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Existence and exponential stability of solutions for
transmission system with varying delay in R

Salah Zitouni, Abdelouaheb Ardjouni, Khaled Zennir
and Rachida Amiar

Abstract. In the present paper we are going to consider in a one
dimension bounded domain a transmission system with a varying delay.
Under suitable assumptions on the weights of the damping and the
delay terms, we prove the well-possedness and the uniqueness of solution
using the semigroup theory. Also we show the exponential stability by
introducing an appropriate Lyaponov functional.

1. Introduction

It is well known that the PDEs with time delay have been much studied
during the last years and their results is by now rather developed. See [1],
[5, 6, 7, 14, 17, 18, 19]. In the classical theory of delayed wave equations,
several main parts are joined in a fruitful way, it is very remarkable that the
damped wave equation with varying delays occupies a similar position and
arise in many applied problems.

We consider the transmission problem with a varying delay term,

(1)



utt (x, t)− auxx (x, t) + µ1ut (x, t)
+µ2ut (x, t− τ (t)) = 0, in Ω× (0,+∞) ,

vtt (x, t)− bvxx (x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞) ,
u (0, t) = u (L3, t) = 0,
u (Li, t) = v (Li, t) , i = 1, 2,
aux (Li, t) = bvx (Li, t) , i = 1, 2,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t− τ (t)) = f0 (x, t− τ (t)) , x ∈ Ω, t ∈ [0, τ̄ ] ,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ ]L1, L2[ ,

where 0 < L1 < L2 < L3, Ω =]0, L1[∪]L2, L3[, a, b, µ1, µ2 are positive
constants.
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144 Existence and exponential stability of solutions

We assume, that there exist positive constants τ0, τ such that

(2) 0 < τ0 ≤ τ (t) ≤ τ , ∀t > 0.

Moreover, we assume that

τ ∈W 2,∞([0, T ]), ∀T > 0,(3)
τ ′ (t) ≤ d < 1, ∀t > 0,(4)

where d is a positive constant.
To motivate our work, let us mention the work [16], when the authors

studied well-posedness and exponential stability of a problem with structural
damping and boundary delay in both cases µ > 0 and µ = 0 in a bounded
and smooth domain, where k2 = 0. The analogous problem with boundary
feedback has been introduced and studied by Xu, Yung, Li [19] in one-space
dimension using a fine spectral analysis and in higher space dimension by
the authors [14]. The case of time-varying delay has been already studied
in [15] in one space dimension and in general dimension, with a possibly
degenerate delay, in [16]. Both these papers deal with boundary feedback.

This paper improves the results in [4]; for τ(t) = τ , under suitable as-
sumptions on the weight of the damping and the weight of the delay, he
prove the existence and the uniqueness of the solution using the semigroup
theory. Also he show the exponential stability of the solution by introducing
a suitable Lyaponov functional..

Without delay, system (1) has been investigated in [3]; for Ω = [0, L1],
the authors showed the well-posedness and exponential stability of the total
energy. Muñoz Rivera and Oquendo [13] studied the wave propagations over
materials consisting of elastic and viscoelastic components; that is,

ρ1utt − α1uxx = 0, x ∈ ]0, L0[ , t > 0,(5)

ρ2vtt − α2vxx +

∫ t

0
g (t− s) vxx (s) ds = 0, x ∈ ]L0, L[ , t > 0,

with the boundary and initial conditions:

u (0, t) = v (L, t) , u (L0, t) = v (L0, t) , t > 0,(6)

α1ux (L0, t) = α2vx (L0, t)−
∫ t

0
g (t− s) vx (s) ds, t > 0,

where ρ1 and ρ2 are densities of the materials and α1, α2 are elastic coeffi-
cients and g is positive exponential decaying function. They showed that the
dissipation produced by the viscoelastic part is strong enough to produce an
exponential decay of the solution, no matter how small is its size. Ma and
Oquendo [9] considered transmission problem involving two Euler-Bernoulli
equations modeling the vibrations of a composite beam. By using just one
boundary damping term in the boundary, they showed the global existence
and decay property of the solution. Marzocchi et al [10] investigated a 1-D
semi-linear transmission problem in classical thermoelasticity and showed
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that a combination of the first, second and third energies of the solution de-
cays exponentially to zero, no matter how small the damping subdomain is.
A similar result has sheen shown by Messaoudi and Said-Houari [12], where a
transmission problem in thermoelasticity of type III has been investigated.
See also Marzocchi et al [11] for a multidimensional linear thermoelastic
transmission problem. The effect of the delay in the stability of hyperbolic
systems has been investigated by many people. See for instance [6, 7]. The
aim of this article is to study effect of the varying delay in the stability of
our system.

2. Well-posedness

Using the semigroup theory, we prove the existence and uniqueness of
solution of system (1). As in [14], let us introduce the following new variable

(7) z(x, ρ, t) = ut(x, t− τ (t) ρ).

Then, we obtain

(8) τ (t) zt(x, ρ, t) +
(
1− τ ′ (t) ρ

)
zρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞).

Therefore, the first equation in problem (1) is become as utt (x, t)− auxx (x, t) + µ1ut (x, t)
+µ2z(x, 1, t) = 0, (x, t) ∈ Ω× (0,+∞) ,

τ (t) zt(x, ρ, t) + (1− τ ′ (t) ρ) zρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞),

which can be written as{
U ′ = A(t)U,
U (0) = (u0, v0, u1, v1, f0 (·,− · τ)) ,

where the operator A(t) is given by

(9) A (t)


u
v
ϕ
ψ
z

 =


ϕ
ψ

auxx − µ1ϕ− µ2z(., 1)
bvxx

τ ′(t)ρ−1
τ(t) zρ

 ,

with the domain

(10) D(A(t)) =
{

(u, v, ϕ, ψ, z)T ∈ H; z(., 0) = ϕ on Ω
}
,

where

(11) H = X∗ × L2(Ω)× L2(L1, L2)× L2((Ω)× (0, 1)),

where the space X∗ is defined by

X∗ =
{

(u, v) ∈ H1(Ω)×H1(L1, L2) : u(0) = u(L3) = 0,

u(Li) = v(Li), aux(Li) = bvx(Li), i = 1, 2} .(12)
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Remark 2.1. Noting that the domain of D(A)(t) is independent of the time
t; i.e.,

(13) D(A (t)) = D(A (0)), t > 0.

Let

U = (u, v, ϕ, ψ, z)T , Ū = (ū, v̄, ϕ̄, ψ̄, z̄)T .

We define the standard inner product in H as follows:

〈
U, Ū

〉
H =

∫
Ω
{ϕϕ̄+ auxūx}dx+

∫ L2

L1

{ψψ̄ + bvxv̄x}dx

+

∫
Ω

∫ 1

0
z(x, ρ)z̄(x, ρ)dρdx.

Using semigroup arguments by the literature, we can obtain a well-posedness
result (see [8]).

Theorem 2.1. Assume that

(i) D(A(0)) is a dense subset of H,
(ii) D(A(t)) = D(A(0)) for all t > 0,
(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on

H and the family A = {A(t) : t ∈ [0, T ]} is stable with stability
constants C and m independent of t (i.e. the semigroup (St(s))s≥0

generated by A(t) satisfies ‖St(s)u‖H ≤ Cems‖u‖H, for all u ∈ H
and s ≥ 0),

(iv) ∂tA belongs to L∞∗ ([0, T ], B(D(A(0)),H)), the space of equivalent
classes of essentially bounded, strongly measurable functions from
[0, T ] into the setB(D(A(0)),H) of bounded operators fromD(A(0))
into H.

Then, problem (2) has a unique solution U ∈ C([0, T ], D(A(0)))∩C1([0, T ],H)
for any initial datum in D(A(0)).

Therefore, we will check the above assumptions for system (2).

Lemma 2.1. D(A(0)) is dense in H,

Proof. Let (f, g, g1, h1, h2)T ∈ H be orthogonal to all elements of D(A(0)),
that is,

0 =
〈
(u, v, ϕ, ψ, z)T , (f, g, g1, h1, h2)T

〉
H

=

∫
Ω
{ϕg1 + auxfx}dx+

∫ L2

L1

{ψh1 + bvxgx}dx+

∫
Ω

∫ 1

0
z(x, ρ)h2(x, ρ)dρdx,

∀(u, v, ϕ, ψ, z)T ∈ D(A(0)).

(14)
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Taking u = v = ϕ = ψ = 0 (then ux = vx = 0) and z ∈ D(Ω × (0, 1)). As
(0, 0, 0, 0, z)T ∈ D(A(0)), we obtain∫

Ω

∫ 1

0
z(x, ρ)h2(x, ρ)dρdx = 0.

Since D(Ω× (0, 1)) is dense in L2(Ω× (0, 1)), we deduce that h2 = 0.
In the same way, by taking u = v = ϕ = 0 (then ux = vx = 0) and

ψ ∈ D(L1, L2). As (0, 0, 0, ψ, 0)T ∈ D(A(0)), we obtain∫ L2

L1

ψh1 dx = 0.

Since D(L1, L2) is dense in L2(L1, L2), we deduce that h1 = 0. Also for
u = v = 0 (then ux = vx = 0) and ϕ ∈ D(Ω) we see that g1 = 0. Therefore,
for (u, v) ∈ D (Ω× (L1, L2)) (then (ux, vx) ∈ D (Ω× (L1, L2))) we obtain∫

Ω
auxfx dx+

∫ L2

L1

bvxgxdx = 0.

SinceD (Ω× (L1, L2)) is dense in L2(Ω×(L1, L2)), we deduce that (fx, gx) =
(0, 0) then (f, g) = (0, 0) because (f , g) ∈ X∗. �

Assuming

(15) µ2 ≤
√

1− dµ1.

In order to deduce a well-posedness result, we define on H the time de-
pendent inner product〈

(u, v, ϕ, ψ, z)T , (ū, v̄, ϕ̄, ψ̄, z̄)T
〉
H

=

∫
Ω
{ϕϕ̄+ auxūx} dx+

∫ L2

L1

{ψψ̄ + bvxv̄x}dx

+ ξτ (t)

∫
Ω

∫ 1

0
z(x, ρ)z̄(x, ρ)dρdx,

where ξ is the positive constant satisfying

(16)
µ2√
1− d

≤ ξ ≤ 2µ1 −
µ2√
1− d

.

Note that, from (15), such a constant ξ exists.

Lemma 2.2. Let Φ = (u, v, ϕ, ψ, z)T , then

(17) ‖Φ‖t ≤ ‖Φ‖se
d

2τ0
|t−s|

, ∀t, s ∈ [0, T ],

where d is a positive constant.
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Proof. For all s, t ∈ [0, T ], we have

‖Φ‖2t − ‖Φ‖2se
(

d
2τ0

)
|t−s|

=

(
1− e

(
d

2τ0

)
|t−s|

)(∫
Ω

({ϕ2 + au2
x})dx+

∫ L2

L1

{ψ2 + bv2
x}dx

)
+ ξ

(
τ(t)− τ(s)e

(
d

2τ0

)
|t−s|

)∫
Ω

∫ 1

0
z2(x, ρ)dρdx.

We notice that
e

(
d

2τ0

)
|t−s| ≥ 1.

Moreover
τ(t)− τ(s)e

(
d

2τ0

)
|t−s| ≤ 0,

for some d > 0.
Indeed,

τ(t) = τ(s) + τ ′(a)(t− s),
where a, b ∈ (s, t), and thus,

τ(t)

τ(s)
= 1 +

|τ ′(a)|
τ(s)

|t− s|,

By (4), τ ′ is bounded on [0, T ] and therefore, recalling also (2),
τ(t)

τ(s)
≤ 1 +

d

τ0
|t− s| ≤ e

d
2τ0
|t−s|

,

thus
τ(t)

τ(s)
≤ e

d
2τ0
|t−s|

.

This complete the proof. �

Lemma 2.3. Under condition (16) the operator

(18) A1(t) = A(t)− κ(t)I,

is dissipative, and
d

dt
A1(t) ∈ L∞∗ ([0, T ], B(D(A(0)),H)),

where

(19) κ(t) =

√
τ ′2 (t) + 1

2τ(t)
.

Proof. Taking U = (u, v, ϕ, ψ, z)T ∈ D(A(t)). Then, for a fixed t,

〈
A(t)


u
v
ϕ
ψ
z

 ,


u
v
ϕ
ψ
z


〉
t
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=

〈
ϕ
ψ

auxx − µ1ϕ− µ2z(., 1)
bvxx

τ ′(t)ρ−1
τ(t) zρ

 ,


u
v
ϕ
ψ
z


〉

t

=

∫
Ω
{(auxx − µ1ϕ− µ2z(., 1))ϕ+ aϕxux}dx+

∫ L2

L1

{bvxxψ + bψxvx}dx

− ξτ (t)

∫
Ω

∫ 1

0

1− τ ′ (t) ρ
τ (t)

zρz(x, ρ)dρdx .

= a

∫
Ω
ϕuxxdx− µ1

∫
Ω
ϕ2dx− µ2

∫
Ω
ϕz(., 1)dx+ a

∫
Ω
ϕxuxdx

+ b

∫ L2

L1

vxxψdx+ b

∫ L2

L1

ψxvx dx− ξ
∫

Ω

∫ 1

0

(
1− τ ′ (t) ρ

)
zρz(x, ρ)dρdx.

Integrating by parts, we obtain∫
Ω

∫ 1

0

(
1− τ ′ (t) ρ

)
zρz(x, ρ)dρdx

=
τ ′ (t)

2

∫
Ω

∫ 1

0
z2(x, ρ)dρdx+

1

2

∫
Ω

{
z2(x, 1)

(
1− τ ′ (t)

)
− z2(x, 0)

}
dx.

We get

〈A (t)U,U〉t = a

∫
Ω
ϕuxxdx− µ1

∫
Ω
ϕ2dx− µ2

∫
Ω
ϕz(., 1)dx+ a

∫
Ω
ϕxuxdx

+ b

∫ L2

L1

vxxψdx+ b

∫ L2

L1

ψxvx dx+
ξ

2

∫
Ω
z2(x, 0)dx

− ξτ ′ (t)

2

∫
Ω

∫ 1

0
z2(x, ρ)dρdx− ξ (1− τ ′ (t))

2

∫
Ω
z2(x, 1)dx,

by fact that z(x, 0) = ϕ (x)

〈A (t)U,U〉t(20)

= a [uxϕ]∂Ω + b [vxψ]L2
L1
− µ1

∫
Ω
ϕ2dx− µ2

∫
Ω
ϕz(., 1)dx

+
ξ

2

∫
Ω
ϕ2dx− ξ (1− τ ′ (t))

2

∫
Ω
z2(x, 1)dx+

ξτ ′ (t)

2

∫
Ω

∫ 1

0
z2(x, ρ)dρ,

〈A (t)U,U〉t = a [uxϕ]∂Ω + b [vxψ]L2
L1
−
(
µ1 −

ξ

2

)∫
Ω
ϕ2dx− µ2

∫
Ω
ϕz(., 1)dx

(21)

− ξ (1− τ ′ (t))
2

∫
Ω
z2(x, 1)dx+

ξτ ′ (t)

2

∫
Ω

∫ 1

0
z2(x, ρ)dρ,
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Using Young’s inequality, the third condition of (1) and the equality ϕ (L2) =
ψ (L2) ,we obtain

〈A (t)U,U〉t ≤ −
(
µ1 −

ξ

2
− µ2

2
√

1− d

)∫
Ω
ϕ2dx

−
(
ξ (1− d)

2
− µ2

√
1− d
2

)∫
Ω
z2(x, 1)dx+ k (t) 〈U,U〉 ,(22)

where

(23) κ (t) =

(
τ ′ (t)2 + 1

) 1
2

2τ (t)
.

Consequently, using (16), we deduce that

〈A(t)U,U〉t − κ (t) 〈U,U〉t ≤ 0.

Which means that the operator

A(t)1 (t) = A (t)− k (t) I,

is dissipative.
Moreover,

κ′(t) =
τ ′′(t)τ ′(t)

2τ(t)(τ ′2 + 1)
1
2

− τ ′(t)(τ ′2 (t) + 1)
1
2

2τ(t)2
,

is bounded on [0, T ] for all T > 0 (by (2) and (3) and we have

d

dt
A(t)U = (0, 0, 0, 0,

τ ′′(t)τ(t)ρ− τ ′(t) (τ ′(t)ρ− 1)

τ(t)2
zρ)

T ,

with
τ ′′(t)τ(t)ρ− τ ′(t)(τ ′(t)ρ− 1)

τ(t)2
,

is bounded on [0, T ]. Thus

(24)
d

dt
A1(t) ∈ L∞∗ ([0, T ], B(D(A(0)),H)),

the space of equivalence classes of essentially bounded, strongly measurable
functions from [0, T ] into B(D(A(0)),H). �

Lemma 2.4. For fixed t > 0 and λ > 0, the operator λI−A(t) is surjective.

Proof. Let (f, g, g1, h1, h2)T ∈ H, we seek U = (u, v, ϕ, ψ, z)T ∈ D(A(t))
solution of

(λI −A(t))


u
v
ϕ
ψ
y

 =


f
g
g1

h1

h2

 ,
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that is verifying

λu− ϕ = f,

λv − ψ = g,

λϕ− auxx + µ1ϕ+ µ2z(., 1) = g1,(25)
λψ − bvxx = h1,

λz − τ ′ (t) ρ− 1

τ (t)
zρ = h2.

Suppose that we have found (u, v) with the appropriate regularity. Then

ϕ = λu− f,(26)
ψ = λv − g.(27)

It is clear that ϕ ∈ H1(Ω) and ψ ∈ H1(L1, L2), furthermore, by (25), we
can find z as z(x, 0) = ϕ(x), x ∈ Ω, using the approach as in Nicaise and
Pignotti [14], we obtain, by using the equation in (25)

z(x, ρ) = ϕ(x)e−λρτ(t) + τ (t) e−λρτ(t)

∫ ρ

0
h2(x, σ)eλστ(t)dσ,

if τ ′(t) = 0, and

z(x, ρ) = ϕ(x)e
λ
τ(t)

τ ′(t) ln(1−τ ′(t)ρ)

+ e
λ
τ(t)

τ ′(t) ln(1−τ ′(t)ρ)
∫ ρ

0

h2(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ ′(t) ln(1−τ ′(t)σ)
dσ,

otherwise.
By using (25), (26) and (27), the functions u, v satisfy the following equa-

tions

λ2u− auxx + µ1z(., 0) + µ2z(., 1) = g1 + λf,(28)
λ2v − bvxx = h1 + λg.(29)

Since

z(x, 1) = λue−λτ(t) − fe−λτ(t) + τ (t) e−λτ(t)

∫ 1

0
h2(x, σ)eλστ(t)dσ

= λue−λτ(t) + z0 (x) ,

with

z0 (x) = −fe−λτ(t) + τ (t) e−λτ(t)

∫ 1

0
h2(x, σ)eλστ(t)dσ, for x ∈ Ω,

if τ ′(t) = 0, and

z(x, 1) = λue
λ
τ(t)

τ ′(t) ln(1−τ ′(t)) − feλ
τ(t)

τ ′(t) ln(1−τ ′(t))

+ e
λ
τ(t)

τ ′(t) ln(1−τ ′(t))
∫ 1

0

h2(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ ′(t) ln(1−τ ′(t)σ)
dσ,
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= λue
λ
τ(t)

τ ′(t) ln(1−τ ′(t))
+ z0 (x) , for x ∈ Ω,

with

z0 (x) = −feλ
τ(t)

τ ′(t) ln(1−τ ′(t))

+ e
λ
τ(t)

τ ′(t) ln(1−τ ′(t))
∫ 1

0

h2(x, σ)τ(t)

1− τ ′(t)σ
e
−λ τ(t)

τ ′(t) ln(1−τ ′(t)σ)
dσ,

otherwise.
The system (25)-(26) can be reformulated as

(30)


∫

Ω

(
λ2u− auxx + µ1λu+ λµ2ue

−λτ(t)
)
ωdx

=
∫

Ω (µ1f + g1 + λf − µ2z0 (x))ωdx,∫ L2

L1

(
λ2v − bvxx

)
ω̃dx =

∫ L2

L1
(h1 + λg) ω̃dx,

for any (ω, ω̃) ∈ X∗, if τ ′(t) = 0, and

(31)


∫

Ω

(
λ2u− auxx + µ1λu+ λµ2ue

λ
τ(t)

τ ′(t) ln(1−τ ′(t))
)
ωdx

=
∫

Ω (µ1f + g1 + λf − µ2z0 (x))ωdx,∫ L2

L1

(
λ2v − bvxx

)
ω̃dx =

∫ L2

L1
(h1 + λg) ω̃dx,

otherwise.
Integrating by parts, we obtain

(32)


∫

Ω

(
λ2 + µ1λ+ λµ2e

−λτ(t)
)
uωdx+ a

∫
Ω uxωxdx− a [uxω]∂Ω

=
∫

Ω (µ1f + g1 + λf − µ2z0 (x))ωdx,∫ L2

L1
λ2vω̃dx+ b

∫ L2

L1
vxω̃xdx− b [vxω̃]L2

L1
=
∫ L2

L1
(h1 + λg) ω̃dx,

if τ ′(t) = 0, and
(33)

∫
Ω

(
λ2 + µ1λ+ λµ2e

λ
τ(t)

τ ′(t) ln(1−τ ′(t))
)
uωdx+ a

∫
Ω uxωxdx− a [uxω]∂Ω

=
∫

Ω (µ1f + g1 + λf − µ2z0 (x))ωdx,∫ L2

L1
λ2vω̃dx+ b

∫ L2

L1
vxω̃xdx− b [vxω̃]L2

L1
=
∫ L2

L1
(h1 + λg) ω̃dx,

otherwise. The problem (32) and (33) is equivalent to the problem,

(34) Φ((u, v), (ω, ω̃)) = l(ω, ω̃),

where the bilinear form Φ : (X∗ ×X∗)→ R and the linear form l : X∗ → R
are defined by

Φ((u, v), (ω, ω̃))

=

∫
Ω

(
λ2 + µ1λ+ λµ2e

−λτ(t)
)
uωdx+ a

∫
Ω
uxωxdx− a [uxω]∂Ω

+

∫ L2

L1

λ2vω̃dx+ b

∫ L2

L1

vxω̃xdx− b [vxω̃]L2
L1
,
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l(ω, ω̃) =

∫
Ω

(µ1f + g1 + λf − µ2y0 (x))ωdx+

∫ L2

L1

(h1 + λg) ω̃dx,

if τ ′(t) = 0, and

Φ((u, v), (ω, ω̃))

=

∫
Ω

(
λ2 + µ1λ+ λµ2e

λ
τ(t)

τ ′(t) ln(1−τ ′(t))
)
uωdx+ a

∫
Ω
uxωxdx− a [uxω]∂Ω

+

∫ L2

L1

λ2vω̃dx+ b

∫ L2

L1

vxω̃xdx− b [vxω̃]L2
L1
,

l(ω, ω̃) =

∫
Ω

(µ1f + g1 + λf − µ2z0 (x))ωdx+

∫ L2

L1

(h1 + λg) ω̃dx,

otherwise.
Using the properties of the space X∗, it is clear that Φ is continuous and

coercive, and l is continuous. So applying the Lax-Milgram theorem, we de-
duce that for all (ω, ω̃) ∈ X∗, problem (34) admits a unique solution (u, v) ∈
X∗. It follows from (32) and (33) that (u, v) ∈ {

(
H2(Ω)×H2(L1, L2)

)
∩X∗}.

In conclusion, we have found U = (u, v, ϕ, ψ, z)T ∈ D(A(t)), which verifies
(25), and thus (λI −A(t)) is surjective for some λ > 0 and t > 0. Again as
κ (t) > 0, this proves that

(35) λI −A1(t) = (λ+ κ (t)) I −A(t), is surjective,

for any λ > 0 and t > 0. �

Theorem 2.2. The operator A generates a C0-semigroup on H. For any
U0 ∈ H, the problem (9) possesses a unique weak solution U ∈ C([0,+∞) ,H).
Moreover, if U0 ∈ D(A(0)), then U is a strong solution , i. e

U ∈ C([0,+∞) , D(A(0))) ∩ C1([0,+∞) ,H).

Proof. Results (17), (18) and (35) imply that the family A1 = {A1(t) :
t ∈ [0, T ]} is a stable family of generators in H with stability constants
independent of t. Therefore, all assumptions of Theorem 2.1 are satisfied by
(13), Lemma2.1–Lemma2.4, and thus, the problem

Ũ ′ = A1(t)Ũ ,

Ũ(0) = U0,

has a unique solution Ũ ∈ C([0,+∞), D(A(0))) ∩ C1([0,+∞),H) for U0 ∈
D(A(0)). The requested solution of (2) is then given by

U(t) = eB(t)Ũ(t),

with B (t) =
∫ t

0 κ(s)ds because

U ′(t) = κ (t) eB(t)Ũ(t) + eB(t)Ũ ′(t),

U ′(t) = κ (t) eB(t)Ũ(t) + eB(t)A1(t)Ũ(t),
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U ′(t) = A(t)eB(t)Ũ(t) = A(t)U(t).

This concludes the proof. �

3. Stability result

In this section we study the asymptotic behavior of the system (1). For
any regular solution of (1), we give the total energy as

E(t) =
1

2

∫
Ω
u2
t (x, t)dx+

a

2

∫
Ω
u2
x(x, t)dx+

1

2

∫ L2

L1

v2
t (x, t)dx

+
b

2

∫ L2

L1

v2
x(x, t)dx+

ξ

2

∫
Ω

∫ t

t−τ(t)
u2
t (x, s)dsdx,(36)

where ξ is the positive constant defined by (16). Our next main result reads
as.

Theorem 3.1. Let (u, v) be the solution of (1). Assume that µ2 > µ1 and

(37)
a

b
<
L3 + L1 − L2

2(L2 − L1)
.

Then there exist two positive constants W and w, such that

(38) E(t) ≤We−wt, ∀t ≥ 0.

To prove Theorem 3.1, we use the following lemmas. First, we will need
an explicit formula of energy derivative. The following energy functional law
holds.

Lemma 3.1. Let (u, v, z) be the solution of (1). Assume that µ1 ≥ µ2.
Then we have the inequality

dE(t)

dt
≤

(
−µ1 +

µ2

√
1− d
2

+
ξ

2

)∫
Ω
u2
t (x, t)dx(39)

−
(
ξ (1− d)

2
− µ2

2
√

1− d

)∫
Ω
u2
t (x, t− τ (t)) dx.

Proof. From (36) we have
dE1(t)

dt
= a

∫
Ω
ut(x, t)uxx (x, t) dx− µ1

∫
Ω
u2
t (x, t)dx

− µ2

∫
Ω
ut(x, t)ut (x, t− τ (t)) dx+ a

∫
Ω
uxt(x, t)ux(x, t)dx.

where
E1(t) =

1

2

∫
Ω
u2
t (x, t)dx+

a

2

∫
Ω
u2
x(x, t)dx.

Using system (2), and integrating by parts, we obtain
dE1(t)

dt
= a

∫
Ω
ut(x, t)uxx (x, t) dx− µ1

∫
Ω
u2
t (x, t)dx
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− µ2

∫
Ω
ut(x, t)ut (x, t− τ (t)) dx

+ a[uxut]∂Ω − a
∫

Ω
uxx (x, t)ut (x, t) dx.

applying Young’s inequality

dE1(t)

dt
≤ −

(
µ1 −

µ2

√
1− d
2

)∫
Ω
u2
t (x, t)dx(40)

+
µ2

2
√

1− d

∫
Ω
u2
t (x, t− τ (t)) dx+ a[uxut]∂Ω.

On the other hand,

(41)
dE2(t)

dt
= b[vxvt]

L2
L1
.

where

E2(t) =
1

2

∫ L2

L1

v2
t (x, t)dx+

b

2

∫ L2

L1

v2
x(x, t)dx.

Using the fact that

d

dt

∫
Ω

∫ t

t−τ(t)
u2
t (x, s)dsdx(42)

=

∫
Ω
u2
t (x, t)dx−

(
1− τ ′ (t)

) ∫
Ω
u2
t (x, t− τ (t))dx,

collecting (40), (41), (42), using boundary conditions and applying Young’s
inequality, we show that (39) holds. The proof is complete. �

Following [2], we define the functional

I(t) =

∫
Ω

∫ t

t−τ(t)
es−tu2

t (x, s)dsdx,

and state the following lemma.

Lemma 3.2. Let (u, v) be the solution of (2). Then

dI(t)

dt
≤

∫
Ω
u2
t (x, t)dx− (1− d) e−τ̄

∫
Ω
u2
t (x, t− τ (t))dx(43)

−e−τ̄
∫

Ω

∫ t

t−τ(t)
u2
t (x, s)dsdx.

Now, we define the functional D(t) as follows

(44) D(t) =

∫
Ω
uutdx+

µ1

2

∫
Ω
u2dx+

∫ L2

L1

vvtdx.

Then, we have the following estimate.
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Lemma 3.3. The functional D(t) satisfies

dD(t)

dt
≤ −

(
a− ε0c2

0

) ∫
Ω
u2
x (x, t) dx− b

∫ L2

L1

v2
x (x, t) dx

+

∫
Ω
u2
tdx+

∫ L2

L1

v2
t dx+ C (ε0)

∫
Ω
u2
t (x, t− τ (t)) dx.(45)

Proof. Taking the derivative of D(t) with respect to t and using (1), we find
that

dD(t)

dt
=

∫
Ω
u2
tdx+

∫ L2

L1

v2
t dx− a

∫
Ω
u2
x (x, t) dx− b

∫ L2

L1

v2
x (x, t) dx

− µ2

∫
Ω
uut (x, t− τ (t)) dx+ a [uux]∂Ω + b [vvx]L2

L1
.(46)

Using the boundary conditions , we have

(47) a [uux]∂Ω + b [vvx]L2
L1

= 0.

On the other hand, we have by Poincaré’s and Young’s inequalities,

µ2

∫
Ω
uut (x, t− τ (t)) dx ≤ ε0

∫
Ω
u2dx+ C(ε0)

∫
Ω
u2
t (x, t− τ (t)) dx

≤ ε0c2
0

∫
Ω
u2
xdx+ C(ε0)

∫
Ω
u2
t (x, t− τ (t)) dx,

where c0 is the Poincaé’s constant. Consequently, plugging the above esti-
mates into (46), we find (45). �

Now, inspired by [10], we introduce the functional

(48) q(x) =


x− L1

2 , x ∈ [0, L1],

x− L2+L3
2 , x ∈ [L2, L3],

L2−L3−L1
2(L2−L1) (x− L1) + L1

2 , x ∈ [L1, L2].

Next, in order to construct the Lyapounov function, we define the functionals

L1(t) = −
∫

Ω
q(x)uxutdx, L2(t) = −

∫ L2

L1

q(x)vxvtdx.

Then, we have the following estimates.

Lemma 3.4. For any ε2 > 0, we have the estimates

dL1(t)

dt
≤ C (ε2)

∫
Ω
u2
tdx+

(a
2

+ ε2

)∫
Ω
u2
xdx

(49)

+ C (ε2)

∫
Ω
u2
t (x, t− τ (t)) dx− a

4
[(L3 − L2)u2

x (L3, t) + L1u
2
x (L2, t)],
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and

dL2(t)

dt
≤ L2 − L3 − L1

4 (L2 − L1)

(∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
xdx

)
(50)

+
b

4

(
(L3 − L2) v2

x (L2, t) + L1v
2
x (L1, t)

)
.

Proof. Taking the derivative of L1(t) with respect to t and using (1), we
obtain

dL1(t)

dt
= −

∫
Ω
q(x)uxtutdx− a

∫
Ω
q(x)uxuxx (x, t) dx(51)

+ µ1

∫
Ω
q(x)uxut (x, t) dx+ µ2

∫
Ω
q(x)uxut (x, t− τ (t)) dx.

Integrating by parts,

(52)
∫

Ω
q(x)utxutdx = −1

2

∫
Ω
q′(x)u2

tdx+
1

2
[q(x)u2

t ]∂Ω.

On the other hand,

(53)
∫

Ω
aq(x)uxxuxdx = −1

2

∫
Ω
aq′(x)u2

xdx+
1

2
[aq(x)u2

x]∂Ω.

Substituting (52) and (53) in (51), we find that

dL1(t)

dt
=

1

2

∫
Ω
q′(x)u2

tdx−
1

2
[q(x)u2

t ]∂Ω +
1

2

∫
Ω
aq′(x)u2

xdx−
1

2
[aq(x)u2

x]∂Ω

(54)

+ µ1

∫
Ω
q(x)uxut (x, t) dx+ µ2

∫
Ω
q(x)uxut (x, t− τ (t)) dx.

Using Young’s inequality and (48), equation (54) becomes

dL1(t)

dt
≤ C (ε2)

∫
Ω
u2
tdx+

(a
2

+ ε2

)∫
Ω
u2
xdx(55)

+ C (ε2)

∫
Ω
u2
t (x, t− τ (t)) dx− a

2
[q(x)u2

x]∂Ω −
1

2
[q(x)u2

t ]∂Ω.

Since q(L1) > 0 and q(L2) < 0, by using the boundary condition, we have

(56)
1

2
[q(x)u2

t ]∂Ω ≥ 0.

Also, we have

(57) −a
2

[q(x)u2
x]∂Ω = −a (L3 − L2)

4
[u2
x (L3, t) + u2

x (L2, t)].

Taking into account (56) and (57), then (55) gives (49).
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By the same method, taking the derivative of L2(t) with respect to t, we
obtain

dL2(t)

dt
= −

∫ L2

L1

q(x)vxtvtdx−
∫ L2

L1

q(x)vxvttdx

(58)

=
1

2

∫ L2

L1

q′(x)v2
t dx+

1

2

∫ L2

L1

bq′(x)v2
xdx−

1

2
[q(x)v2

t ]
L2
L1
− b

2
[q(x)u2

x]L2
L1

≤ L2 − L3 − L1,

4 (L2 − L1,)

(∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
xdx

)
+
b

4

(
(L3 − L2) v2

x (L2, t) + L1v
2
x (L1, t)

)
.

which is exactly (50). �

We define the Lyapunov functional

(59) L(t) = NE(t) + I(t) + γ2D(t) + γ3L1(t) + γ4L2(t),

where N , γ2, γ3 and γ4 are positive constants.

Proof of the Theorem 3.1. Now, it is clear from the boundary conditions,
that

(60) a2u2
x(Li, t) = b2v2

x(Li, t), i = 1, 2.

Taking the derivative of (59) with respect to t and making use of (39)-(49)
and taking into account (60), we obtain

dL(t)

dt
≤

{
N

(
−µ1 +

µ2

√
1− d
2

+
ξ

2

)
+ 1 + γ2 + γ3C (ε2)

}∫
Ω
u2
t (x, t)dx

+

{
N

(
µ2

2
√

1− d
− ξ (1− d)

2

)
− (1− d) e−τ̄(61)

+γ2C (ε0) + γ3C (ε2)}
∫

Ω
u2
t (x, t− τ (t)) dx

+
(
γ2

(
−a+ ε0c

2
0

)
+ γ3ε2 +

γ3a

2

)∫
Ω
u2
x (x, t) dx

+

(
γ4
L2 − L3 − L1,

4 (L2 − L1,)
− γ2b

)∫ L2

L1

v2
x (x, t) dx

+

(
γ2 + γ4

L2 − L3 − L1

4 (L2 − L1)

)∫ L2

L1

v2
t dx

−e−τ̄
∫

Ω

∫ t

t−τ(t)
u2
t (x, s)dsdx−

(
γ3 −

a

b
γ4

) a (L3 − L2)

4
u2
x (L2, t)

−
(
γ3 −

a

b
γ4

) aL1

4
u2
x (L1, t) .
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At this point, we choose our constants in (61), carefully, such that all the
coefficients in (61) will be negative. Indeed, under the assumption (37), we
can always find γ2, γ3 and γ4 such that

(62)
L2 − L3 − L1

4(L2 − L1)
γ4 + γ2 < 0, γ3 >

a

b
γ4, γ2 >

γ3

2
.

Once the above constants are fixed, we may choose ε2 and ε0 small enough
such that

γ2ε0c
2
0 + γ3ε2 < a

(
γ2 −

γ3

2

)
.

Finally, keeping in mind (2) and choosing N large enough such that the first
and the second coefficients in (61) are negatives.

Consequently, from the above, we deduce that there exist a positive con-
stant η1, such that (61) becomes

dL(t)

dt
≤ −η1

∫
Ω

(
u2
t (x, t) + u2

x (x, t) + u2
t (x, t− τ (t))

)
dx(63)

− η1

∫
Ω

(
v2
t (x, t) + v2

x (x, t)
)
dx− η1

∫
Ω

∫ t

t−τ(t)
u2
t (x, s)dsdx.

Consequently, recalling (36), we deduce that there exist also η2 > 0, such
that

(64)
dL(t)

dt
≤ −η2E(t), ∀t ≥ 0.

On the other hand, it is not hard to see that from (59) and for N large
enough, there exist two positive constants β1 and β2 such that

(65) β1E(t) ≤ L(t) ≤ β2E(t), ∀t ≥ 0.

Combining (64) and (65), we deduce that there exists Λ > 0 for which the
estimate

(66)
dL(t)

dt
≤ −ΛL(t), ∀t ≥ 0,

holds. Integrating (64) over (0, t) once again, then (38) holds. Then, the
proof is complete. �
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