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Uniqueness of the power of
meromorphic functions with its

differential polynomial sharing a set

Abhijit Banerjee∗ and Bikash Chakraborty∗∗

Abstract. This paper is devoted to the uniqueness problem of the
power of a meromorphic function with its differential polynomial sharing
a set. Our result will extend a number of results obtained in the theory
of normal families. Some questions are posed for future research.

1. Introduction Definitions and Results

In this paper we assume that readers are familiar with the basic Nevan-
linna Theory ([5]). Let f and g be two non constant meromorphic functions
in the complex plane C. If for some a ∈ C ∪ {∞}, f and g have same set of
a-points with the same multiplicities, we say that f and g share the value
a CM (counting multiplicities) and if we do not consider the multiplicities
then f , g are said to share the value a IM (ignoring multiplicities).

When a =∞ the zeros of f − a means the poles of f .
The problem of meromorphic functions sharing values with their deriva-

tives is a special subclass in the literature of uniqueness theory. The subject
of sharing values between entire functions and their derivatives was first
studied by Rubel and Yang ([10]). In 1977, they proved that if a non-
constant entire function f and f ′ share two distinct finite numbers a, b CM,
then f = f ′.

In 1979, analogous result for IM sharing was obtained by Mues and Stein-
metz in the following manner.
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2 Uniqueness of the power of a meromorphic functions

Theorem A ([9]). Let f be a non-constant entire function. If f and f
′

share two distinct values a, b IM then f ′ ≡ f .

To proceed further we consider the following well known definition of set
sharing.

Let S be a set of complex numbers and Ef (S) =
⋃
a∈S{z : f(z) = a},

where each zero is counted according to its multiplicity. If we do not count
the multiplicity, then the set

⋃
a∈S{z : f(z) = a} is denoted by Ef (S).

If Ef (S) = Eg(S) we say that f and g share the set S CM. On the other
hand, if Ef (S) = Eg(S), we say that f and g share the set S IM. Evidently,
if S contains only one element, then it coincides with the usual definition of
CM (respectively, IM) sharing of values.

In view of the above definition it will be interesting to study the relation
between f and its derivative f ′ when they share a set. We see from the
following example that results of Rubel-Yang or Mues-Steinmetz are not in
general true when we consider the sharing of a set of two elements instead
of values.

Example 1.1. Let S = {a, b}, where a and b are any two distinct complex
numbers. Let f(z) = e−z + a+ b, then Ef (S) = Ef ′(S) but f 6≡ f ′.

Thus for the uniqueness of meromorphic function with its derivative coun-
terpart, the cardinality of the sharing set should at least be three. In this
direction, in 2003, using Normal families, Fang and Zalcman made the first
breakthrough by establishing the following result.

Theorem B ([4]). Let S = {0, a, b}, where a, b are two non-zero distinct
complex numbers satisfying a2 6= b2, a 6= 2b, a2 − ab + b2 6= 0. If for a non
constant entire function f , Ef (S) = Ef ′(S), then f ≡ f ′.

In 2007 Chang, Fang and Zalcman([2]) further extended the above re-
sult by considering an arbitrary set having three elements in the following
manner.

Theorem C ([2]). Let f be a non-constant entire function and let S =
{a, b, c}, where a, b and c are distinct complex numbers. If Ef (S) = Ef ′(S),
then either

(1) f(z) = Cez; or
(2) f(z) = Ce−z+ 2

3(a+b+c) and (2a−b−c)(2b−c−a)(2c−a−b) = 0;
or

(3) f(z) = Ce
−1±i

√
3

2
z+ 3±i

√
3

6 (a+b+c) and a2+b2+c2−ab−bc−ca = 0,
where C is a non-zero constant.

In the next year, Chang and Zalcman([3]) replaced the entire function by
meromorphic function with at most finitely many simple poles in Theorem
B and C and obtained similar results as follows.
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Theorem D ([3]). Let S = {0, a, b}, where a, b are two non-zero distinct
complex numbers. If f is a meromorphic function with at most finitely many
poles and Ef (S) = Ef ′(S), then f ≡ f ′.
Theorem E ([3]). Let f be a non-constant meromorphic function with at
most finitely many simple poles; and let S = {0, a, b}, where a, b are distinct
non zero complex numbers. If Ef (S) = Ef ′(S), then either

(1) f(z) = Cez; or
(2) f(z) = Ce−z+ 2

3(a+b) and either (a+b) = 0 or (2a2−5ab+2b2) = 0;
or

(3) f(z) = Ce
−1±i

√
3

2
z + 3±i

√
3

6 (a+ b) and a2 − ab+ b2 = 0,
where C is a non-zero constant.

In 2011, Feng Lü([7]) consider an arbitrary set with three elements in
Theorem E and got the same result with some additional suppositions. He
obtained the following result.

Theorem F ([7]). Let f be a non-constant transcendental meromorphic
function with at most finitely many simple poles; and let S = {a, b, c}, where
a, b, and c are distinct complex numbers. If Ef (S) = Ef ′(S), then either

(1) f(z) = Cez; or
(2) f(z) = Ce−z+ 2

3(a+b+c) and (2a−b−c)(2b−c−a)(2c−a−b) = 0;
or

(3) f(z) = Ce
−1±i

√
3

2
z+ 3±i

√
3

6 (a+b+c) and a2+b2+c2−ab−bc−ca = 0,
where C is a non-zero constant.

So we observe from the above mentioned results that the researchers were
mainly involved to find the uniqueness of an entire or meromorphic function
with its first derivative sharing a set at the expanse of allowing several
constraints. But all were practically tacit about the uniqueness of an entire
or meromorphic function with its higher order derivatives.

In 2007 Chang, Fang and Zalcman ([2]) consider the following example to
show that in Theorem C, one can not relax the CM sharing to IM sharing of
the set S. In other words, when multiplicity is disregarded, the uniqueness
result ceases to hold.

Example 1.2. Let S = {−1, 0, 1} and f(z) = sin z. Then f and f ′ share S
IM but f 6≡ f ′.

Thus it is natural to ask the following question:

Question 1.1. Does there exist any set which when shared by a meromor-
phic function together with its higher order derivative or even a power of
a meromorphic function together with its differential polynomial, lead to
wards the uniqueness ?

To seek the possible answer of the above question is the motivation of the
paper. We answer the above question even under relaxed sharing hypothesis.



4 Uniqueness of the power of a meromorphic functions

To this end, we resort to the notion of weighted sharing of sets appeared
in the literature in 2001 ([6]).

Definition 1.1 ([6]). Let k be a nonnegative integer or infinity. For a ∈
C∪{∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly if f , g share (a, k), then f , g share (a, p) for any integer p,
0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only if
f , g share (a, 0) or (a,∞) respectively.

Definition 1.2 ([6]). Let S be a set of distinct elements of C∪{∞} and k be
a nonnegative integer or ∞. We denote by Ef (S, k) the set

⋃
a∈S Ek(a; f).

If Ef (S, k) = Eg(S, k), then we say f , g share the set S with weight k.

Throughout the paper we use the following notation for L.

Definition 1.3. Let k(≥ 1), l(≥ 1) be positive integers and ai ∈ C for
i = 0, 2, . . . , k − 1. For a non constant meromorphic function f , we define
the differential polynomial in f as

L = L(f) = a0(f
(k))l + a1(f

(k−1))l + · · ·+ ak−1(f
′
)l.

First suppose P (z) is defined by

(1) P (z) = azn − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2

where n ≥ 3 is an integer and a and b are two nonzero complex numbers
satisfying abn−2 6= 2. We have from (1)

P ′(z) = nazn−1 − 2n(n− 1)z + 2n(n− 2)b(2)

=
n

z
[azn − 2(n− 1)z2 + 2(n− 2)bz].

We note that P ′(0) 6= 0 and so from (1) P ′(z) = 0 implies

azn − 2(n− 1)z2 + 2(n− 2)bz = 0.

Now at each root of P ′(z) = 0 we get

P (z)

= azn − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2

= 2(n− 1)z2 − 2(n− 2)bz − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2

= −(n− 1)(n− 2)(z − b)2

So at a root of P ′(z) = 0, P (z) will be zero if P ′(b) = 0. But P ′(b) =

nb(abn−2 − 2) 6= 0, which implies that a zero of P ′(z) is not a zero of P (z).
In other words each zero of P (z) is simple. The following theorem is the
main result of this paper which answers Question 1.1.
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Theorem 1.1. Let m(≥ 1), n(≥ 1) be positive integers and f be a non
constant meromorphic function. Suppose that S = {z : P (z) = 0} and
Efm(S, p) = EL(f)(S, p). If one of the following conditions holds:

(1) 2 ≤ p <∞ and n > 6 + 6 µ+1
λ−2µ ,

(2) p = 1 and n > 13
2 + 7 µ+1

λ−2µ ,

(3) p = 0 and n > 6 + 3µ+ 6 (µ+1)2

λ−2µ ;

then fm ≡ L(f), where λ = min{m(n − 2) − 1, (1 + k)l(n − 2) − 1} and
µ = min{1p , 1}.

Corollary 1.1. There exists a set S with eight(seven) elements such that if
a non constant meromorphic (entire) function f and its k-th derivative f (k)

satisfy Ef (S, 2) = Ef (k)(S, 2), then f ≡ f (k).

The following example shows that for a non-constant entire function the
set S in Theorem 1.1 can not be replaced by an arbitrary set containing
seven distinct elements.

Example 1.3. For a non-zero complex number a, let

S = {0, aω, a
√
ω, a,

a√
ω
,
a

ω
,

a

ω
√
ω
},

where ω is the non-real cubic root of unity. Choosing f = eω
1
2k z, it is easy

to verify that f and f (k) share (S,∞), but f 6≡ f (k)

Remark 1.1. However the following questions are still open.
(1) Can the cardinality of the set S be further reduced in the Theorem

1.1 and specially in Corollary 1.1 without imposing any constraints
on the functions?

(2) Can the conclusion of Theorem 1.1 remain valid if any non-homogene-
ous differential polynomial generated by f is considered?

2. Lemmmas

We define R(z) = azn

n(n−1)(z−α1)(z−α2)
, where α1 and α2 are the distinct

roots of the equation

n(n− 1)z2 − 2n(n− 2)bz + (n− 1)(n− 2)b2 = 0.

Now let F = R(fm) , G = R(L(f)) and

H = (
F ′′

F ′
− 2F ′

F − 1
)− (

G′′

G′
− 2G′

G− 1
).

Lemma 2.1. For any two non-constant meromorphic functions f1 and f2,

N(r, f1f2) ≤ N(r, f1) +N(r, f2).
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Lemma 2.2. Let F and G share (1, p) where F and G defined as earlier,
then
NL(r, 1;F ) ≤ µ(N(r, 0; f) +N(r,∞; f)) + S(r, f)
NL(r, 1;G) ≤ µ(N(r, 0;L(f)) +N(r,∞; f)) + S(r, f)
where µ = min{1p , 1}.

Proof. When p = 0 we get

NL(r, 1;F ) ≤ N(r, 1;F )−N(r, 1, F )

≤ N(r,
(fm)′

fm
) + S(r, f)

≤ (N(r, 0; fm) +N(r,∞; fm)) + S(r, f)

≤ (N(r, 0; f) +N(r,∞; f)) + S(r, f)

When p ≥ 1 we get

NL(r, 1;F ) ≤ N(r, 1;F | ≥ p+ 1)

≤ 1

p
(N(r, 1;F )−N(r, 1, F ))

≤ 1

p
N(r,

(fm)′

(fm)
) + S(r, f)

≤ 1

p
(N(r, 0; fm) +N(r,∞; fm)) + S(r, f)

≤ 1

p
(N(r, 0; f) +N(r,∞; f)) + S(r, f)

Combining the two cases we get the proof. �

Lemma 2.3. Let F and G share (1, p) where F and G defined as earlier. If
F 6≡ G then

N(r, f) ≤ µ+ 1

λ− 2µ
(N(r, 0; f) +N(r, 0;L(f))) + S(r, f),(3)

where λ = min{m(n− 2)− 1, (1 + k)l(n− 2)− 1} and µ = min{1p , 1}.

Proof. Let us define V = ( F ′

F (F−1) −
G′

G(G−1))

Case-1 V ≡ 0
By integration we get (1− 1

F ) = A(1− 1
G). As f

m and L(f) share (∞, 0),
so if N(r, f) 6= S(r, f) then A = 1, i.e., F = G, which is not possible. So
N(r, f) = S(r, f). Thus the lemma holds.
Case-2 V 6≡ 0

Let z0 be a pole of f of order t, then it is a pole of L(f) of order (t+ k)l
and that of F and G are tm(n− 2) and (t+ k)l(n− 2) respectively.

Clearly z0 is a zero of ( F ′

F−1 −
F ′

F ) order at least tm(n− 2)− 1 and zero of
V of order atleast λ, where λ = min{m(n− 2)− 1, (1 + k)l(n− 2)− 1}

Thus
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N(r,∞; f)

≤ 1

λ
N(r, 0;V )

≤ 1

λ
N(r,∞;V ) + S(r, f)

≤ 1

λ
{NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, 0;L(f))}+ S(r, f)

≤ 1

λ
[µ{N(r, 0; f) +N(r,∞; f) +N(r, 0;L(f)) +N(r,∞; f)}

+ N(r, 0; f) +N(r, 0;L(f))] + S(r, f).

Thus

N(r,∞; f) ≤ µ+ 1

λ− 2µ
(N(r, 0; f) +N(r, 0;L(f))) + S(r, f). �

Lemma 2.4. If H 6≡ 0 and F and G share (1, p) then

N(r,∞;H)(4)
≤ N(r,∞; f) +N(r, 0; f) +N(r, 0;L) +N(r, b; fm) +N(r, b;L)

+ NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0; (f
m)′) +N0(r, 0;L

′),

where N0(r, 0; (f
m)′) denotes the counting function of the zeros of (fm)′

which are not the zeros of f(fm − b) and F − 1, similarly N0(r, 0;L
′) is

defined.

Proof. The proof is obvious if we are keeping the following in our mind:

N(r,∞;F ) ≤ N(r,∞; f) +N(r, α1; f
m) +N(r, α2; f

m),

But simple zeros of fm−αi are not poles of H and multiple zeros of fm−αi
are zeros of (fm)′. Similar explanation for G is also hold. �

Lemma 2.5 ([1]). Let

Q(z) = (n− 1)2(zn − 1)(zn−2 − 1)− n(n− 2)(zn−1 − 1)2,

then

Q(z) = (z − 1)4
2n−6∏
i=1

(z − βi),

where βi ∈ C \ {0, 1}(i = 1, 2, . . . , 2n− 6), which are distinct.

3. Proof of the theorem

Proof of Theorem 1.1. Case-1 H 6≡ 0
Then clearly F 6≡ G.
Clearly N(r, 1;F | = 1) = N(r, 1;G| = 1) ≤ N(r,∞;H)
Now using the Second Fundamental Theorem and Lemma 2.4, we get
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(n+ 1)T (r, fm)(5)
≤ N(r,∞; f) +N(r, 0; f) +N(r, b; fm)

+ N(r, 1;F )−N0(r, 0, (f
m)′) + S(r, f)

≤ 2{N(r,∞; f) +N(r, 0; f) +N(r, b; fm)}
+ {N(r, 0;L(f)) +N(r, b;L(f))}+ {N(r, 1;F | ≥ 2)

+ NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0; (L(f))
′)}+ S(r, f).

Subcase-1.1 p ≥ 2
Now,

N(r, 1;F | ≥ 2) +NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0; (L(f))
′)(6)

≤ N(r, 1;G| ≥ 2) +N(r, 1;G| ≥ 3) +N0(r, 0; (L(f))
′)

≤ N(r, 0;L′|L 6= 0) + S(r, f)

≤ N(r,
L′

L
) + S(r, f)

≤ N(r, 0;L) +N(r,∞; f) + S(r, f)

Thus,

(n+ 1)T (r, fm)(7)
≤ 2{N(r,∞; f) +N(r, 0; f) +N(r, b; fm)}
+ 2N(r, 0;L) +N(r, b;L) +N(r,∞; f) + S(r, f).

Similar result we get for L(f) as

(n+ 1)T (r, L(f))(8)
≤ 2{N(r,∞; f) +N(r, 0;L(f)) +N(r, b;L(f))}
+ 2N(r, 0; f) +N(r, b; fm) +N(r,∞; f) + S(r, f).

Let T (r) = T (r, fm) + T (r, L(f)) and S(r) = S(r, f)
By adding inequalities (7) and (8), we get

(n+ 1)T (r) ≤ 6N(r,∞; f) + 4{N(r, 0; f) +N(r, 0;L(f)}(9)
+ 3{N(r, b; fm) +N(r, b;L(f))}+ S(r, f).

(n− 6)T (r) ≤ 6N(r,∞; f) + S(r).(10)

By using Lemma 2.3 and inequality (10), we get

(n− 6)T (r) ≤ 6
µ+ 1

λ− 2µ
(N(r, 0; f) +N(r, 0;L(f))) + S(r)

≤ 6
µ+ 1

λ− 2µ
T (r) + S(r),

which is a contradiction as n > 6 + 6 µ+1
λ−2µ .

Subcase-1.2 p = 1
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Now,

N(r, 1;F | ≥ 2) +NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0;L
′)(11)

≤ N(r, 1;G| ≥ 2) +N(r, 1;F | ≥ 2) +N0(r, 0;L
′)

≤ N(r, 0;L′|L 6= 0) +
1

2
N(r, 0; (fm)′|fm 6= 0) + S(r, f)

≤ N(r, 0;L) +N(r,∞;L) +
1

2
{N(r, 0; f) +N(r,∞; f)}+ S(r, f).

Thus we get from (5),

(n+ 1)T (r, fm)(12)

≤ 5

2
{N(r,∞; f) +N(r, 0; f)}+ 2N(r, b; fm)

+ 2N(r, 0;L(f)) +N(r, b;L(f)) +N(r,∞; f) + S(r, f).

Similar result we get for L(f) as

(n+ 1)T (r, L(f))(13)

≤ 5

2
{N(r,∞; f) +N(r, 0;L(f))}+ 2N(r, b;L(f))

+ 2N(r, 0; f) +N(r, b; fm) +N(r,∞; f) + S(r, f).

Adding (12) and (13), we get

(n+ 1)T (r) ≤ 7N(r,∞; f) +
9

2
{N(r, 0; f) +N(r, 0;L(f))}(14)

+ 3{N(r, b; fm) +N(r, b;L(f))}+ S(r).

(n− 13

2
)T (r) ≤ 7N(r,∞; f) + S(r).(15)

Using Lemma 2.3, we get

(n− 13

2
)T (r) ≤ 7

µ+ 1

λ− 2µ
(N(r, 0; f) +N(r, 0;L(f))) + S(r)

≤ 7
µ+ 1

λ− 2µ
T (r) + S(r),

which is a contradiction as n > 13
2 + 7 µ+1

λ−2µ .
Subcase-1.3 p = 0

Now using the Second Fundamental Theorem and Lemma 2.4, we get

(n+ 1)T (r)(16)
≤ N(r,∞; fm) +N(r,∞;L(f)) +N(r, 0; fm) +N(r, 0;L(f))

+ N(r, b; fm) +N(r, b;L(f)) +N(r, 1;F ) +N(r, 1;G)

− N0(r, 0; (f
m)′)−N0(r, 0;L(f)

′) + S(r, f)

≤ 3N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0;L(f))

+ 2N(r, b; fm) + 2N(r, b;L(f)) +N(r, 1;F ) +N(r, 1;G)
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− N(r, 1;F | = 1) +NL(r, 1;F ) +NL(r, 1;G) + S(r, f)

Again,

N(r, 1;F ) +N(r, 1;G)−N(r, 1;F | = 1) ≤ NL(r, 1;F ) +N(r, 1;G)

i.e.,

N(r, 1;F ) +N(r, 1;G)−N(r, 1;F | = 1)

≤ 1

2
(NL(r, 1;F ) +NL(r, 1;G) +N(r, 1;G) +N(r, 1;F ))

So, with the help of Lemma 2.2 and Lemma 2.3 (16) becomes

(n+ 1)T (r)(17)
≤ 3N(r,∞; f) + 2N(r, 0; f) + 2N(r, 0;L(f))

+ 2N(r, b; fm) + 2N(r, b;L(f)) +
3

2
(NL(r, 1;F ) +NL(r, 1;G))

+
1

2
(N(r, 1;F ) +N(r, 1;G)) + S(r, f)

That is,

(n− 6)T (r)

≤ 6N(r,∞; f) + 3(NL(r, 1;F ) +NL(r, 1;G)) + S(r)

≤ 6N(r,∞; f) + 3µ(N(r, 0;L(f)) +N(r, 0; f) + 2N(r,∞; f)) + S(r)

Thus

(n− 6− 3µ)T (r) ≤ 6
(µ+ 1)2

λ− 2µ
(N(r, 0; f) +N(r, 0;L(f))) + S(r)

≤ 6
(µ+ 1)2

λ− 2µ
T (r) + S(r),

which is a contradiction as n > 6 + 3µ+ 6 (µ+1)2

λ−2µ .
Case-2 H ≡ 0

In this case F and G share (1,∞).
Now by integration we have

F =
AG+B

CG+D
,(18)

where A,B,C,D are constant satisfying AD −BC 6= 0.
Thus by Mokhon’ko’s Lemma ([8])

T (r, fm) = T (r, L(f)) + S(r, f)(19)

Clearly from equation (18) when n ≥ 3 we get N(r, f) = S(r, f) if C 6= 0,
otherwise when C = 0, fm and L(f) share (∞,∞).

As AD − BC 6= 0, so A = C = 0 never occur. Thus we consider the
following cases:
Subcase-2.1 AC 6= 0
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In this case

F − A

C
=

BC −AD
C(CG+D)

.(20)

So,

N(r,
A

C
;F ) = N(r,G).

Now using the Second Fundamental Theorem and (19), we get

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r,
A

C
;F ) + S(r, F )

≤ N(r,∞; f) +N(r, α1; f
m) +N(r, α2; f

m) +N(r, 0; f)

+ N(r,∞;L(f)) +N(r, α1;L(f)) +N(r, α2;L(f)) + S(r, f)

≤ 5

n
T (r, F ) + S(r, F ),

which is a contradiction as n > 6.
Subcase-2.2 AC = 0
Subsubcase-2.2.1 A = 0 and C 6= 0

In this case B 6= 0 and

F =
1

γG+ δ
,

where γ = C
B and δ = D

B . If F has no 1-point, then using the Second
Fundamental Theorem and (19), we get

T (r, F )

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) + S(r, F )

≤ N(r,∞; f) +N(r, α1; f
m) +N(r, α2; f

m) +N(r, 0; f) + S(r, f)

≤ 3

n
T (r, F ) + S(r, F ),

which is a contradiction as n > 6. Thus γ + δ = 1 and γ 6= 0. So,

F =
1

γG+ 1− γ
,

From above we get N(r, 0;G + 1−γ
γ ) = N(r, F ). If γ 6= 1, then using the

Second Fundamental Theorem and (19), we get

T (r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 0;G+
1− γ
γ

) + S(r,G)

≤ N(r,∞;L(f)) +N(r, α1;L(f)) +N(r, α2;L(f)) +N(r, 0;L(f))

+ N(r,∞; f) +N(r, α1; f
m) +N(r, α2; f

m) + S(r, f)

≤ 5

n
T (r, F ) + S(r, F ),

which is a contradiction as n > 6.
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Thus γ = 1 and FG ≡ 1, which gives

fmn(L(f))n =
n2(n− 1)2

a2
(fm − α1)(f

m − α2)(L(f)− α1)(L(f)− α2).

As n > 6 from the above equation it is clear that f has no pole.
Let z0 be a α1i point of f of order s, where (α1i)

m = α1, then it can’t be
a pole of L(f) as f has no pole, so z0 is a zero of L(f) of order q satisfying
n ≤ nq = s.

Clearly from above N(f, α1i; f) ≤ 1
nN(f, α1i; f).

Similarly, we get N(f, α2j ; f) ≤ 1
nN(f, α2j ; f).

Also N(r,∞; f) = S(r, f).
Thus by the Second Fundamental Theorem we get

(2m− 1)T (r, f)

≤ N(r,∞; f) +
m∑
i=1

N(r, α1i; f) +
m∑
j=1

N(r, α2j ; f) + S(r, f)

≤ 2m

n
T (r, f) + S(r, f)

which is not possible as n > 6.
Subsubcase-2.2.2 A 6= 0 and C = 0

In this case D 6= 0 and
F = λG+ µ,

where λ = A
C and µ = B

D .
If F has no 1 point then similarly as above we get a contradiction.
Thus λ+ µ = 1 with λ 6= 0. Clearly N(r, 0;G+ 1−λ

λ ) = N(r, 0;F )
If λ 6= 1, then using the Second Fundamental Theorem and (19), we get

T (r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 0;G+
1− λ
λ

) + S(r,G)

≤ N(r,∞;L(f)) +N(r, α1;L(f)) +N(r, α2;L(f)) +N(r, 0;L(f))

+ N(r, 0; f) + S(r, f)

≤ 5

n
T (r,G) + S(r,G),

which is a contradiction as n > 6.
Thus λ = 1 and F ≡ G. So fm and L(f) share (∞,∞) and

n(n− 1)f2m(L(f))2(fm(n−2) − (L(f))n−2)− 2n(n− 2)bfmL(f)

(fm(n−1) − (L(f))n−1) + (n− 1)(n− 2)b2(fmn − (L(f))n) = 0.

Substituting h = L(f)
fm we get

n(n− 1)h2f2m(hn−2 − 1)− 2n(n− 2)bhfm(hn−1 − 1)(21)
+(n− 1)(n− 2)b2(hn − 1) = 0.
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If h is non constant then by lemma 2.5, we get

{n(n− 1)hfm(hn−2 − 1)− n(n− 2)b(hn−1 − 1)}2

= −n(n− 2)b2(h− 1)4
2n−6∏
i=1

(h− βi)

Then by the Second Fundamental Theorem we get

(2n− 6)T (r, h)

≤ N(r,∞;h) +N(r, 0;h) +

2n−6∑
i=1

N(r, 0;h− βi) + S(r, h)

≤ N(r,∞;h) +N(r, 0;h) +
1

2

2n−6∑
i=1

N(r, 0;h− βi) + S(r, h)

≤ (n− 1)T (r, h) + S(r, h),

which is a contradiction as n > 6.
Thus h is constant. Hence as f is non-constant and b 6= 0, we get from

equation (21), that (hn−2 − 1) = 0, (hn−1 − 1) = 0 and (hn − 1) = 0. That
is h = 1. Consequently fm = L(f). �
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