'w, T"u, a)])
—w(d(Tnflu, T"w,a),d(T" ‘w, T"u, a)))

= (Gl T"w,a) + d(T" w,u, )

—¢(d(u, T"w,a),d(T" ‘w,u, a)))

1
(25) < p(5ld0n T"w,0) + AT w,u,a)).
It implies that d(u, T"w, a) < d(u, T" 'w, a). This prove that {d(u, T"w, a)}
is a decreasing sequence of nonnegative real numbers. Thus, there exists
r > (0 such that
(26) lim d(u,T"w,a) = r.

n—oo

Then, taking the limit as n — oo in (25), using (26) and property of pu, 1,
we have u(r) < u(r) —(r,r) < wp(r). It implies that ¢ (r,r) = 0, that is,

r = 0. Consequently, lim d(u,T"w,a) = 0. It means lim T"w = u.
n—o0 n—+00

Similarly, if v is comparable with w, then we can prove that li_>m Tr'w = wv.
n oo

Since the limit is unique, we get u = v.
From above cases, we conclude that T" has a unique fixed point. O

Remark 2.2. By taking p(t) = ¢ for all ¢ > 0 in Corollary 2.1, we get [10,
Theorem 2.3|, [10, Theorem 2.4| and [10, Theorem 2.5].

1
From Lemma 2.1 with p(t) = ¢ for all t > 0 and ¢(z,y) = (5— k) (x+v)

for all z,y € [0,+00) and for some k € [0, %), we get the following corollary
which is a version of the main result of [5] in the context of partially ordered
2-metric spaces.

Corollary 2.2. Let (X,d, <) be a complete, partially ordered 2-metric space
and T : X — X be a mapping such that

(1) T is a monotone nondecreasing mapping.
(2) There exists k € [0,%) such that for all z,y,a € X with x = y or
T2y,

d(Tx,Ty,a) < kld(z,Ty,a) + d(y, Tz, a)].
(3) If{zn} C X is a nondecreasing sequence such that lim z, =z € X,

n—oo
then xp, = z for every n € NU {0} or T is continuous.

(4) There exists an xg € X with xo =< Txzo.

Then, T has a fixed point. Moreover, if for arbitrary two points x,y € X,
there exists w € X such that w is comparable with both x and y, then T has
a unique fized point.
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Finally, in order to support the useability of our results, let us introduce
some the following examples.

Example 2.1. Let X = {0,1,2} with the usual order < on R. Define a
2-metric d on X as follows.

d(xayv Z) = mln{’x - y’a ’y - Z|7 ’Z - ZL’|}

for all z,y,z € X. Then (X,d, <) is a partially ordered, complete 2-metric
space. Let T, f : X — X be defined by

T0=T1=T2=0

and
f0=0,f1=f2=2.

. a+b
Define the function p(t) = ¢ for all ¢ > 0 and ¥ (a,b) = for all a,b > 0.

Then, for all x,y,a € X with fz > fy, we have
d(Tz,Ty,a) =d(0,0,a) =0

and

M(;[d(fx, Ty,a)+d(fy, Tx, a)]) —¢(d(fz, Ty, a),d(fy, Tz, a))
- ”G[d(f 2,0,) +d(fy,0,a)] ) = ¥ (d(fz,0,a),d(fy,0,a)

= é[d(fx,o,a) +d(fy,0,a)] > 0.

It implies that the condition (1) is satisfied. This proves that T is a (u,1))-
generalized f-weakly contractive mapping. Moreover, other assumptions of
Theorem 2.1 also are satisfied. Therefore, Theorem 2.1 is applicable to T,

fr (X, d) and p, ).

The following example shows that Theorem 2.1 can be used to prove the
existence of a common fixed point when standard arguments in metric spaces
in [4] fail, even for trivial maps. The idea of this example appears in [10].

Example 2.2. Let X ={0,1,2,...,n,...} with the usual order,

1 if x#y#z
d(z,y,z) = and there exists n > lwith {n,n+ 1} C {z,y, 2}
0 if otherwise,

and Tx = fx =0 for all x € X. Then

(1) (X,d) is a complete, totally ordered 2-metric space.

(2) (X,d) is not completely metrizable.

(3) T is a (u,v)-generalized f-weakly contractive mapping on the 2-
metric space X. Moreover, other assumptions of Theorem 2.1 are
satisfied.
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Proof. (1) and (2). See |10, Example 2.13|.

+b
(3). By choosing ¢ (a,b) = ¢ for all a,b > 0 and pu(t) =t for allt > 0, we

conclude that condition (1) holds. This prove that 7" is a (u, ¥)-generalized
f-weakly contractive mapping on the 2-metric space (X, d). O

Remark 2.3. In 2010, Taskovié¢ [20] formulated some monotone principles
of fixed point. Notice that Theorem 2.1 states the existence of common
fixed point for two mappings while [20, Theorem 15, Theorem 16, Corollary
36| only state the existence of the fixed point of a mapping. For exam-
ple, Theorem 2.1 is applicable to T" and f in Example 2.1 but [20, Theo-
rem 15, Theorem 16, Corollary 36| can not be applicable to T and f. We
also see that Corollary 2.1 and Corollary 2.2 are particular cases of Theo-
rem 2.1. These results state the existence and the uniqueness of the fixed
point while [20, Theorem 15, Theorem 16, Corollary 36] only state the exis-
tence of the fixed point.
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