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Some topological properties
of the spaces expX, λX and NX

F.G. Mukhamadiev

Abstract. In this paper we prove that the exponential functor exp
and the functor of superextension λ preserve some topological proper-
ties with respect to the topology of any T1 -space, and the functor of
complete linked systems N preserves some topological properties with
respect to the topology of any compact space.

1. Introduction

In 1981 on the Prague topological symposium V.V. Fedorchuk [1] put
forward the following common problems in the theory of covariant functors:

Let P be some geometrical property and F - some covariant functor. If X
has a property P , then F (X) has the same property P?

Or on the contrary, i.e. for what functors, if F (X) possesses a property
P , it follows that X possesses the same property P?

In this work we prove that the exponential functor exp and the functor
of superextension λ preserve the conditions (i) and (ii) with respect to the
topology of any T1 -space, and the functor of complete linked systems N pre-
serve the conditions (i) and (ii) with respect to the topology of any compact
space, where

(i) τ1 ⊆ τ2;
(ii) τ1 is a π-base for τ2, i.e. for each non-empty element O ∈ τ2 there

exists an element V ∈ τ1 such that V ⊂ O.
Let X be a T1-space. The collection of all nonempty closed subsets of X

we denote by expX. The family B of all sets of the form

O〈U1, U2, . . . , Un〉 = {F : F ∈ expX,F ⊂
⋃
Ui, F ∩ Ui 6= ∅, i = 1, 2, . . . , n},

where U1, U2, . . . , Un is a sequence of open sets of X, generates the topology
on the set expX.

This topology is called the Vietoris topology. The expX with the Vietoris
topology is called the exponential space or the hyperspace of X [2].
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Let X be a T1-space. Denote by expnX the set of all closed subsets
of X cardinality of which is not greater than the cardinal number n, i.e.
expnX = {F ∈ expX : |F | ≤ n}.

A system ξ = {Fα : α ∈ A} of closed subsets of a space X is called linked
if every two elements of ξ have non-empty intersection. By Zorn lemma any
linked system can be filled up to a maximal linked system (MLS), but such
completion is not unique.

Proposition 1.1 ([2]). A linked system ξ of a space X is MLS iff it has the
following density property:

if a closed subset A ⊂ X intersects all elements of ξ then A ∈ ξ.

The superextension λX of a topological space X is the set λX of all max-
imal linked systems of the topological space X generated by the Wallman
topology, an open base of which consists of sets of the form

O(U1, U2, . . . , Un) = {ξ ∈ λX : ∀i = 1, 2, . . . , n, ∃Fi ∈ ξ : Fi ⊂ Ui},

where U1, U2, . . . , Un are open subsets of X.
A topological space X can be naturally embedded in λX identifying each

point x of X with the MLS ξx = {F ∈ expX : x ∈ F}, where expX is the
exponential space of X.

A.V. Ivanov [3] defined the space NX of complete linked systems (CLS)
of a space X in the following way:

Definition 1.1 ([3]). A linked systemM of closed subsets of a compact X
is called a complete linked system (CLS) if for any closed set F of X, the
condition

“Every neighborhood OF of the set F contains of a set Φ ∈ M” implies
F ∈M.

A set NX of all complete linked systems of a compact X is called the
space NX of CLS of X. This space is equipped with the topology, the open
basis of which is formed by sets of the form of

E = O(U1, U2, . . . , Un)〈V1, V2, . . . , Vs〉 =
{
M∈ NX : for any

i = 1, 2, . . . , n there exists Fi ∈M such that Fi ⊂ Ui,
and for any j = 1, 2, . . . , s, F ∩ Vj 6= ∅ for any F ∈M

}
,

where U1, U2, . . . , Un, V1, V2, . . . , Vs are nonempty open in X sets.
A complete linked system was defined by Ivanov [3] for compacta. Functor

N is well defined in the category Comp. In current paper we define CLS for
an arbitrary T1 - space. For T1 - spaces the functor N is not defined. But
the space NX is well defined for T1 - space.
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Definition 1.2. A linked system M of closed subsets of a T1 - space X
is called a complete linked system (CLS) if for any closed set F of X, the
condition

"Every neighborhood OF of the set F contains of a set Φ ∈M"
implies F ∈M.

2. Main Results

Theorem 2.1. Suppose τ1 and τ2 are two topologies on X. If the topologies
τ1 and τ2 satisfy the following conditions:

(i) τ1 ⊆ τ2;
(ii) τ1 is a π-base for τ2, i.e. for each non-empty element O ∈ τ2 there

exists an element V ∈ τ1 such that V ⊂ O.
Then the topologies exp τ1 and exp τ2 also satisfies conditions (i) and (ii)

on expX.

Proof. (i) Let O 〈U1, U2, . . . , Un〉 be an arbitrary element of exp τ1, where
U1, U2, . . . , Un ∈ τ1. By the condition τ1 ⊆ τ2. This implies that U1, U2, . . . ,
Un ∈ τ2. In this case, by the definition of the Vietoris topology on expX,
we have O 〈U1, U2, . . . , Un〉 ∈ exp τ2.

(ii) Let O 〈V1, V2, . . . , Vk〉 be an arbitrary element of exp τ2, where
V1, V2, . . . , Vk ∈ τ2. Since the system τ1 is π-base, by condition (ii), we
see that there are nonempty elements U1, U2, . . . , Uk ∈ τ1 such that U1 ⊂
V1, U2 ⊂ V2, . . . , Uk ⊂ Vk. Then O 〈U1, U2, . . . , Uk〉 ⊂ O 〈V1, V2, . . . , Vk〉.
Indeed, suppose F ∈ O 〈U1, U2, . . . , Uk〉 is an arbitrary element. Then

F ⊂
k⋃
i=1

Ui and F ∩ Ui 6= ∅, i = 1, 2, . . . , k. Therefore, F ⊂
k⋃
i=1

Ui ⊂
k⋃
i=1

Vi

and F ∩ Vi 6= ∅, i = 1, 2, . . . , k. Hence, we have F ∈ O 〈V1, V2, . . . , Vk〉.
Thus exp τ1 is a π-base for exp τ2. We have proved that the topologies
exp τ1 and exp τ2 satisfies conditions (i) and (ii) on expX. Theorem 2.1 is
proved. �

Let O = O〈U1, U2, ..., Un〉 be a nonempty open basic element of hyper-
space expX. For O = O〈U1, U2, ..., Un〉 the class K(O) = {U1, U2, ..., Un} is
called a frame of O.

Theorem 2.2. Suppose τ1 and τ2 are two topologies on a T1 space X. If
the topologies exp τ1 and exp τ2 satisfy the conditions (i) and (ii) in Theorem
2.1, then the topologies τ1 and τ2 also satisfy conditions (i) and (ii) on X.

Proof. Let exp τ1 = {O 〈U1, U2, . . . , Un〉 : n ∈ A} and exp τ2 = {O〈V1, V2,
. . . , Vk〉 : k ∈ B} be two topologies and satisfy the conditions (i) and (ii),
where A, B are index sets. Consider the frame τ1 = K(exp τ1) = {{U1, U2,
. . . , Un} : n ∈ A} for each O 〈U1, U2, . . . , Un〉 ∈ exp τ1 and the frame
τ2 = K(exp τ2) = {{V1, V2, . . . , Vk} : k ∈ B} for each O 〈V1, V2, . . . , Vk〉 ∈
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exp τ2. Since the system exp τ1 is a π-base for exp τ2, we see that for each ele-
ment O 〈V1, V2, . . . , Vk〉 ∈ exp τ2 there exists an element O 〈U1, U2, . . . , Un〉
∈ exp τ1 such that O 〈U1, U2, . . . , Un〉 ⊂ O 〈V1, V2, . . . , Vk〉. Now, we shall
show that for each Vi, i = 1, 2, . . . , k there is Us, s = 1, 2, . . . , n such
that Us ⊂ Vi. Suppose that for Vi and for each U1, U2, . . . , Un we have
Us 6⊂ V1, s = 1, 2, . . . , n. Choose a point xs ∈ Us\Vi, s = 1, 2, . . . , n
for each s = 1, 2, . . . , n. Then F = {x1, x2, . . . , xn} ∈ O 〈U1, U2, . . . , Un〉.
But F /∈ O 〈V1, V2, . . . , Vk〉, since F ∩ Vi = ∅. This is in contradiction to
O 〈U1, U2, . . . , Un〉 ⊂ O 〈V1, V2, . . . , Vk〉. So, for each element V from τ2
there is U from τ1 such that U ⊂ V. It means that the system τ1 is a π-base
for the system τ2. (ii) is proved.

Now we prove condition (i). Let Us be an arbitrary nonempty element
from τ1. Then there exists an element O 〈U1, . . . , Us . . . , Un〉 from exp τ1
such that contains an element Us. From the condition of the theorem, we
have O 〈U1, . . . , Us . . . , Un〉 ∈ exp τ2. Then K(O 〈U1, . . . , Us . . . , Un〉) =
{U1, . . . , Us . . . , Un} ∈ τ2. Hence we have Us ∈ τ2. Since the element
Us ∈ τ1 is arbitrary, we have τ1 ⊂ τ2. Condition (i) is satisfied. Theorem
2.2 is proved. �

Joining Theorems 2.1 and 2.2 we obtain following

Theorem 2.3. Suppose τ1 and τ2 are two topologies on a set X. Topologies
τ1 and τ2 satisfy the conditions (i) and (ii) in Theorem 2.1, iff the topologies
exp τ1 and exp τ2 also satisfy conditions (i) and (ii) on expX.

Let O = O(U1, U2, . . . , Un) be an element of the base of the superextension
λX. The frame of O in X is the system K(O) = {U1, U2, . . . , Un}.

Theorem 2.4. Let τ1 and τ2 be two topologies on T1- spaces X and satisfy
the conditions (i), (ii) in Theorem 2.1. Then the topologies λ(τ1) and λ(τ2)
also satisfies conditions (i) and (ii) on λX.

Proof. Suppose τ1 = {Uα : α ∈ A} and τ2 = {Vβ : β ∈ B} are topologies on
X satisfying conditions (i) and (ii). Consider the family R1 = {Wα : α ∈ A}
of all finite unions of elements of τ1. Let P∞(R1) = {M ⊂ R1 : |M | <
ℵ0} be the system of all finite subfamilies of the family R1. Put O(M) =
O(W1,W2, . . . ,Wn), where , Wi ∈ R1, i = 1, 2, . . . , n. It is clear that the
system λ(τ1) = {O(W1,W2, . . . ,Wn) : Wi ∈ τ1, i = 1, 2, . . . , n} is a topology
on λX. Suppose λ(τ2) = {O(V1, V2, . . . , Vk) : Vj ∈ τ2, j = 1, 2, . . . , k} is a
topology on λX, where τ2 is the topology on X.

We shall prove that topologies λ(τ1) and λ(τ2) satisfy conditions (i) and
(ii).

(i) Suppose O(W1,W2, . . . ,Wn) is an arbitrary element of λ(τ1), where
W1,W2, . . . ,Wn ∈ R1 and W1,W2, . . . ,Wn are finite unions of elements τ1.
By the condition we have τ1 ⊆ τ2. This implies that {W1,W2, . . . ,Wn} ∈ τ2,
hence O(W1,W2, . . . ,Wn) ∈ λ(τ2).
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(ii) We will show that the topology λ(τ1) is a π-base for the topology
λ(τ2). Let O = O(V1, V2, . . . , Vk) be an arbitrary element of λ(τ2), where
V1, V2, . . . , Vk ∈ τ2. Consider the pairwise trace S(O) of O in X, i.e. the
system {V ′1 , V ′2 , . . . , V ′l } = S(O) of all pairwise intersections of elements of
the class K(O) = {V1, V2, . . . , Vk}, where K(O) is the frame of O in X.
Since sets V ′1 , V ′2 , . . . , V ′l are open and τ1 is a π-base for X, we see that there
exists a system L = {U1, U2, . . . , Ul} of elements of the π-base such that
U1 ⊂ V ′1 , U2 ⊂ V ′2 , . . . , Ul ⊂ V ′l .

Put Wi =
⋃
{Uj ∈ L : Uj ⊂ Vi}, i = 1, 2, . . . , k. Then, obviously, the sys-

tem µ = {W1,W2, . . . ,Wk} is linked and is contained to P∞(R1) ∈ τ1. Hence
O(µ) = O(W1,W2, . . . ,Wk) 6= ∅. We shall prove O(W1,W2, . . . ,Wk) ⊂
O(V1, V2, . . . , Vk).

Take an arbitrary point ξ ∈ O(W1,W2, . . . ,Wk). Then there exist linked
closed sets Fi ∈ ξ, i = 1, 2, . . . , k such that Fi ⊂Wi, i = 1, 2, . . . , k, therefore
Wi ⊂ Vi, i = 1, 2, . . . , k. This implies that ξ ∈ O(V1, V2, . . . , Vk). So, the
system λ(τ1) is a π-base for λ(τ2). Theorem 2.4 is proved. �

Theorem 2.5. Let τ1 and τ2 are two topologies on X. If the topologies
λ(τ1) and λ(τ2) satisfy the conditions (i) and (ii) in Theorem 2.1, then the
topologies τ1 and τ2 also satisfy conditions (i) and (ii) on X.

Proof. Assume that λ(τ1) = {O(U1, U2, . . . , Un) : n ∈ A} and λ(τ2) =
{O(V1, V2, . . . , Vk) : k ∈ B} are two topology on λX and satisfy the condi-
tions (i) and (ii), where A,B are sets of indexes.

Consider the frame τ1 = K(λ(τ1)) = {{U1, U2, . . . , Un} : n ∈ A} for
each O(U1, U2, . . . , Un) ∈ λ(τ1) and τ2 = K(λ(τ2)) = {{V1, V2, . . . , Vk} :
k ∈ B} for each O(V1, V2, . . . , Vk) ∈ λ(τ2). Since the system λ(τ1) is a π-
base for λ(τ2), we see that for each element O(V1, V2, . . . , Vk) ∈ λ(τ2) there
exists an element O(U1, U2, . . . , Un) ∈ λ(τ1) such that O(U1, U2, . . . , Un) ⊂
O(V1, V2, . . . , Vk) .

We now prove that if O(U1, U2, . . . , Un) ⊂ O(V1, V2, . . . , Vk) then for each
Vi, i = 1, 2, . . . , k there exists Us, s = 1, 2, . . . , n such that Us ⊂ Vi.

Suppose opposite, i.e. there exists Vs, s = 1, 2, . . . , k such that Uk 6⊂
Vs, k = 1, 2, . . . , n. Then for any k = 1, 2, . . . , n we have Uk \ Vs 6= ∅. Take
points xi ∈ Uk \ Vs for each i = 1, 2, . . . , n. Since sets Ui, i = 1, 2, . . . , n are
linked, we can take points xij ∈ Ui∩Uj , i = 1, 2, . . . , n, j = 1, 2, . . . , n, i 6= j,
from each set Ui ∩ Uj . Consider sets F1 = {x1, x12, x13, . . . , x1n}, F2 =
{x2, x21, x23, . . . , x2n}, . . . , Fn = {xn, xn1, xn2, . . . , xnn−1} and Fn+1 =
{x1, x2, x3, . . . , xn}. It is clear that µ = {F1, F2, . . . , Fn+1} is linked sys-
tem of closed sets. Extend µ to a MLS ξ. For each i = 1, 2, . . . , n we
have Fi ⊂ Ui and Fi ∈ ξ. Therefore ξ ∈ O(U1, U2, . . . , Un). Let’s show
ξ /∈ O(V1, V2, . . . , Vk).

Assume to the contrary that ξ ∈ O(V1, V2, . . . , Vk). Then for each j =
1, 2, . . . , k there exist closed setsMj ∈ ξ such thatMj ⊂ Vj . The set Fn+1 =
{x1, x2, x3, . . . , xn} consists of finite points xi ∈ Uk \ Vs, i = 1, 2, . . . , n.
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For any set Mj ∈ ξ, j = 1, 2, . . . , k we have Mj ∩ Fn+1 = ∅. So, ξ /∈
O(V1, V2, . . . , Vk).

This contradiction proves that for each Vi, i = 1, 2, . . . , k there exists at
least one element Us, s = 1, 2, . . . , n such that Us ⊂ Vi. Therefore, the
topology τ1 is a π-base of the topology τ2. (ii) is proved.

Now we prove condition (i). Let Us be an arbitrary element of the topol-
ogy τ1. Then there exists an element O(U1, U2, . . . , Us, . . . , Un) ∈ λ(τ1)
from the system λ(τ1), which contains Us, since the topologies λ(τ1) and
λ(τ2) satisfy the conditions (i) and (ii) on λX. From condition (i) we have
O(U1, U2, . . . , Us, . . . , Un) ∈ λ(τ2). Consider the frame K(O(U1, U2, . . . , Us,
. . . , Un)) = {U1, U2, . . . , Us, . . . , Un} ∈ τ2. Then we have Us ∈ τ2. The
element Us ∈ τ1 being arbitrary, we have τ1 ⊆ τ2. Condition (i) holds.
Theorem 2.5 is proved. �

Uniting Theorems 2.4 and 2.5 we obtain the following theorem.

Theorem 2.6. Let τ1 and τ2 are two topologies on T1-spaces X. Topologies
τ1 and τ2 satisfy the conditions (i) and (ii) in Theorem 2.1, iff the topologies
λ(τ1) and λ(τ2) also satisfies conditions (i) and (ii) on λX.

Let E = O(U1, U2, . . . , Un)〈V1, V2, . . . , Vs〉 be an element of the base of
the complete linked system NX of a space X. The frame of E in X is the
system K(O) = {U1, U2, . . . , Un, V1, V2, . . . , Vs}.

We will call a paired trace of a basic element E the X following system
opened in X subsets:

S(E) = {Ui ∩ Vj : i = 1, 2, . . . , n, j = 1, 2, . . . , s}
⋃

S(O),

where S(O) is a paired trace of an element O(U1, U2, . . . , Un) of X.

Proposition 2.1. [4]. Let µ = {Φ1,Φ2, . . . ,Φn} be a finite linked system of
closed subsets of a space X. Then the system M = {F ∈ expX : ∃Φi ∈
µ,Φi ⊂ F} is a complete linked system of X.

Theorem 2.7. Let τ1 and τ2 be two topologies on T1 - spaces X.If the
topologies τ1 and τ2 satisfy the conditions (i), (ii) in Theorem 2.1. Then the
topologies N(τ1) and N(τ2) also satisfies conditions (i) and (ii) on NX.

Proof. Suppose τ1 = {Uα : α ∈ A} and τ2 = {Vβ : β ∈ B} are two topology
on X such that the topologies satisfies conditions (i) and (ii). Consider
the family R1 = {Wα : α ∈ A} of all finite unions of elements of τ1. Let
P∞(R1) = {M ⊂ R1 : |M | < ℵ0} be the system of all finite subfamilies of
the family R1. Since τ1 is a topology on X, then R1 ⊂ τ1.

Put N(τ1) = {Oα(W1,W2, . . . ,Wb)〈W ′1,W ′2, . . . ,W ′f 〉 : Ws,W
′
p ∈ τ1; s =

1, 2, . . . , b; p = 1, 2, . . . , f ;α ∈ A} is a topology on NX of the topology
τ1. Let N(τ2) = {Oβ(V1, V2, . . . , Vk)〈V ′1 , V ′2 , . . . , V ′l 〉 : Vp, V

′
q ∈ τ2; p =

1, 2, . . . , k; q = 1, 2, . . . , l;β ∈ B} is a topology on NX of the topology
τ2.
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We shall prove that topologies N(τ1) and N(τ2) satisfy conditions (i) and
(ii).

We will show condition (i). Suppose O(W1,W2, . . . ,Wb)〈W ′1,W ′2, . . . ,W ′f 〉
is an arbitrary element of N(τ1), whereW1,W2, . . . ,Wb,W

′
1,W

′
2, . . . ,W

′
f are

nonempty open inX sets, andW1,W2, . . . ,Wb,W
′
1,W

′
2, . . . ,W

′
f ∈ τ1. By the

condition we have τ1 ⊆ τ2. This implies that W1,W2, . . . ,Wb,W
′
1,W

′
2, . . . ,

W ′f ∈ τ2, hence O(W1,W2, . . . ,Wb)〈W ′1,W ′2, . . . ,W ′f 〉 ∈ N(τ2).
Now we will show condition (ii). We will show that the topology N(τ1) =

{Oα(W1,W2, . . . ,Wb)〈W ′1,W ′2, . . . ,W ′f 〉 : Ws,W
′
p ∈ τ1; s = 1, 2, . . . , b;

p = 1, 2, . . . , f ;α ∈ A} is a π-base for the topology N(τ2). Let E = O(V1, V2,
. . . , Vk)〈V ′1 , V ′2 , . . . , V ′l 〉 be an arbitrary base element of N(τ2), where
V1, V2, . . . , Vk, V

′
1 , V

′
2 , . . . , V

′
l ∈ τ2. Consider the pairwise trace of E in X:

S(E) = {Vi ∩ Vj : i = 1, 2, . . . , k; j = 1, 2, . . . , l}
⋃
S(O),

where S(O) is the pairwise trace of O(V1, V2, . . . , Vk) in X. Since sets Vi, i =
1, 2, . . . , k are linked we have Vi ∩ Vj 6= ∅ for any i = 1, 2, . . . , k and j =
1, 2, . . . , k. Since the topology τ1 is a π- base for the topology τ2, then there
exist element Uii′ ∈ τ1 such that Uii′ ⊂ Vi∩Vi′ , i = 1, 2, . . . , k, i′ = 1, 2, . . . , k
and Uim ⊂ Vi ∩ V ′m, i = 1, 2, . . . , k,m = 1, 2, . . . , l.

Put L = {Uii′ , Uim : i, i′ = 1, 2, . . . , k;m = 1, 2, . . . , l} and

Wi =
⋃
{Uii′ : Uii′ ⊂ Vi ∩ Vi′}, i = 1, 2, . . . , k; i′ = 1, 2, . . . , k, 1(1)

W ′m =
⋃
{Uim : Uim ⊂ Vi ∩ V ′m}, i = 1, 2, . . . , k; m = 1, 2, . . . , l.2(2)

Then, obviously, the system µ = {Wi,W
′
m : i = 1, 2, . . . , k;m = 1, 2, . . . , l}

is linked and is contained in P∞(R1).
We shall prove O(W1,W2, . . . ,Wk)〈W ′1,W ′2, . . . ,W ′l 〉 6= ∅.
Indeed, from each set {Wi : i = 1, 2, . . . , k} we can take points xii′ ∈

Wi ∩Wi′ , i, i
′ = 1, 2, . . . , k and from each set {Wi,W

′
m : i = 1, 2, . . . , k;m =

1, 2, . . . , l} we can take points xim ∈Wi∩W ′m, i = 1, 2, . . . , k,m = 1, 2, . . . , l.
Let Φ = {xii′ , xim : i, i′ = 1, 2, . . . , k;m = 1, 2, . . . , l}. Put Fi = {xim ∈ Φ :
xim ∈ Wi} and Fm = {xim ∈ Φ : xim ∈ W ′m}, where i = 1, 2, . . . , k,m =
1, 2, . . . , l. Then µ = {F1, F2, . . . , Fk, Fk+1, . . . , Fk+l} is a linked system of
closed subsets in X. Consider M = {F ∈ expX : ∃Φi ∈ µ : Φi ⊂ F}, in
that case, by Proposition 2.1 in [4], M is complete linked system of a space
X and M ∈ O(W1,W2, . . . ,Wk)〈W ′1,W ′2, . . . ,W ′l 〉 6= ∅.

We will show O(W1,W2, . . . ,Wk)〈W ′1,W ′2, . . . ,W ′l 〉 ⊂ O(V1, V2, . . . , Vk)
〈V ′1 , V ′2 , . . . , V ′l 〉.

Let η ∈ O(W1,W2, . . . ,Wk)〈W ′1,W ′2, . . . ,W ′l 〉. Then for any i = 1, 2, . . . , k;
∃Fi ∈ η such that Fi ⊂ Wi and for any F ∈ η we have F ∩ W ′m 6=
∅,m = 1, 2, . . . , l. By (1) we have Fi ⊂ Wi ⊂ Vi and by (2) we have
F ∩ V ′m 6= ∅,m = 1, 2, . . . , l. Hence η ∈ O(V1, V2, . . . , Vk)〈V ′1 , V ′2 , . . . , V ′l 〉.
Theorem 2.7 is proved. �



24 Some topological properties of the spaces expX, λX and NX

Theorem 2.8. Let τ1 and τ2 be two topologies on T1 - spaces X. If the
topologies N(τ1) and N(τ2) satisfy the conditions (i) and (ii) in Theorem
2.1, then the topologies τ1 and τ2 also satisfies conditions (i) and (ii) in X.

Proof. Assume that N(τ1) = {Oα(U1, U2, . . . , Un)〈U ′1, U ′2, . . . , U ′n′〉 : n, n′ ∈
N ;α ∈ A} and N(τ2) = {Oβ(V1, V2, . . . , Vk)〈V ′1 , V ′2 , . . . , V ′k′〉 : k, k′ ∈ N ;β ∈
B} are two topology on NX and satisfies conditions (i) and (ii). Consider
the frame N(τ1) and N(τ2) on X, i.e. τ1 = {U1, U2, . . . , Un, U

′
1, U

′
2, . . . , U

′
n′ :

n, n′ ∈ N ;α ∈ A}, τ2 = {V1, V2, . . . , Vk, V ′1 , V ′2 , . . . , V ′k′ : k, k′ ∈ N ;β ∈
B}. We prove condition (ii) i.e. we will show that the topology τ1 is a
π-base for the topology τ2. Let Vi be an arbitrary element of τ2 on X.
Then there exist open set O(V1, V2, . . . , Vk)〈V ′1 , V ′2 , . . . , V ′k′〉 on NX, which
contains Vi. SinceN(τ1) is a π- base for the topologyN(τ2), then there exists
an element O(U1, U2, . . . , Un)〈U ′1, U ′2, . . . , U ′n′〉 such that O(U1, U2, . . . , Un)
〈U ′1, U ′2, . . . , U ′n′〉 ⊂ O(V1, V2, . . . , Vk)〈V ′1 , V ′2 , . . . , V ′k′〉. We shall prove that
for each sets Vi, i = 1, 2, . . . , k and V ′i , i = 1, 2, . . . , k′ there exists Us, Us′ ∈ τ1
such that Us ⊂ Vi, Us′ ⊂ Vi′ , s = 1, 2, . . . , n, s′ = 1, 2, . . . , n′.

Suppose opposite, i.e. there exists Vi ∈ τ2 such that Ui 6⊂ Vi, Ui′ 6⊂ Vi,
i = 1, 2, . . . ., n, i′ = 1, 2, . . . ., n′. Take points xi ∈ Ui \ Vi, xi′ ∈ Ui′ \ Vi
for each i = 1, 2, . . . ., n, i′ = 1, 2, . . . ., n′. Since sets Us, Us′ are linked,
we can take points xss′ ∈ Us ∩ Us′ , s = 1, 2, . . . ., n, s′ = 1, 2, . . . ., n′,
s 6= s′ and ysl ∈ Us ∩ Ul, s = 1, 2, . . . ., n, l = 1, 2, . . . ., n′. Put F1 =
{x1, x12, . . . , x1n, y11, y12, . . . , y1n′}, F2 = {x2, x21, x23, . . . , x2n, y21, y22, . . . ,
y2n′}, . . . , Fn = {xn, xn1, xn2, . . . , xnn, yn1, yn2, . . . , ynn′}, . . . , Fn+n′ =
{x1, x2, x3, . . . , xn, y1, y2, . . . , yn′}.

It is clear that µ = {F1, F2, . . . , Fn, Fn+1, Fn+2, . . . , Fn+n′} is a linked
system of closed sets. Fill µ to a CLS ξ. For each s = 1, 2, . . . , n we have Fs ⊂
Us and for each s′ = 1, 2, . . . , n′ we have Fs∩U ′s 6= ∅, where Fs ∈ ξ. Therefore
ξ ∈ O(U1, U2, . . . , Un)〈U ′1, U ′2, . . . , U ′n′〉. Let’s show ξ 6∈ O(V1, V2, . . . , Vk)
〈V ′1 , V ′2 , . . . , V ′k′〉.

Assume ξ ∈ O(V1, V2, . . . , Vk)〈V ′1 , V ′2 , . . . , V ′k′〉. Then for each i = 1, 2, . . . , k
there exist closed sets Mi ∈ ξ, i = 1, 2, . . . , k such that Mi ⊂ Vi and
Mi ∩ V ′s 6= ∅, s = 1, 2, . . . , k′, i = 1, 2, . . . , k.

The set Fn+n′ = {x1, x2, x3, . . . , xn, y1, y2, . . . , yn′} consists of finite points
xs, ys′ ∈ Us \ Vi, s = 1, 2, . . . , n, s′ = 1, 2, . . . , n′ . For any set Mi ∈ ξ, i =
1, 2, . . . , k we haveMi∩Fn+n′ = ∅. So, ξ 6∈ O(V1, V2, . . . , Vk)〈V ′1 , V ′2 , . . . , V ′k′〉.

This contradiction proves that for each Vi, i = 1, 2, . . . , k there exists at
least one element Us, s = 1, 2, . . . , n such that Us ⊂ Vi. Therefore, the
topology τ1 is a π-base of the topology τ2. (ii) is proved.

Now we prove condition (i). Let Us be an arbitrary element of the topol-
ogy τ1. Then there exists an element O(U1, U2, . . . , Us, . . . , Un) 〈U ′1, U ′2, . . . ,
U ′s, . . . , U

′
k〉 ∈ N(τ1) from the system N(τ1), which contains Us. Since the

topology N(τ2) is an admissible extension of the topology N(τ1) on NX,
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from condition (i) we have O(U1, U2, . . . , Us, . . . , Un) 〈U ′1, U ′2, . . . , U ′s, . . . ,
U ′k〉 ∈ N(τ2).

Consider the frame K(O(U1, U2, . . . , Us, . . . , Un) 〈U ′1, U ′2, . . . , U ′s, . . . , U ′k〉)
= {U1, U2, . . . , Us, . . . , Un, U

′
1, U

′
2, . . . , U

′
s, . . . , U

′
k} ∈ τ2. Then we have Us ∈

τ2. The element Us ∈ τ1 being arbitrary, we have τ1 ⊆ τ2. Condition (i)
holds. Theorem 2.8 is proved. �

Uniting Theorems 2.7 and 2.8 we obtain the following theorem

Theorem 2.9. Let τ1 and τ2 be two topologies on T1 - spaces X. Topologies
τ1 and τ2 satisfy the conditions (i) and (ii) in Theorem 2.1, iff the topologies
N(τ1) and N(τ2) also satisfies conditions (i) and (ii) on NX.

T. Radul [5] proved that the space of closed sets expX and superextension
λX are subsets of the space O(X) of weakly additive functionals. In the
work [5] he proved that the functor of probability measures P is a functor
subfunctor O.

Question 2.1. Suppose a topological space X satisfies conditions (i) and
(ii) in Theorem 2.1. Do spaces P (X) and O(X) satisfy conditions (i) and
(ii) too?

Or more common

Question 2.2. Suppose a topological space X satisfies conditions (i) and
(ii) in Theorem 2.1. Then for what covariant functors F the space F (X)
satisfies conditions (i) and (ii) or inversely?
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