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Solution, Extensions and Applications of the
Schauder’s 54th Problem in Scottish Book

Milan R. Tasković∗

Abstract. This paper presents theAxiom of Infinite Choice: Given
any set P , there exist at least countable choice functions or there exist
at least finite choice functions. The author continues herein with the
further study of two papers of the Axiom of Choice in order by E. Ze r -
me l o [Neuer Beweis für die Möglichkeit einer Wohlordung, Math. An-
nalen, 65 (1908), 107–128; translated in van Heijenoort 1967, 183–198],
and by M. Taskov i ć [The axiom of choice, fixed point theorems, and
inductive ordered sets, Proc. Amer. Math. Soc., 116 (1992), 897–904].
Fredholm and Leray-Schauder alternatives are two direct consequences
of the Axiom of Infinite Choice! This paper presents applications of
the Axiom of Infinite Choice to the Fredholm and Leray-Schauder the-
ory. In this sense, I give a solution and some extensions of Schauder’s
problem (in Scottish book, problem 54). This paper presents some new
mathematical n-person games. In the theory of n-person games, there
have been some further developments in the direction of transversal
games and mathematical alternative theory.

1. History and origins

We shall first discuss an assumption that appears to be independent of,
and yet consistent with, the usual logical assumptions regarding classes and
correspondences, but whose absolute validity has been seriously questioned
by many authors. This is the so-called Axiom of Choice, which has excited
more controversy than any other axiom of set theory since its formulation
by Ernst Zermelo in 1908. In this sense, many results are known in the set
theory.
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In 1904, Zermelo1 stated a principle of choice similar to: If D is a family
of nonempty sets, there is a function f such that f(A) ∈ A for every A ∈ D;
and proved that it implied the well-ordering theorem. In 1908 Zermelo pro-
posed main version of the Axiom of Choice. This is the connection and with
a conversations with Erhard Schmidt.

Bertrand Russell in 1906 gave a principle analogous to preceding. He an-
nounced this principle as a possible substitute for Zermelo’s but he believed
that it was weaker. Zermelo, in 1908 stated and, proved that Russell’s and
his formulations of the axiom of choice are equivalent. The name "axiom of
choice" is due to Zermelo in 1904.

Apparently, the first specific reference to the axiom of choice was given in
a paper by G. Peano2 in 1890. In proving an existence theorem for ordinary
differential equations, he ran across a situation in which such a statement is
needed. In 1886 Peano published a new demonstration of the theorem, due
to A. Cauchy, that the differential equation

y′ = f(x, y), y(x0) = t0,

has a unique solution. Here Peano weakened Cauchy’s hypotheses to require
only that f(x, y) be continuous. Four years later Peano returned to this
theorem and generalized his proof to finite systems of first-order equations.

Beppo Levi in 1902, while discussing the statement that the union of
a disjoint set S of nonempty sets has a cardinal number greater than or
equal to the cardinal number of S, remarked that its proof depended on
the possibility of selecting a single member from each element of S. Others,
including Georg Cantor, had used the principle earlier, but did not mention
it specifically.

In 1892 R. Bettazzi, who had just become Peano’s colleague at the Mili-
tary Academy in Turin, published an article on discontinuous real functions
– with terminology of infinite many arbitrary choices.

In this time, the Axiom of Choice asserts that for every set S there is
a function f which associates each nonempty subset A of S with a unique
member f(A) of A. From a psychological perspectie, one might express
the Axiom by saying that on element is "chosen" from each subset A of S.
However, if S is infinite, it is difficult to conceive how to make such choices
– unless a rule is available to specify an element in each A.

1Before 1904, when Ze rme l o published his proof that the axiom of choice implies the
well-ordering theorem, the well-ordering theorem was considered as self-evident. Canto r
and the others used it without hesitation.

2Gius epp e Peano: "But as one cannot apply infinitely many times an arbitrary
rule by which one assigns to a class A an individual of this class, a determinate rule is
stated here".
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David Hilbert, in 1926, once wrote that Zermelo’s Axiom of Choice3 was
the axiom "most attacked up to the present in the mathematical literatu-
re. . . "; to this, Abraham Fraenkel later added that "the axiom of choice is
probably the most interesting and, in spite of its late appearance, the most
discussed axiom of mathematics, second only to Euclid’s axiom of parallels
which was introduced more than two thousand years ago".

The equivalence of the axiom of choice and the trichotomy was given by
Hartogs in 1915. As in the case of the well-ordering theorem, the trichotomy
was considered self-evident and was used without hesitation before 1915.

As mathematics developed futher there also developed a need for anot-
her non-constructive proposition; a principle, which Kuratowski, Hausdorff,
Zorn, and others, used to replace transfinite induction and the well-ordering
theorem. It appears, at first glance, unrelated to the axiom of choice, but
actually is equivalent to it.

This principle and principles similar to it are often referred to as forms of
Zorn’s lemma. In 1933 Artin and Chevalley first referred to the principle as
Zorn’s lemma.

The history of maximal principles is quite tangled. The earliest reference
to a maximal principle in the literature is in 1907 from Hausdorff.

In 1910 independently Janiszewski, Mazurkiewicz and Zoretti published
a special case Hausdorff’s principle in the form of a theorem in topology. In
1905 Lindelöf, in 1911 Brouwer, and in 1920 Sierpiński derivated some more
general topological theorems from the well-ordering theorem.

In 1922 Kuratowski derived minimal principles equivalent to the prece-
ding principles from the well-ordering theorem. Kuratowski in 1922 used
a minimal principle to prove a theorem in analysis, as and R. L. Moore in
1932.

In set theory, we notice that, all of the usual mathematical concepts can
be reduced to the notion of set.4

3Zermelo’s Reply to His Critics. During the summer of 1907 Ze rme l o took
stock of the criticisms directed against both his Axiom and his proof of the well-ordering
theorem. One in 1908 was a reply to his critics, and the other also in 1908 contained
the first axiomatization of set theory. Zermelo’s first article in 1908 began with a new
demonstration of the well-ordering theorem.

From them he developed the properties of his θ-chains, which generalized Dedekind’s
earlier concept of chain. Ze rme l o corresponded with Jou rda in in 1907, but apparently
their letters focused on a generalization of König’s theorem.

Although he had read Borel’s article and the published correspondence between:
Ba i r e, Bo r e l, Hadamard, and Leb e sgue, he concetrated on refuting Peano
with whom he had previously feuded over the equivalence theorem.

During 1906 he corresponded with Po in ca r é regarding his proof and his axiomati-
zation of set theory. A letter, as well as three others from Poincaré, is kept in Zermelo’s
Nachlass at the University of Freiburg in Breisgau. De facto, Ze rme l o emerged as a
realist in much situations, perhaps a Platonist!?

4Fixed Point Problem. I have to admit that the Axiom of Infinite Choice is the main
source, i.e., to say the very beginning of a fixed point theory. It is an open question whether
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Within the Cantorian tradition, one can view Zermelo’s axiomatization as answering the ques-
tion: What is a set?! This question has served as a theme in the development of set theory, but
one not often discussed openly.

In the meanthime, there has developed a concept of the set-theory dama-
ged school child, so we must ensure that this paradise remains a blooming
garden and does not turn into rocky ground and thorny scrub. In this sen-
se, our admission, for this problem in this paper, give a new paradise for
set-theory.

We notice that the Axiom of Infinite Choice is main spring (origin) for
the fixed point theory. In this sense, the fixed point problem for a given
mapping f |P is very easy to formulate: the question is whether some ξ ∈ P
satisfies f(ξ) = ξ. Many problems are reducible to the existence of fixpoints
of certain mappings. The question remains whether some statement (of
the axiom of choice type) could be equivalently expressed in the fixpoint
language as well. The answer is affirmative. In this sense, the equation for
x ∈ P in the following form

sup{x, f(x)} = x
(
or sup{x, f2(x)} = x

)
(Eq)

for a given map f |P and for a nonempty partially ordered set P is a key
object for new equivalents of the Axiom of Infinite Choice.

In this paper we prove some new equivalents of the Axiom of Infinite
Choice in connection with (Eq). These statements are of fixed point type
theorems and fixed apex type theorems. Applications in fixed point theory
are considered.

Call a poset (=partially ordered set) P inductive (chain complete) when
every nonempty chain in P has an upper bound (least upper bound, i.e.,
supremum) in P . Also, call a poset P quasi-inductive (quasi-chain com-
plete) when every nonempty well ordered chain has an upper bound (supre-
mum) in P .

Also, we consider the concept of fixed apices for the mapping f of a poset
P into itself. A map f of a partially ordered set P to itself has a fixed apex
u ∈ P if for u ∈ P there is v ∈ P such that f(u) = v and f(v) = u.

an affirmation of the Axiom of Infinite Choice form might be presented equivalently by
words, defining fixed points. The answer to this question is positive. In this sense, for
x ∈ P the equation of the form x = f(x) or

sup{x, f(x)} = x
(
or inf{x, f(x)} = x

)
for a given mapping f |P and for a nonempty partially ordered set P : is the key objects in
this case, both for new equivalents of the Axiom of Infinite Choice and for further work
on the Fixed point theory.

Otherwise, the first dynamic examples from the Fixed Point Theory go back to 1700
B.C-. the time when Mose s, together with the Israelites, fleeing from Egypt, crossed
the river Jordan, as well as from 650 B.C. when this river was crossed by St. I l i j a and
his disciple J e l i s e j; see: the O ld Te s t ament.
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Fixed points are clearly fixed apices and the set of all fixed points can be
a proper subset of the set of fixed apices.

On the other hand, f has a fixed apex if and only if f2 := f(f) has a fixed
point. Indeed, for if f has a fixed apex u ∈ P , then u = f(v) and v = f(u),
so f2 has a fixed point. If the equation x = f2(x) has a solution ξ = f2(ξ)
for some ξ ∈ P , then f has fixed apices ξ, f(ξ) ∈ P because ξ = f2(ξ) and
f(ξ) = f(ξ).

An important class of sets is the class of countable sets. More precisely we
say that a set X is countable if and only if there is a one-to-one mapping
of N (:= {1, 2, . . . , n, . . .}) onto X. A set which is not countable is said to
be uncountable.5

2. The Lemma of Infinite Maximality

By the "Axiom of Infinte Choice" we mean a statement in the following
form as: Given any set S, there exist at least countable choice functions or
there exist at least finite choice functions. In this sense we prove some new
equivalents of the Axiom of Infinite Choice. But perhaps the most statement
equivalent to the Axiom of Infinite Choice is the following statement.

Theorem 2.1. (Lemma of Infinite Maximality). Let P be an inductiuve
partially ordered set with ordering 4, then P has at least countable maximal
elements or P has at least finite maximal elements.

Proof. (Application of the Axiom of Infinite Choice). Let cardP = m
and cardB(m) = α, where B(m) is denoted the set of all ordinal numbers
α such that α ≤ m. For an indirect proof suppose that for every y < x the
set {z ∈ P : y ≺ z} is nonempty. Define the transfinite sequences {ykβ}β<α
for k ∈ N in the following form as

ykβ =

{
the upper bound of {xkγ}γ<β , if it exist,
x otherwise(1)

for k ∈ N and define the transfinte sequences {xkβ}β<α by

xkβ = fk
(
{z ∈ X : ykβ ≺ z}

)
, for k ∈ N,(2)

where fk : (P(P )\{∅}) → P for k ∈ N are choice functions. Clearly, by
(1), x 4 ykβ for every β < α and k ∈ N so that the set occurring in (2) is
nonempty. So the sequences {xkβ}β<α are well defined.

These sequences are increasing. To show this consider the propositional
formula A(β) for β < α meaning: if γ < ξ ≤ β then xkγ ≺ xkξ for k ∈ N.

5Ge o r g C a n t o r: I think of a set as a precipice. On the other hand, L e o p o l d
K r o n e c k e r brief: Cantor is the corruptor of youth. R i c h a r d D e d e k i n d: "I think
of a set as a closed sack which contains certain specified objects which one doesn’t see".
D a v i d H i l b e r t in 1925: "No one should ever drive us from the paradise which Cantor
created for us". B e r t r a n d Ru s s e l: "Thus mathematics may defined as the subject in
which we never know that we are talking about, nor whether what we are saying is true".
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If A(γ) for γ < β, then {xkδ}δ<β are chains, and consequently xkδ ≤ ykβ for
δ < β and k ∈ N. Hence, also xkδ < xkβ for δ < β and k ∈ N, i.e., A(β) holds.
By Principle of Transfinite Induction we have A(β) for all β < α. Now put

M =
⋃
β<α

{xkβ} for k ∈ N,

then we haveM ⊂ P , whence Card(M) ≤ Card(P ) = m, whereas Card(M) >
m. This shows that for some β < α we must have {z ∈ P : ykβ ≺ z} = ∅,
i.e., ykβ (k ∈ N) are maximal elements in P , and clearly x 4 ykβ (for k ∈ N).
The proof is complete.

Theorem 2.2. Let P be a partially ordered set, then there exist at least
countable functions fk (for k ∈ N) or finite functions fk (for k = 1, . . . ,m
and a fixed number m ∈ N) such that for each nonempty subset A of P is
fk(A) ∈ A for k ∈ N or fk(A) ∈ A for k = 1, . . . ,m and a fixed m ∈ N.

Proof. (Application of the Lemma of Infinite Maximality). Let A be any
collection of nonempty sets, and put M = ∪A. Let P be the family of those
sets F ⊂M for which the intersection F ∩A contains at most one point for
every A ∈ A. The set P is an ordered set with inclusion ⊂ and ∅ ∈ P . If
L ⊂ P is a chain, then ∪L ∈ P . In fact, if ∪L ∩ A for an A ∈ A contains
two different elements, say x and y, then there exist sets Dx, Dy ∈ L such
that x ∈ Dx ∩A and y ∈ Dy ∩A. But since L is a chain, one of the sets Dx,
Dy is contained in the other say Dx ⊂ Dy. But then x, y ∈ Dy and Dy ∩ A
contains more than one point.

By Theorem 2.1 there exist in P maximal elements Rk (for k ∈ N). We
will show that Rk∩A 6= ∅ for every A ∈ A and k ∈ N. If we had Rk∩A0 for
an A0 ∈ A and k ∈ N, then for x0 ∈ A0 we might define a set R∗ = Rk∪{x0}
for k ∈ N. Clearly, R∗ ∈ P and R∗ is larger than Rk (for k ∈ N), which is
impossible, since Rk (for k ∈ N) are maximal elements in P . Thus Rk ∩ A
(for k ∈ N) is a singleton for every A ∈ A and k ∈ N, and we can define
functions fk : A → M (for k ∈ N) by fk(A) = A ∩ Rk for k ∈ N. The
functions fk (for k ∈ N) are choice functions.

In the second case, by Theorem 2.1, there exist in P a finite number
maximal elements R0, R1, . . . , Rm (for a fixed m ∈ N). We can define func-
tions fk : A → M (for k = 1, . . . ,m) by fk(A) = A ∩ Rk for k = 1, . . . ,m.
Then the functions fk (for k = 1, . . . ,m) are chioice functions. The proof is
complete.

3. Geometry of the Axiom of Infinite Choice

The first specific reference to the Axiom of Choice was given in a paper by
G. Peano in 1890. In 1892 R. Bettazzi published an article on discontinuous
real functions with terminology of infinite many arbitrary choices.
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In this sense, we give a demonstration that the equation (Eq) has at least
countable solutions or has at least finite solutions. For this see the following
Figures:

also, as an example, the equation sinx = 0 or the equation, in an equivalent
form, x+ sinx = x. As two statements on the equation (Eq) we obtain the
following two results.

Zorn’s lemma is an immediate consequence of the Lemma of Infinite Max-
imality, too.

As two direct consequences of the Axiom of Infinite Choice we have the
following two essential results in sets theory:

1) Every isotone map of complete lattice into itself has at least countable
or finite fixed points, and

2) Every antitone map of complete lattice into itself has at least countable
or finite fixed apices!

Theorem 3.1. (Axiom of Infinite Choice for Points). Let P be a set par-
tially ordered by an ordering relation 4. Then the following statements are
equivalent:

(a) (Lemma of Infinite Maximality). Let P be an inductive partially or-
dered set. Then P has at least countable or finite maximal elements.

(b) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 sup{x, f(x)} for all x ∈ Sub f(P ),(M)

then the function ϕ(x) := sup{x, f(x)} has at least countable or finite fixed
points. If for all a, b ∈ P the following condition holds in the form as

sup{a, b} = a implies a = b,(A)
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then the mapping f has at least countable or finite fixed points. (Also, the
dually statement of this statement holds).

(c) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 f(x) for all x ∈ Sub f(P ),(N)

then f has at least countable or finite fixed points. (Also, the dually statement
of this statement holds).

Theorem 3.2. (Axiom of Infinite Choice for Apices). Let P be a set par-
tially ordered by an ordering relation 4. Then the following statements are
equivalent:

(a) (Lemma of Infinite Maximality).6 Let P be an inductive partially
ordered set. Then P has at least countable or finite maximal elements.

(b) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 sup{x, f2(x)} for all x ∈ Sub f(P ),(R)

then the function ψ(x) := sup{x, f2(x)} has at least countable or finite fixed
points. If condition (A) holds, then the mapping f has at least countable or
finite fixed apices. (Also, the dually statement of this statement holds).

(c) Let P be an inductive partially ordered set and f a mapping from P
into P such that

x 4 f2(x) for all x ∈ Sub f(P ),(T)

then f has at least countable or finite fixed apices. (Also, the dually statement
of this statement holds).

The proofs of these statements are very similar with the preceding proofs.
Thus the proofs of this statements we omit. Also and for the next statement!
Essential Facts. We notice that Fredholm and Leray-Schauder alterna-

tives are direct consequences of the Axiom of Infinite Choice. Also, Schauder
and Brouwer theorem of fixed point (as well as Fixed Point Theory) are di-
rect consequences of the Axiom of Infinite Choice.

In connection with the Axiom of Infinite Choice I have the following direct
result as an extension of the Schauder problem (Theorem 7.1).

6What were the beginnings of Zorn’s principle? According to his later remi-
niscences, he first formulated it at Hamburg in 1933, where Claude Chevalley and Emil
Artin then took it up as well. Indeed, when Zo rn applied it to obtain representatives
from certain equivalence classes on a group, Ar t i nr ecognized that Zorn’s principle yields
the Axiom of Choice. By late in 1934, Zorn’s principle had found users in the United
States who dubbed in Zorn’s lemma. In October, when Zorn lectured on his principle to
the American Mathematical Society in New York, So l omon Le f s che t z recomended
that Zorn publish his result. The paper appeared, the following year, in 1935.
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Theorem 3.3. Let C be a nonempty convex compact subset of a linear
topological space X and suppose T : C → C is a continuous mapping. Then
T has at least countable fixed points or T has at least finite fixed points.

Open problem. We notice that in 1963 P. J. Cohen proved that the
Axiom of Choice is independent of the remaining Axioms of the Sets Theory.
In this sense is the Axiom of Infinite Choice is independent of the remaining
Axioms of the Sets Theory? (I think that the answer is yes!?)

Also, in connection with this, I have the following direct result as an
extension of the Recursion Theorem.

Theorem 3.4. If ξ is an element of a set X, and if f is a function from X
into X, then there exist at least countable functions fk (for k ∈ N) or there
exist at least finite functions fk (for k = 1, . . . ,m and a fixed number m ∈ N)
from N into X such that fk(0) = ξ and such that fk(n ∪ {n}) = f(fk(n))
for all n ∈ N.

4. Forked Points on Topological Spaces

Let X be an arbitrary nonempty set, T be a mapping from X into X,
and P := (P,4) a nonempty partially ordered set. A mapping f : X → P
(or f : X → X) has a forked point (or furcate point) p ∈ X if the following
equality holds in the form

f(p) = f(Tp) for some p ∈ X;(Ra)

frequently, we say that in this case (Ra), the mapping f : X → P has a pair
(p, Tp) of bifurcation points, or that T : X → X has a forks point p ∈ X.

We notice that many problems in nonlinear functional analysis (as and
in the fixed point theory) are reducible to the existence of forked points of
certain mappings.

Further, let P := (P,4) be a partially ordered set with a minimum (or
with the property that every nonempty subset in P has an infimum) such
that every decreasing sequence {xn}n∈N in P has a limit in P , denoted by
limn→∞ xn.

In connection with this, we shall introduce the concept of lower ordered
RBS-convergence in a topological space X for B : X → P , i.e., a topolog-
ical space X satisfies the condition of lower ordered RBS-convergence
iff {an(x)}n∈N is an arbitrary sequence in X with arbitrary x ∈ X and if
B(an(x)) → b = b(x) ∈ P (n → ∞) implies that {an(x)}n∈N has a conver-
gent subsequence {an(k)(x)}k∈N which converges to ξ ∈ X, where

B(ξ) 4 inf
x∈X

lim
k→∞

B
(
an(k)(x)

)
.

In this part of the paper, we apply the technics of maximal elements to the
equations of the forks theory. As an immediate consequence of the Lemma
of Infinite Maximality we obtain the following ordered principle.
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In this sense, let X be a topological space, Define a relation 4ork on X
by the following conditions:{

x 4ork y if and only if B(x) 4 B(y),
x =ork y if and only if B(x) = B(y),

(fk)

where B : X → P is a function with the given conditions.
It is verify that 4ork is a partial ordering (asymmetric and transitive

relation) in X. The poset X together with this partial ordering, is denoted
by Xork.

Theorem 4.1. (Ordering Principle). Let X be a topological space with the
poset Xork. If X satisfies the condition of lower ordered RBS-convergence,
then Xork has at least countable or finite minimal elements zk ∈ Xork with
zk 4ork x for given x ∈ Xork.

Sketck proof. Let C be a chain in Xork and now let t ∈ C be given.
Denote by α := inf{B(x) : x ∈ C}. Then the set M(x, n) of all y ∈ C
with x 4ork y and α ≺ B(y) ≺ αn (αn → α) is nonempty for each n ∈ N
and x ∈ C. Let I be a choice function for the family of all nonempty
subsets of C. Then, by the recursion theorem, there is a sequence {xn}n∈N
in C such that x0 = t and xn+1 = I(M(xn, n)) for n ∈ N. This implies
(from lower ordered RBS-convergence) that there exists ξ ∈ Xork such that
B(ξ) 4 · · · 4 B(xn) for n ∈ N. Now let x ∈ C. Then we can find an i ∈ N
such that B(ξ) 4 B(xi) ≺ αi 4 B(x). Since x and xi are in the chain C, we
obtain ξ 4ork x. This shows that ξ is a minorant of C. By the nature of C
(by Lemma of Infinite Maximality) it follows that there is at least countable
or finite zk ∈ Xork which are minimal in Xork.

We notice that the proof of this statement is totally an analogy with the
former proofs of ordered principles.

As an immediate consequence of Theorem 4.1 (Ordering Principle) we
obtain the following result in the forks theory.

Theorem 4.2. (Forked points existence, Tasković [2005]). Let T be a map-
ping of a topological space X into itself, where X satisfies the condition of
lower ordered RBS-convergence. If

B(Tx) 4 B(x) for every x ∈ X,(Bu)

then for T there exist at least countable or finite forked points ξk ∈ X, i.e.,
then the following equalities hold in the form

B(Tξk) = B(ξk) = αk := inf
x∈X

lim
n→∞

B
(
bkn(x)

)
(Ri)

for some sequences {bkn(x)}n∈N in X which converges to the forked points
ξk ∈ X.

A brief proof of a variant of this statement based on some elementary facts may be found in
Taskov i ć [2005]. For this, also see Ta skov i ć [2001].
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Proof of Theorem 4.2. Consider the partially ordered set Xork and
let ξk be minimal elements. Using (Bu), it also following from (fk) that
Tx 4ork x for all x ∈ X and Tξk 4ork ξk in Xork and, because ξk are
minimal it follows that Tξk =ork ξk. The proof is complete.

In this sense, we shall introduce the concept of lower BCS-convergence in
a topological space X for B : X → R0

+, i.e., a topological space X satisfies
the condition of lower BCS-convergence (orbital lower BCS-convergence)
if {an(x)}n∈N is an arbitrary sequence (an arbitrary iteration sequence) in X
with arbitrary x ∈ X and if B(an(x))→ b = b(x) > 0 (n→∞) implies that
{an(x)}n∈N has a convergent subsequence {an(k)(x)}k∈N which converges to
ξ ∈ X, where

B(ξ) 6 inf
x∈X

lim inf
k→∞

B
(
an(k)(x)

)
.(Bi)

Theorem 4.3. (Monotone Principle of Forked Points). Let T be a mapping
of a topological space X into itself, where X satisfies the condition of orbital
lower BCS-convergence. If

B(Tx) ≤ B(x) for every x ∈ X,(B)

then for T there exist at least countable or finite forked points ξt ∈ X, i.e.,
then the following equalities hold in the form

B(Tξt) = B(ξt) = αt := inf
x∈X

lim
n→∞

B
(
btn(x)

)
(M)

for some sequence {btn(x)}n∈N in X which converges to ξt. In this case,
the point ξt ∈ X is a minimal element of the set XB,id with the property
ξt =B,id Tξt.

Annotations. A fine illustration for Theorem 4.3 is a well known statement in 1936 which
was given by Freudentha l and Hurew i c z in the following form: If (X, ρ) is a compact
metric space and if T is a mapping of X into itself such that

ρ
[
T (x), T (y)

]
< ρ[x, y] for all x, y ∈ X (x 6= y),(3)

then the mapping T has a unique fixed point ξ ∈ X.
Indeed, first, since X is a compact space it follows that the condition of lower (orbital) BCS-

convergence holds. Second, let B(x) := ρ(x, Tx), thus applying Theorem 4.3 we have that there
exists ξ ∈ X such that (M). But, from (3) for ξ 6= Tξ we obtain

B(ξ) = B(Tξ) = ρ
[
T (ξ), T 2(ξ)

]
< ρ[ξ, T (ξ)] = B(ξ),

i.e., we obtain a contradiction. This means that ξ = Tξ for some ξ ∈ X. The uniqueness follows
immediately from (3). The proof is complete.

In connection with this statement of Fr eudentha l -Hur ew i c z [1936] there exist more
extensions. An extension of this statement to give Ede l s t e i n [1962] to change the compactness
with the following weak condition in the form: if {Tn(x)}n∈N is an arbitrary iteration sequence
in X with arbitrary x ∈ X, then he has at least one convergent subsequence in X.

On the other hand we notice that this result of Freudenthal and Hurewicz in 1936 appeared,
also, at the same year independently by N i emyt zk i [1936].

These facts are direct examples for the preceding Theorem 4.3. Also, this facts can be great
for further considerations and in the fixed point theory.
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Annotation. We notice that in Theorem 4.3 the condition (B) we can change with a sectional
condition in the following sense, that there exists z ∈ X such that

B(Tx) ≤ B(x) for every x ∈ O(z),(B’)

where O(z) is an orbit of the point z ∈ X for the mapping T of a topological space X into itself.
The proofs in this case are almost one and the same thing.

As an immediate consequence of Theorem 4.3 we obtain the following
direct generalization of Caristi’s fixed point theorem (=Theorem 4.4 in the
case k = 0).

Theorem 4.4. Let T be a self-map on a complete metric space (X, ρ). Sup-
pose that there exists a lower semicontinuous function G : X → R0

+ and an
arbitrary fixed integer k > 0 such that

ρ[x, Tx] 6 G(x)−G(Tx) + · · ·+G
(
T 2kx

)
−G

(
T 2k+1x

)
(Tk)

and G(T 2i+1x) ≤ G(T 2ix) for i = 0, 1, . . . , k and for every x ∈ X. Then T
has at least countable or finite fixed points ξt in X.

As an immediate consequence of the preceding result of Theorem 4.4 we
obtain the following statement of a fixed point.

Theorem 4.5. Let T be a self-map on a complete metric space (X, ρ). Sup-
pose that there exists a lower semicontinuous function G : X → R0

+ such
that

ρ[x, Tx] 6
+∞∑
i=0

(
G
(
T 2ix

)
−G

(
T 2i+1x

))
(Tm)

and G(T 2i+1x) ≤ G(T 2ix) for i ∈ N∪{0} and for every x ∈ X. Then T has
at least countable or finite fixed points ξt in X.

Further interpretations on the forks theorems. We notice, in this section, that for the
preceding main statements we can give their following explanations via the BCS-completeness
and the lower BCS-continuous in the following sense.

In connection with this, we shall introduce the concept of BCS-completeness in a space X for a
function B : X → R, i.e., a topological space X is called BCS-complete (orbital BCS-complete)
iff {an(x)}n∈N is an arbitrary sequence (an arbitrary iteration sequence) in X with arbitrary
x ∈ X and if B(an(x)) → b = b(x) ∈ R ∪ {±∞} as n → ∞ implies that {an(x)}n∈N has a
convergent subsequence in X.

On the other hand, a function B : X → R is lower BCS-continuous (orbital lower BCS-
continuous) at p ∈ X iff {an(x)}n∈N is an arbitrary sequence (an arbitrary iteration sequence) in
X with arbitrary x ∈ X and if an(x)→ p (n→∞) implies that is

B(p) 6 inf
x∈X

lim inf
n→∞

B
(
an(x)

)
.

We are now in a position to formulate the following explanations of the preceding theorems as
corresponding equivalent forms:

Theorem 4.3a. Let T be a mapping of a topological space X into itself and let X be orbital
BCS-complete. If (B) holds and if B : X → R0

+ is an orbital lower BCS-continuous functional,
then there exist at least countable or finite furcate points ξt ∈ X.

The proof of this statement is totally analogous with the proof of Theorem 4.3 which is
equivalent, in the booking, to the Theorem 4.3a.
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Open problem. Let T be a mapping of a topological space X into itself, where X satisfies the
condition of orbital lower BCS-convergence. If it is supposed that there exist a lower semicon-
tinuous function G : X → R0

+, a function Ap : X ×X → R0
+ (for p ∈ R), and an arbitrary fixed

integer k > 0 such that

Ap(x, Tx) ≤ G(x)−G(Tx) + · · ·+G(T 2kx)−G(T 2k+1x)(E)

and G(T 2i+1x) ≤ G(T 2ix) for i = 0, 1, . . . , k and for every x ∈ X, does T have at least one fixed
point in the topological space X?

In connection with this problem, we notice that in a special case of this open problem, if
X := (X, ρ) is a complete metric space, if Ap(x, Tx) = (ρ[x, Tx])p, and if k = 1 in (E), i.e., if

(ρ[x, Tx])p ≤ G(x)−G(Tx) for every x ∈ X

and p ∈ R, then the open problem of K i rk [1976] is settled in the negative if 0 < p < 1, and
positive if p > 1 (see: Bae -Pa rk [1983]). Another counter example (for p < 1) is given in
Khams i -M i s ane [1995].

Open problem. We notice that the preceding proof of Theorem 4.5 is given without direct
application of some of maximal principles as well as without Zorn’s lemma and Lemma of Infinite
Maximality. Can a new proof of Theorem 4.5 be given elementary without Axiom of Infinite
Choice?

Further, we notice that the preceding monotone principle of forked point appears before the
monotone principle of fixed point which in 1985 for the first time appeared from Taskov i ć
[1985]. For the next appearence of this monotone principle see Taskov i ć [1990].

In this sense, let X be a topological space, T : X → X, and let A :
X ×X → R0

+ := [0,+∞). A topological space X satisfies the condition of
TCS-convergence iff x ∈ X and if A(Tnx, Tn+1x) → 0 (n → ∞) implies
that the iterates sequence {Tnx}n∈N has a convergent subsequence in X.

For x ∈ X, σ(x,∞) := {x, Tx, T 2x, . . .} is called the orbit of X. A
function f mapping X into the reals is f-orbital lower semicontinuous at
p ∈ X if {xn}n∈N is a sequence in σ(x,∞) and xn → p (n → ∞) implies
that f(p) 6 lim infn→∞ f(xn). The following fact holds.

Lemma 4.1. (Tasković, [1978]). Let the mapping ϕ : R0
+ → R0

+ have the
following properties(

∀t ∈ R+ := (0,+∞)
)(

ϕ(t) < t and lim sup
z→t+0

ϕ(z) < t

)
.(Iϕ)

If the sequence (xn) of real numbers satisfies the condition xn+1 ≤ ϕ(xn)
for every n ∈ N, then it converges to zero.

Theorem 4.6. (Monotone Principle of Fixed Point).7 Let T be a mapping
of a topological space X into itself, where X satisfies the condition of TCS-
convergence. Suppose that there exists a mapping ϕ : R0

+ → R0
+ such that

(Iϕ) and

A(Tx, Ty) 6 ϕ(A(x, y)) for all x, y ∈ X,(MP)

7We notice that D ju roKurepa in 1971, first version of my Monotone Principle
of Fixed Point, has been sent to Professor J eanLe ray (Paris) for the opinion. Some
of Leray’s ideas I am to realize in several published papers. In general form for the first
time, fundamental elements of Monotone Principle I give in: Proc. Amer. Math. Soc., 94
(1985), 427–432. For later facts on this see: Ta skov i ć [1990].
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where A : X×X → R0
+, x 7→ A(x, Tx) is T-orbital lower semicontinuous or

T is orbital continuous, and A(a, b) = 0 implies a = b. Then T has a unique
fixed point ξ ∈ X and Tnx→ ξ for each x ∈ X.

Proof. (Application of Theorem 4.3). Let B(x) := A(x, Tx) which is lower
semicontinuous on X, then B(Tx) ≤ B(x) for every x ∈ X, i.e., (B) in The-
orem 4.3. Since X satisfies the condition of orbital lower BCS-convergence
(because from Lemma 4.1 it follows that A(Tnx, Tn+1x) → 0 as n → ∞
and thus, by TCS-convergence, {Tn(x)}n∈N has a convergent subsequence
{Tn(k)(x)}k∈N to ξ ∈ X and (Bi) holds by lower semicontinuous of B), ap-
plying Theorem 4.3 we obtain B(Tξ) = B(ξ) = A(ξ, T ξ) := α. Thus from
(MP) for α 6= 0 we have

α = A(Tξ, T 2ξ) 6 ϕ
(
A(ξ, T ξ)

)
< A(ξ, T ξ) = α

for some ξ ∈ X. This is a contradiction, thus α = 0, i.e., ξ = Tξ for
some ξ ∈ X. The uniqueness follows immediately from (MP). The proof is
complete.

Further, let X be a topological space, let T : X → X, and let B :
X → R0

+ be a given function. In connection with the preceding, in 1985
we investigated the concept of local TCS-convergence in a space X, i.e., a
topological space X satisfies the condition of local TCS-convergence
iff x ∈ X and if B(Tnx) → 0 (n → ∞) implies that the iterates sequence
{Tnx}n∈N has a convergent subsequence in X.

We notice that the condition of TCS-convergence is to set task for the
function (x, y) 7→ A(x, y), till the condition of local TCS-convergence is to
set task for the function x 7→ B(x).

Facts on TCS-convergence. For the first time in 1985 I introduced the conditions of TCS-
convergence and local TCS-convergence with the intention to transmit it to the properties of
Cauchy sequence from metric spaces on topological spaces, see Ta skov i ć [1985].

We can briefly say, in connection with this, that the results of forked points are based on
RBS-convergence and BCS-convergence. It is a new viewpoint which is an extension of the TCS-
convergence.

At the interval of the next seven years more authors have considered appearance of TCS-
convergence as a special case od the property TCS-convergence, precisely, in this way, d-comple-
teness of topological spaces, see: H i ck s [1992], H i ck s -Rhoade s [1992], Sa l i g a [1996], and
Popa [2002].

Recently, 10 years next appeared Monotone Principle in 1985, in connection with this Ja chym-
sk i, Matkowsk i, and Sw ia tkowsk i [Journal of Applied Analysis, 1 (1995), 125–134, Theorem
1, p. 130] proved a very special case of Monotone Principle of Fixed Point on Hausdorff spaces.
For the same also see: Aamr i -Moutawak i l [2003].

As a further application of Theorem 4.3 (Monotone principle of forked
points) we obtain the following well-known result in the fixed point theory
by Tasković [1985].
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Theorem 4.7. (Localization Monotone Principle).8 Let T be a mapping
of a topological space X into itself, where X satisfies the condition of local
TCS-convergence. Suppose that there exists a mapping ϕ : R0

+ → R0
+ such

that (Iϕ) and

B(Tx) 6 ϕ(B(x)) for every x ∈ X,(Lm)

where B : X → R0
+ is T-orbital lower semicontinuous or T is orbital contin-

uous, and B(x) = 0 implies Tx = x. Then T has at least countable or finite
fixed points ξt ∈ X.

A brief proof of this statement based on Ordering Principle (Theorem 4.1) may be found in
Taskov i ć [1988]. The first proof which is elementary may be found in Taskov i ć [1985].
We notice that this result was generalized by Tur in i c i [1993] as a further localization. The
following proof is an application of Monotone Principle of Forked Point.

The localization of monotone principle of a fixed point is a common generalization of results of:
Banach [1922], B rowde r [1968], Boyd -Wong [1969], Dugund j i -Grana s [1978], Kra s -
no s e l s k i j et al. [1973], Ca r i s t i [1976], K i rk [1976], Matkowsk i [1975], H i ck s -Rhoade s
[1979], F i sh e r [1976], and many others.

Recently, 15 years later appeared Localization Monotone Principle in 1985, in connection with
this Suzuk i [J. Math. Anal. Appl. 253 (2001), 440–458, Theorem 1, p. 451] which proved a
very special case of Localization Monotone Principle of Fixed Point.

Proof of Theorem 4.7. (Application of Theorem 4.3). Let x be an
arbitrary point in X. The function B : X → R0

+ is lower semicontinuous
and satisfies, by (Iϕ), B(Tx) ≤ B(x) for every x ∈ X, i.e., the inequality
(B) in former Theorem 4.3.

Applying Lemma 4.1 to the sequence {B(Tnx)}n∈N we obtain thatB(Tnx)→
0 (n → ∞), and thus X satisfies the condition of orbital lower BCS-
convergence with the inequality (Bi). Applying Theorem 4.3 we haveB(Tξt) =
B(ξt) := αt for some ξt ∈ X. Also, from (Iϕ), for αt 6= 0 we have

αt = B(ξt) = B(Tξt) 6 ϕ(B(ξt)) < B(ξt) = αt

for some ξt ∈ X. This is a contradiction, which means that αt = 0, i.e.,
ξt = Tξt for some ξt ∈ X. The proof is complete.

An important event. We notice that the preceding facts and conse-
quences are an affirmation that Monotone Principle of Forked Points is a
natural extension of the Monotone Principle of Fixed Point, and Localization
Monotone Principle of Fixed Points.
Some new geometric theorems. As further applications of the pre-

ceding Theorem 4.3, on forked points, we obtain the following geometric
statements of fixed points on complete metric spaces.

8For monotone principles, specially for Localization Monotone Principle of Fixed Point,
James Dugund j i, in the letter for me of October 5 in 1984, briefly among the rest
writes, that he is convinced of the role of Localization Monotone Principle in the fixed
point theory (and nonlinear functional analysis). This opinion of J. Dugundji has been
confirmed many a time, via various phenomena, as one can see from many results proven
in this book.
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Theorem 4.8. Let T be a self-map on a complete metric space (X, ρ). Sup-
pose that there exists a lower semicontinuous function G : X → [a,+∞) for
some a > 0 such that

ρ[x, Tx] 6
1

G(Tx)
− 1

G(x)
for every x ∈ X,

then T has at least countable or finite fixed points ξt in X. (This result is
an analogy with Caristi’s theorem).

The proof of this statement (without utilizing Axiom of Infinite Choice) is analogous to the
proof of based on Theorem 4.3.

As a direct extension of Theorem 4.8, from Theorem 4.3, we obtain the following result of a
fixed point on complete metric spaces.

Theorem 4.9. Let T be a self-map on a complete metric space (X, ρ). Sup-
pose that there exists a lower semicontinuous function G : X → [a,+∞) for
some a > 0 and an arbitrary fixed integer k > 0 such that

ρ[x, Tx] 6
1

G(Tx)
− 1

G(x)
+ · · ·+ 1

G(T 2k+1x)
− 1

G(T 2kx)
(Rk)

and G(T 2i+1x) ≤ G(T 2ix) for i = 0, 1, . . . , k and for every x ∈ X. Then T
has at least countable or finite fixed points ξt in X.

We notice that for k = 0 in Theorem 4.9 we have Theorem 4.8. Proof of
this statement is based on Theorem 4.2.

In connection with the preceding, as a direct consequence of Theorem 4.9,
we obtain the following statement of fixed point on complete metric spaces.

Theorem 4.10. Let T be a self-map on a complete metric space (X, ρ).
Suppose that there exists a lower semicontinuous function G : X → [a,+∞)
for some a > 0 such that

ρ[x, Tx] 6
+∞∑
i=0

(
1

G(T 2i+1x)
− 1

G(T 2ix)

)
and G(T 2i+1x) ≤ G(T 2ix) for i ∈ N ∪ {0} and for every x ∈ X. Then T
has at least countable or finite fixed points ξt in X.

The proof of this statement is totally analogous with the proof of Theorem
4.5. Precisely, from the Theorem 4.10, we obtain directly Theorem 4.9 as a
consequence.

5. Functions of A-variation

Let X be a nonempty set, let T : X → X, and let A : X × X → R0
+

be a given function. Further, a function T satisfies the condition of A-
variation iff there exists a function A : X ×X → R0

+ such that
∞∑
i=0

A
(
T i(x), T i+1(x)

)
< +∞(4)
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for every x ∈ X. If (X, ρ) is a metric space and A := ρ, in the preceding case
(4), then we say that T is a bounded variation mapping or ρ-variation
mapping.

Proposition 5.1. (Tasković in 1993). Let X be a nonempty set, let T :
X → X, and let A : X ×X → R0

+ be a given mapping. Then the following
facts are equivalent:

(V) T is a mapping of A-variation on the nonempty set X in attitude
toward a given mapping A : X ×X → R0

+.
(F) There exists a function G : X → R0

+ such that the following inequality
holds in the form that is

A(x, Tx) 6 G(x)−G(Tx) for all x ∈ X.

(S) There exists a sequence of nonnegative real functions x 7→ Cn(x, Tx)
such that the following inequality holds in the form

A
(
Tnx, Tn+1x

)
≤ Cn(x, Tx) for all x ∈ X,

and for all n ∈ N ∪ {0}, where the series of the form
∑∞

n=0Cn(x, Tx) con-
verges for all x ∈ X.

A brief proof of this statement may be found in: Ta skov i ć [1993, p. 407] and Taskov i ć
[1998]. Also see: E i s en f e l d -Lak shmikantham [1977]. On the other hand, the following fact
holds. Namely, if X is a nonempty set, T : X → X, and if A : X ×X → R0

+ is a given mapping,
then the following facts are equivalent: (V), (F), (S) and:

(R) There exists a function G : X → R0
+ and an arbitrary fixed integer k > 0 such that the

following inequality holds in the form that is

A(x, Tx) 6 G(x)−G(Tx) + · · ·+G(T 2kx)−G(T 2k+1x)

and G(T 2i+1x) ≤ G(T 2ix) for i = 0, 1, . . . , k and for every x ∈ X. (The proof of this statement
is totally analogous with the proof of Proposition 5.1).

We are now in a position to formulate our next consequence of Theorem
4.1 or Theorem 4.2. This statement is characteristic for the A-variation
mappings from Tasković [1993].

Theorem 5.1. (A-variation Principle). Let T be an A-variation map-
ping of topological space X into itself, where X satisfies the condition of
TCS-convergence. If x 7→ A(x, Tx) is T-orbital lower semicontinuous and
A(a, b) = 0 implies a = b, then T has at least countable or finite fixed points.

Proof. The condition (F) implies condition (B) of Theorem 4.3. Thus,
applying Theorem 4.3 we obtain this statement.

Two immediate and direct corollaries of the preceding main statement are
the following two statements which is characteristic for metric spaces.

Theorem 5.2. Let T be a self-map of an orbital complete metric space
(X, ρ). If T is orbital continuous and an ρ-variation mapping, then T has
at least countable or finite fixed points.
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Theorem 5.3. Let (X, ρ) be a complete metric space, and T : X → X a
bounded variation mapping, i.e., an ρ-variation mapping. If T is a continu-
ous mapping, then T has at least countable or finite fixed points.

Proof of Theorem 5.2. SinceX satisfies the condition of TCS-convergence
(X is orbital complete metric space and T is ρ-variation), from the preceding
facts, applying Theorem 5.1 gives Tξk = ξk for some ξk ∈ X.

Corollary 5.1. (Banach Contraction Principle, Banach [1922]). Let (X, ρ)
be a complete metric space and T : X → X is a contractive mapping. Then
T has a unique fixed point ξ ∈ X, and Tnx→ ξ (n→∞) for each x ∈ X.

Proof. From the condition of contraction, it is easy to see that T is bounded
variation, i.e., ρ-variation. Precisely, every contraction mapping is bounded
variation and continuous. Hence, it follows from the Theorem 5.1 that T
has a unique fixed point.

On the other hand, we notice from Theorems 5.1, 5.2 and 5.3 that our central idea is, that
every continuous, bounded variation mapping of complete metric space into itself has at least
countable or finite fixed points by Taskov i ć [1993], is essential. In this sense, directly, we have
the preceding Banach’s contraction principle, and the following extension of Caristi’s fixed point
theorem.

Corollary 5.2. (Tasković, [1993]). Let T be a mapping of a topological space
X into itself with the property of TCS-convergence. If there is a function
G : X → R0

+ such that

A(x, Tx) ≤ G(x)−G(Tx) for all x ∈ X,(F)

where x 7→ A(x, Tx) is a lower semicontinuous function or T is orbital
continuous, and A(a, b) = 0 implies a = b, then T has at least countable or
finite fixed points in X.

In recent years a great number of papers have presented generalizations of the three funda-
mental famous principles of Brouwer, Schauder and Banach. In this part of the book we extend
these three central results in a fixed point theory. Our central idea is, that every continuous,
bounded variation mapping of complete metric space into itself has a fixed point. This fixed point
theorem is a common generalization of results of Brouwer, Schauder, Banach, Sadovskij, Browder,
Krasnoselskij, Darbo, Dugundji, Granas, Kirk, Caristi, Ky Fan and some others.

Brouwer’s theorem – 97th next. Perhaps the most important of all fixed point theorems
is the famous theorem of Brouwer9 in 1909 which states that every continuous mapping of the
closed unit ball of the Euclidean space Rn into itself has a fixed point.

Schauder’s theorem in 1927 is a generalization of Brouwer’s theorem to infinite dimensional
normed linear space. Schauder’s theorem states that every continuous mapping of a compact
convex subset of a normed linear space into itself has a fixed point.

In recent years a great number of papers have presented generalizations of the well-known
essential Brouwer principle. Some of these generalizations refer to the result containing the
Schauder fixed point theorem.

9Luitzen Egbertus Jan Brouwer (1881-1966) – German-Dutch mathematician, is
one of the greatest mathematicians. He was a professor at the University of Amsterdam,
and he is supposed to be one of the founders of modern topology. Brouwer proved the
topological invariance of the dimension of the Cartesian space. Furthermore he is famous
for his contributions to the Fundaments of Mathematics. But his most important result
is the fixed point theorem mentioned above.
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Brouwer’s theorem is one of the oldest and best known results in topology. It was proved for
n = 3 by L. Brouwe r in 1909. An equivalent result was established earlier in 1904 by Boh l.

In 1920 it was Hadamard who gave (using the Kronecker index) the first proof for arbi-
trary n. Soon afterwards in 1912 Brouwer had another proof using the simplistic approximation
technique and notion of the degree. Other proofs depending on various definitions of degree were
also given by A l exande r in 1922 and B i rkho f f -Ke l l o gg in 1922.

A simple and short proof of the Brouwer theorem based on combinatorial technique and
Sperner’s lemma in 1928, was given by Knaster-Kuratowski-Mazurkiewicz in 1929.

6. Maximal Principles on Convex and Compact Sets

This section give applications of the preceding statements. In this sense,
the first purpose is to present some of applicattions of our former Maximal
Principles on convex and compact sets.

In connection with the preceding, let B : X → R0
+ := [0,+∞) be a convex

function such that B((x+ y)/2) ≥ B(x) for all x, y ∈ X, where B is a lower
semicontinuous function on convex and compact set X in a linear topological
space Y . Define a relation 4B,con on X by the following conditions:{

x 4B,con y if and only if A(x, y) ≤ B(y)−B(x),
x =B,con y if and only if B(x) = B(y),

(Co)

where A(x, y) := B((x+ y)/2)− B(x) ≥ 0 and A(x, y) = 0 iff x = y for all
x, y ∈ X. It is to verify that 4B,con is a partial ordering (asymmetric and
transitive relation) in X. The set X, together with this partial ordering, is
denoted by XB,con.

Theorem 6.1. (Minimal Ordering Principle). Let X be a convex and
compact set in a linear topological space, with the poset XB,con. Then XB,con

has at least countable or finite minimal elements zk ∈ XB,con, with zk 4B,con

x for given x ∈ XB,con.

Proof. Let C be a chain in XB,con and let t ∈ C be given. Denote by β the greatest lower
bound of the set {B(x) : x ∈ C}, i.e., β := inf{B(x) : x ∈ C}. If B(m) = β for some m ∈ C, then
m is a lower bound in C. For, if x 4B,con m for some x in C\{m}, then B(x) 6 B(m), which
yields B(x) < β, which is a contradiction. Therefore, one can assume B(x) 6= β for all x ∈ C.
Then the set M(x, n) of all y ∈ C with y 4B,con x and β < B(x) < β + 1/n is nonempty for
each n ∈ {1, 2, . . .} := N and x ∈ C. In fact, there is a y ∈ C satisfying β < B(y) < β + 1/n,
and so y belongs to M(x, n) if y 4B,con x; if x 4B,con y then since B(x) 6 B(y), we have
β < B(x) ≤ B(y) < β + 1/n, which shows that x belongs to M(x, n). Let I be a choice function
for the family of all nonempty subsets of C. Then, by the recursion theorem, there is a sequence
{xn}n∈N in C such that x0 = t and xn+1 = I(M(xn, n)) for n ∈ N. Hence the compactness
implies that {xn}n∈N has a convergent subsequence {xn(k)}k∈N to ξ ∈ X.

Now let x be in C. Then we can find an i ∈ N such that B(xi) < β + 1/i < B(x). Since
x and xi are in the chain C, this implies xi 4B,con x. Therefore, we have B(xi) 6 B(x), for
every n > i. Thus, by lower semicontinuity of B, we obtain B(ξ) 6 B(x), i.e., ξ 4B,con x. This
shows that ξ is a lower bound of C. By the nature of C (by the dual form of Lemma of Infinite
Maximality) it follows that XB,con has at least countable or finite minimal elements in XB,con.
This completes the proof.

As an immediate application of the preceding statement (Minimal Or-
dering Principle) we have the following extension and a new solution of
Schauder’s 54th problem in Scottish Book on linear topological spaces.
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Theorem 6.2. (Extension of Schauder’s 54th problem). Let C be a
nonempty convex compact subset of a linear topological space X and suppose
that T : C → C is a continuous mapping. Then T has at least countable or
finite fixed points in C.

Proof. Consider the partially ordered set CB,con and let ξk be minimal
elements. Using the equation x = T (x), it also follows from (Co) that we
have T (x) 4B,con x for all x ∈ C and Tξk 4B,con ξk in CB,con and, because,
ξk are minimal, it follows that ξk =B,con T (ξk). Thus, from (Co) we have
B(ξk) = B(Tξk), i.e., ξk = T (ξk) ∈ C. This completes the proof.

In connection with this statement, also as a direct consequence of Theorem
6.1 (Minimal Ordering Principle), we obtain for fixed apices the following
result.

Theorem 6.3. (Form of Schauder’s 54th problem for fixed apices). Let
C be a nonempty convex compact subset of a linear topological space X and
suppose that T : C → C is a continuous mapping. Then T has at least
countable or finite fixed apices in C.

Proof. Consider the partially ordered set CB,con and let ξk be minimal
elements. Using the equation x = T 2(x), it also follows from (Co) that we
have T 2(x) 4B,con x for all x ∈ C and T 2(ξk) 4B,con ξk in CB,con and,
because, ξk are minimal, it follows that ξk =B,con T

2(ξk). Thus, from (Co)
we have ξk = T 2(ξk), i.e., from the preceding facts on apices in part 1, T
has at least countable or finite fixed apices. The proof is complete.

On the other hand, let B : X → R0
+ be a convex function such that we

have B((x + y)2) ≥ B(x) for all x, y ∈ X, where B is a continuous (or
a lower semicontinuous) function on convex set X in a linear topological
space Y . Define a relation 4B,con with (Co). It is verify that 4B,con is a
partial ordering (asymmetric and transitive relation) in X. The convex set
X, together with this partial ordering, is denoted by Xcon,B.

As an immediate consequence of the preceding proof of Theorem 6.1 (Min-
imal Ordering Principle) we have direct the following fact!

Proposition 6.1. Let X be a convex set in a linear topological space Y , then
there exists a continuous (or a lower semicontinuous) function G : X → R0

+

such that T : X → X with the property (F).

Also, let X be a Banach space and let Y := (Y,4) be an ordered Banach
space. Suppose that B : X → Y is a convex operator10 such that θ 4

10Convex operators. Let X and Y be real ordered Banach spaces with order 4, and
let T : D(T ) ⊂ X → Y be an operator. T is convex iff D(T ) is a convex set such that
with x ≺ y the following inequality holds

T (λx+ (1− λ)y) 4 λT (x) + (1− λ)T (y)
for all x, y ∈ D(T ) and for arbitrary λ ∈ (0, 1). The operator T is concave iff −T is a
convex operator.
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B((x+y)−B(x)) for all x, y ∈ X, where B is a continuous operator. Define
a relation 4B,opr on X by the following conditions:{

x 4B,opr y if and only if A(x, y) 4 B(y)−B(x),
x =B,opr y if and only if B(x) = B(y),

(Cop)

where A(x, y) := B((x+ y)/2)− B(x) < θ and A(x, y) = θ iff x = y for all
x, y ∈ X. It is to verify that 4B,opr is a partial ordering (asymmetric and
transitive relation) in X. The set X, together with this partial ordering, is
denoted by XB,opr.

Theorem 6.4. (Minimal Principle). Let X be a convex and compact set
in a linear topological space, with the poset XB,opr. Then XB,opr has at least
countable or finite minimal elements zk ∈ XB,opr, with zk 4B,opr x for given
x ∈ XB,opr.

The proof of this statement is a total analogy with the proof of Theorem
4.1. Thus the proof we omit.

As an immediate application of the preceding statement (Minimal Princi-
ple) we obtain the following result on linear topological spaces, as Theorem
5.2 in the different form.

Theorem 6.5. Let C be a nonemty convex compact subset of a linear topo-
logical space X, and suppose that T : C → C is a continuous mapping. Then
T has at least countable or finite fixed points in C.

Proof. (Different of the proof of Theorem 5.2 ). Consider the partially
ordered set CB,opr and let ξk be minimal elements. Using the equation
x = T (x), it is also follows from (Cop) that we obtain T (x) 4B,opr x for all
x ∈ C and T (ξk) 4B,opr ξk in CB,opr and, because, ξk are minimal, it follows
that ξk =B,opr T (ξk). Thus, from (Cop) we have B(ξk) = B(T (ξk)), i.e.,
ξk = T (ξk) ∈ C. This completes the proof.

Annotation. We notice that the proof of Theorem 6.3 (for fixed apices), also, we can given
via the partially ordered set CB,opr. The proof is an analogy with the given proof of Theorem
6.3. The proof we omit.

We are now in a position to formulate our following known applications.
In this sense we obtain three fundamental famous principles of Brouwer,
Banach and Schauder.

First, as an immediale and direct application of Theorem 6.1 (Minimal
Ordering Principle) and Theorem 6.3 we obtain an extension of Brouwer’s
theorem in the following two forms.

Theorem 6.6. (Fixed Apices). Suppose that C is a nonemty convex
compact subset of Rn, and that T : C → C is a continuous mapping. Then
T has at least countable or finite fixed apices.

Theorem 6.7. (General Brouwer Theorem). Suppose that C is a nonemty
convex, compact subset of Rn, and that T : C → C is a continuous mapping.
Then T has at least countable or finite fixed points in C.
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In this sense, as a direct consequence of Theorem 6.7, we obtain the
following well-known Brouwer’s theorem.

Theorem 6.8. (Brouwer, [1912]). Suppose that C is a nonempty convex,
compact subset of Rn, and that T : C → C is a continuous mapping. Then
T has a fixed point in C.

Proof. Since C is a convex and compact subset of a Banach space, from
Theorem 6.1 (Minimal Ordering Principle) and Theorem 6.7, we obtain this
statement.

Let X, Y be topological spaces. A continuous map F : X → Y is called
compact if F (X) is contained in a compact subset of Y . If X and Y are
Banach’s spaces and T : D(T ) ⊂ X → Y , then T is called compact if T is
continuous and T maps bounded sets into relatively compact sets. Compact
operators play a central role in nonlinear functional analysis. Schauder’s
theorem is a generalization of Brouwer’s theorem to infinite dimensional
normed linear spaces, with the preceding fact.

We can now formulate Brouwer’s theorem in a manner valid for all normed
linear spaces.

Theorem 6.9. (Schauder, [1927]). Let C be a nonempty, closed, bounded,
convex subset of the Banach space X, and suppose T : C → C is a compact
operator. Then T has a fixed point ξ ∈ C.

We also have an alternate version of the preceding Schauder fixed point
theorem. Further we give a proof, via Theorem 6.1 (Minimal Ordering Prin-
ciple) and Theorem 6.2, of this fact.

Theorem 6.10. (Schauder, [1930]). Let C be a nonempty, compact, con-
vex subset of a Banach space X, and suppose T : C → C is a continuous
operator. Then T has a fixed point in C.11

11Schauder biography. In 1978 Wład i s ł aw Or l i c z briefed: The Polish math-
ematician Juliusz Schauder was born in 1899 in Lwow. He studied at the University of
Lwow under Banach, who together with Hugo Steinhaus created the Polish functional an-
alytic school in the twenties in Lwow. Personal contact with Lean Lichtenstein awakened
Schauder’s interest in differential equations. After receiving a Rockefeller grant in 1932,
he spent some time in Leipzig with Lichtenstein. In this period he also stayed in Paris,
working together with Jean Leray. The fruit of this collaboration was the fundamental
work: "Topologie et équations fonctionelles” which appeared in 1934. In 1938, Schauder
and Leray received the Grand Prix International of Metaxas.

After the occupation of Lwow by the German army in June 1941, Schauder, like all
others of Jewish descent, became a victim of Hitler’s persecution. He was forced into
hiding together with his wife and small daughter, under an assumed name. In 1943,
during an extermination action, he, and shortly thereafter his wife too, was murdered by
the German fascists. His daughter survived.

The essential character trait of Schauder was his extreme passion for mathematics,
which united him with his teacher Stefan Banach.
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We notice that this statement is a direct translation of the Brouwer fixed
point theorem to Banach spaces.

Proof. Since C is a convex and compact subset of Banach space, from
Theorem 6.1 (Minimal Ordering Principle) and Theorem 6.2, we obtain this
statement.

Theorem 6.11. (General Schauder Theorem). Let C be a nonempty,
compact, convex subset of a Banach space X, and suppose T : C → C is a
continuous operator. Then T has at least countable or finite fixed points in
C.

This statement is a direct consequence of Theorem 6.1 (Minimal Ordering
Principle) and Theorem 6.2. Also, the following result is a direct consequence
of Theorem 6.1 (Minimal Ordering Principle) and Theorem 6.3.

Theorem 6.12. (Fixed Apices). Let C be a nonempty, compact, con-
vex subset of a Banach space X, and suppose T : C → C is a continuous
operator. Then T has at least countable or finite fixed apices in C.

The following statement provides an important example of A-variation
principle. We notice that this statement plays an important role in a fixed
point theory.

Proposition 6.2. (Browder [1965], Göhde [1965], Kirk [1965]). Suppose
that the map T : M ⊂ X → M is nonexpansive, where M is a nonempty,
closed, bounded, and convex set in the uniformly convex Banach space X.
Then the fixed point set of T , Fix(T ), is nonempty, closed, and convex.

Proof. Since M is a convex subset of Banach space X, from the proof
of Theorem 6.1 (Minimal Ordering Principle), we have that T : M → M is
A-variation, where A(x, y) := B((x+ y)/2)−B(x). The set M is closed in
X, and thus M is a complete space. It is easy to see that T satisfies all the
required hypotheses in Theorem 5.1. Hence, it follows from the Theorem
5.1 that T has a fixed point in M . Also, the set Fix(T ) is closed and convex
by the preceding. The proof is complete.

Further, as an immediate fact of Theorem 6.1 (Minimal Ordering Prin-
ciple) and Theorem 6.2, we have on metric spaces the following essential
result.

Proposition 6.3. (Tasković, [1993]). Let D be a metric convex subset in
metric space (X, ρ) with the property of TCS-convergence. If T : D → D is a
continuous mapping (or x 7→ ρ(x, T (x)) is a lower semicontinuous mapping),
then T has a fixed point in X.

7. Solution of Schauder’s 54th Problem in Scottish Book12

12History of Schauder’s problem. The most famous of many open problems in non-
linear analysis is Schauder’s problem (in Scottish book, problem 54). For some answers on
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Introduction and history. The most famous of many problems in
nonlinear analysis is Schauder’s problem (Scottish book, problem 54) of the
following form, that if C is a nonempty convex compact subset of a linear
topological space does every continuous mapping f : C → C have a fixed
point?

The answer I gives in this part that is yes, as first time by Taskov i ć in 1998. In this connec-
tion this part proves and extends the Markoff-Kakutani theorem to arbitrary linear topological
space as an immediate consequence of the preceding solution of Schauder’s problem.

During the last twenty years this old conjecture was intensively examined by many mathe-
maticians. For sets in normed spaces this has been proved by Schauder and for sets in locally
convex spaces by Tychonoff.

In this part we prove that if C is a nonempty convex compact subset of a linear topological
space, then every continuous mapping f : C → C has at least countable or finite fixed points.

Brouwer’s theorem of fixed point is one of the oldest and best known results in mathematics.
Schauder’s theorem of fixed point is a generalization of Brouwer’s theorem to infinite dimensional
normed linear spaces. Schauder’s theorem states that every continuous mapping of a compact
convex subset of a normed linear space into itself has a fixed point.

Schauder’s problem (Scottish book, problem 54) is in the following form: Does every continuous
mapping f : C → C of a nonempty convex compact subset C in arbitrary linear topological space
have a fixed point?

For locally convex space the answer is yes from Tychonoff [1935]. Namely,
in 1935, Tychonoff had shown that if C is a nonempty convex compact subset
of a locally convex space, then every continuous map f : C → C has a fixed
point.

Schauder’s theorem was further extended by Kukuha ra [1950], Mazu r [1938], Gohde
[1965], Fan [1961], Dugund j i [1976], Grana s [1957], K l e e [1960], K i rk [1965], I d z i k
[1988], R i ed r i ch [1976], E i s enack -Fen ske [1978], J ahn [1984], B rowde r [1965], Da rb o
[1955], De l enau [1961], Sadov sk i j [1967], Kra sno s e l s k i j [1955], Re in e rmann [1971],
Ta skov i ć [1993], and many others.

The literature on applications of Schauder’s theorem to nonlinear problems is extensive. The
first result was proved by Marko f f [1936] with the aid of the Schauder-Tychonoff fixed point
theorem.

Kakutan i [1941] found a direct elementary proof of the Marko f f theorem. Extensions
of Markoff-Kakutani theorem is due to Day [1961], Hahn [1978] and Ry l l -Na rdz ewsk i
[1966].

In this part we give the complete solution and an extension of the preceding well known
Schauder’s problem of fixed point by Taskov i ć [1998]. Also, this solution is answering a
question of S. Ulam. In connection with this, in this part, we extend the Markoff-Kakutani
theorem to arbitrary linear topological spaces as an immediate consequence of the preceding
Tasković’s solution in 1998 as and a new solution of Schauder’s problem.

this problem see papers of: Tychonoff, Fréchet, Leray, Borsuk, Steinhaus, Mazurkiewicz,
Kuratowski, Knaster, Krasnoselskij, Ky Fan, Klee, Caristi, Kirk, Browder, Dugundji,
Granas, and many others.

J. S chaude r himself set down this problem in 1927 and 1930 respectively and had
it published in: Math. Zaitschrift and Studia Mathematica. The problem gained the
importance when it was put forward by S t e f anBanach in 1930 at the World congress
of mathematicians in Moscow.

First positive answer for locally convex space was given by Tychono f f in 1935. It
was J. S chaude r who presented (personally) Tychonoff’s paper in Zbl. für Math. 12
(1936), with number 308.
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Answer to Schauder’s problem is affirmative. From the preceding
statements and some further facts we are now in the position to formulate
the following solution which is, also, an extension of Schauder problem.

Theorem 7.1. (Answer is yes for Schauder’s problem). Let C be a nonempty
convex compact subset of a linear topological space X and suppose that T :
C → C is a continuous mapping. Then T has a fixed point in C.

This result is a special case of the former Theorem 6.2. Thus the proof of this state ment we
omit. For the first proof of Theorem 7.1 see Ta skov i ć [1998].

Annotation. Let us emphasize that the above solution for the Schauder’s
problem was presented by Taskov i ć in 1998. Another different solution
for the same problem was published by R. Cauty in 2001, three years later
after M. R. Tasković. See: Ta skov i ć [1998] and Cauty [2001]! Also see:
Rus [1999].
Some further applications. As an immediate corollary of the preceding

solved problem (Theorem 7.1), we obtain one of the basic results in nonlinear
functional analysis which is an extension of the Markoff-Kakutani theorem.

Theorem 7.2. Let C be a nonempty convex compact set in a linear topo-
logical space X and let F be a commuting family of continuous affine maps
of C into itself. Then F has a common fixed point in C.

A brief proof of this result based on Theorem 7.1 may be found in Taskov i ć: [1998], [2001].
Also see Taskov i ć [2005].

Proof. Let Fix(T ) be a fixed point set of a map T . By Theorem 7.1, Fix(T )
is a nonempty set for each T ∈ F . Moreover, Fix(T ) is compact being closed
in the compact set C, and Fix(T ) is convex because T is affine.

We must prove that ∩{Fix(T ) : T ∈ F} is a nonempty set; because each
set Fix(T ) is compact, it is sufficient to show that each finite intersection

Fix(T1, . . . , Tn) :=

n⋂
i=1

Fix(Ti)

is nonempty. We proceed by induction on the number n ∈ N of Ti, the result
being true for n = 1. Assume that Fix(T1, . . . , Tn) is nonempty whenever
i < n and consider any nmembers T1, . . . , Tn of F . Because F is commuting,
we find that

Tn

[
Fix

(
T1, . . . , Tn−1

)]
⊂ Fix(T1, . . . , Tn−1),

for if x ∈ Fix(T1, . . . , Tn−1) then Ti[Tn(x)] = Tn[Ti(x)] = Tn(x) for each
i < n so Tn(x) ∈ Fix(T1, . . . , Tn−1).

Since Fix(T1, . . . , Tn−1) is a nonempty compact convex set, we conclude
from Theorem 7.1 that Fix(T1, . . . , Tn) is a nonempty set. This completes
the induction and the proof.

As a direct application of the preceding Theorem 7.2 we obtain the fol-
lowing well known result for families of mappings.
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Theorem 7.3. (Markoff [1936], Kakutani [1938]).13 Let C be a compact
convex set in a locally convex linear space X, and let F be a commuting
family of continuous affine maps of C into itself. Then F has a common
fixed point.

We notice that Markoff-Kakutani theorem has numerous applications.
An example, Kakutan i [1938] has proved that Theorem 7.3 implies
Hahn-Banach theorem. A brief proof of Theorem 7.3 may be found in:
Dugund j i -Grana s [1982], I s t r a t e s cu [1981], Z e i d l e r [1985], and
Taskov i ć [1993].
Some annotations. An extension of Theorem 7.3 was discovered by

Ry l l -Na rdz ewsk i [1966] who based the proof on probabilistic arguments.
The first geometric proof of this extension was given by Namioka -As -
p lund [1967]. A special case of this extension was found by Hahn [1967].
For this also see: Han s e l -Troa l l i c [1976].
Further applications. As an immediate application of A-variation prin-

ciple (Theorem 5.1) we have Tychonoff’s theorem on locally convex spaces in
the following form. This result of Tychonoff is also a special case of Theorem
7.1.

Theorem 7.4. (Tychonoff, [1935]).14 Let D be a compact convex subset in
locally convex linear space E. Then every continuous mapping f of D into
itself has a fixed point in D

Proof. Since D is a convex subset in locally convex space E, from Propo-
sition 5.1, we have that f : D → D is A-variation. The set D is compact in
E, and thus D satisfies the condition of TCS-convergence. Since f is also a
continuous mapping, hence all the required hypotheses in Theorem 5.1 hold.
Applying Theorem 5.1 we obtain that f has a fixed point in D. The proof
is complete.

13History of Markoff theorem. Theorem 7.3 was proved by Marko f f [1936] with
the aid of the Schauder-Tychonoff fixed point theorem. Kakutan i [1938] found a direct
elementary proof of Theorem 7.3 (valid in any linear topological space not necessarily
locally convex), and demonstrated the importance of the result by giving a number of
applications; he also showed that Theorem 7.3 implies the Hahn-Banach theorem in linear
functional analysis. The following result (as an extension) is due to Day [1961] in the
following form: Let K be a convex compact set in a locally convex space and let S be a
left-amenable semigroup of continuous affine maps acting on K. Then there is a common
fixed point under S.

Because every abelian semigroup of left-amenable and since in the formulation of The-
orem 7.3 a commutating family can clearly be replaced by an abelian semigroup, the result
of Day contains the Markoff-Kakutani theorem as a special case.

14Schauder’s report. The paper of Tychono f f [1935] is to present in Zbl. für
Math. 12 (1936) with number 308 personal J. S chaude r who briefs: "On generalizing
a reviewer’s fixpoint theorem the proof of which yields the existence of a fixpoint only
when the space is linear, metric, and locally convex (J. Schauder, Studia Math. 2 (1930),
171–180, Theorem I) the author proved the following...”.
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Annotation. We notice that a different proof of the preceding Theorem
7.4 can be given with Theorem 7.1. In this sense a brief proof of this may
be found in Taskov i ć [2001].

Theorem 7.5. (Mazur [1938], Hukuhara [1950]).15 Let D be a convex subset
in a locally convex space E and let f : D → D be a compact mapping. Then
f has a fixed point in D.

Proof. Since D is a convex subset in E, from Proposition 5.1, we have that
f is an A-variation mapping. Also, it is easy to see that f satisfies all the
required hypothesis in Theorem 5.1. Hence, it follows from Theorem 5.1
that f has a fixed point in D.

On the other hand, as an immediate consequence of Theorem 5.1, we
obtain the following geometrical fact on fixed points.

Theorem 7.6. Let T be a self-map on a topological space X and A : X ×
X → R0

+ be a function with properties: A(a, b) = 0 iff a = b and A(a, c) ≤
A(a, b) + A(b, c) for all a, b, c ∈ X. Suppose that there exists a continuous
function G : X → R0

+ such that

A(x, Tx) 6
∣∣G(x)−G(Tx)∣∣

for every x ∈ X. If X satisfies the condition of TCS-convergence and if
b 7→ A(a, b) is continuous, then T has a fixed point ξ ∈ X.

A brief proof of this statement, based on Theorem 5.1, may be first found
in Taskov i ć [1998]. In connection with this also see: Ta skov i ć [2005].

8. Fredholm and Leray-Schauder alternatives

In this section, first, we apply the technics of maximal elements to the
equation x = λf(x) for some 0 < λ ≤ 1, where f is a compact or completely
continuous operator; first we have from Theorem 6.1 the following ordered
principle.

Theorem 8.1. (Ordering Principle). Let C be a convex set in a linear
topological space Y , with the poset CB,con. If f : C → C is a compact or a
completely continuous operator, then CB,con has at least countable or finite
minimal elements zk ∈ CB,con, with zk 4B,con x for given x ∈ CB,con.

15Fixed points in locally convex spaces. The main results in the text extend to
locally convex spaces and also to some spaces which are not locally convex. Topological
transversality can be proved without local convexity from Grana s [1976]. The fact that
convex sets in locally convex spaces have such a property was proved by Hukuha ra
[1950].

The antipodal theorem of Borsuk was generalized to locally convex spaces by A l tman
[1958a]. Also, Le ray [1950] extended to locally convex spaces the invariance of domain
theorem and applied it to establish in such spaces the Fredholm alternative; another proof
of invariance of domain similar to that given in the text and based on Borsuk’s theorem
will be found in A l tman [1958a]. For more details of this see: K l e e [1960a] and Hahn
[1978].
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As an immediate application of the preceding statement we obtain the
following extension of Leray-Schauder and Fredholm alternatives.
Theorem 8.2. Let C be a nonempty convex subset of a Banach space X
and let f : C → C be a compact or a completely continuous mapping. Then
the equation

x = λf(x) for some 0 < λ ≤ 1,(LŠ)

has at least countable or finite solutions in C.
Proof. Consider the partially ordering set CB,con and let ξk be minimal
elements. Using (LŠ) it also follows from (Co) that we obtain λf(x) 4B,con x
for all x ∈ C and λf(ξk) 4B,con ξk in CB,con and, because ξk are minimal, it
follows that ξk =B,con λf(ξk). Thus, from (Co) we have B(ξk) = B(λf(ξk)),
i.e., ξk = λf(ξk) ∈ C. The proof is complete.
Theorem 8.3. Let C be a nonempty convex subset of a Banach space X
and let f : C → C be a compact or completely continuous mapping. Then
the equation

x = λf2(x) for some 0 < λ ≤ 1,

has at least countable or finite solutions in C.
The proof of this statement is a total analogy with the proof of Theorem

8.2. Thus, this proof we omit.
Annotations. If (LŠ) only holds for some 0 < λ < 1, then the equation

in the following form as

x = λf(x) for some 0 < λ < 1(LŠ)

has at least countable solutions or the equation x = f(x) has at least finite
solutions.

Indeed, if the set solutions of (LŠ) denoted by G, is bounded, then f |C ∩
B(0, r) : C ∩ B(0, r) → C is a compact map, and no x ∈ ∂[C ∩ B(0, r)]
can satisfy the property: there is an x ∈ C ∩ B(0, r) with x = λf(x) for
some 0 < λ < 1 (see: Dugundji-Granas [1982, Theorem 5.1, p. 61].). This
means that, in the second case of finitess, f : C → C has at least finite
fixed points. In this sense, Theorem 8.2 applied to compact or completely
continuous operators yields.
Theorem 8.4. (The Leray-Schauder alternative).16 Let C be a convex sub-
set of a Banach space Y , and assume 0 ∈ C. Let f : C → C be a completely

16The Work of Leray and Schauder. As long ago as 1934 a novel approach towards
fixed point theorems was developed and published by Le ray and Schaude r. Included
in this investigation is the relationship between the solubility of an equation of the type
x− f(x) = 0 and the topological degree at y = 0 of the mapping

x 7→ y = x− f(x)
and the invariance of the topological degree, under continuous deformation of the map
involved. This program was carried out under the assumption that f is defined and
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continuous operator and let

E(f) :=
{
x ∈ C : x = λf(x) for some 0 < λ < 1

}
,

then either E(f) is unbounded set or f has at least finite fixed points in C.

In connection with the preceding, also, we apple the technics of maximal
elements (Theorem 8.2) to the equation y = x − f(x). We have, first, the
following result.

Theorem 8.5. Let C be a nonempty convex subset of a Banach space X
and let f : C → C be a compact or a completely continuous mapping. Then
the equation

z = x− f(x) for every z ∈ C,(Fr)

has at least countable or finite solutions in C.

Proof. Consider the partially ordered set CB,opr and let ξk be minimal
elements. Using (Fr) it also follows from (Cop), for B(t) = t and z = x− y,
that we obtain solutions for the equation (Fr). The proof is complete.

Annotations. On the second condition, we can introduction on C, the
following ordering: x 4 y if and only if z = x− y for some z ∈ C, and x = y
if and only if z = x − y for every z ∈ C. Applying Theorem 6.4 (Minimal
Principle), in this case, we obtain Theorem 8.5.

Theorem 8.6. Let C be a nonempty convex subset of a Banach space X
and let f : C → C be a compact or completely continuous mapping. Then
the equation

z = x− f2(x) for every z ∈ C,(Ap)

has at least countable or finite solutions in C.

The proof of this statement is a total analogy with the proof of Theorem
8.5. Thus the proof we omit.

As an immediate application of the preceding Theorem 8.5, direct, we
obtain the following important result.

Theorem 8.7. (The Fredholm alternative). Let E be an arbitrary normed
space, and let f : E → E be a completely continuous linear operator. Then
the equation

z = x− f(x) for every z ∈ E,
has a unique solution, or the equation 0 = x−f(x) has a nontrivial solution.

continuous on the closure of a bounded open set Q in space and that f(Q) is relatively
compact in space.

Schauder and Leray succeeded in carrying out this program in such a way as to derive
existence theorems for general types of partial differential equations, the second stage of
the operation demanding a great deal of ingenuity and considerable prior knowledge of
more specialized types of partial differential equations.
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On the other hand, as an immediate application of the preceding Theorem
8.6, direct, we obtain the following result.

Theorem 8.8. (Linear alternative). Let E be an arbitrary normed space,
and let f : E → E be a completely continuous linear operator. Then the
equation

z = x− f2(x) for every z ∈ E,
has a solution, or the equation 0 = x− f2(x) has a nontrivial solution.

9. Generalized Peano’s Theorem

Further we give an application of General Schauder fixed point theorem
to differential equations. As a parallel and contrast to the Picard-Lindelöf
theorem we consider the initial value problem of the form as

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(5)

on [t0 − c, t0 + c]. Geometrically, (5) means that we are looking for a curve
which satisfies the differential equation and passes through (t0, y0) as in the
following Figure with y0 = p0. At the end points t = t0 ± c, where x′(t) is
to be interpreted as the appropriate one-sided derivative.

Proposition 9.1. (Peano [1890], Ta skov i ć [2012]). Let there be given
real numbers t0 and y0, and the rectangle of the form as

Qb :=
{
(t, x) ∈ R2 : |t− t0| ≤ a, |x− y0| ≤ b

}
,

where a and b are fixed positive numbers. Suppose that f : Qb → R is
continuous and bounded with the following condition of the form as∣∣f(t, x)∣∣ ≤ K for all (t, x) ∈ Qb,
and fixed K > 0. Set c := min{a,K/b}. Then the initial value problem
(5) has at least countable or finite continuously differentiable solutions on
[t0 − c, t0 + c].

Proof. (Application of Theorem 6.11). In addition to initial value problem
(5), we also consider the integral equation of the form as

x(t) = y0 +

∫ t

t0

f
(
s, x(s)

)
ds,
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and next write this as the operator equation x = T (x), for x ∈ M ⊂ X,
where X := C

(
[t0 − c, t0 + c]

)
, M =

{
x ∈ X : ‖x− y0‖ ≤ b, and ‖x‖ =

maxt0−c≤t≤t0+c |x(t)|
}
. The setM is closed, convex, and bounded in X; also

from this it follows T (M) ⊂ M . Since the operator T is compact,we have
that Tasković fixed point theorem (Theorem 6.11) implies the existence at
least countable or finite solutions x = T (x), x ∈M . The proof is complete.

10. Existence principle for systems of equations

As a simple application of the General Brouwer fixed point theorem, we
will prove an important existence statement for the system of the form as

gi(x) = 0, for i = 1, . . . , n;(6)

where x = (ξ1, . . . , ξn) ∈ Rn. The key for solution of this problem is in the
next boundary condition which we can briefly write in the following form as

n∑
i=1

gi(x)ξi > 0 for all x with ‖x‖ = r.(7)

We notice that this existing problem will play a decisive role in the dis-
cussion of the Galerkin method for monotone operators.

Proposition 10.1. (Solution of system equations (6)). Let ClK(0, r) ={
x ∈ Rn : ‖x‖ ≤ r

}
for fixed r > 0 and x 7→ ‖x‖ a norm on Rn. Let

gi : ClK(0, r) → R be continuous for i = 1, . . . , n. If (7) is satisfied, then
(6) has at least countable or finite solutions x with ‖x‖ 6 r.

Proof. (Application of General Brouwer Theorem). Set g(x) = (g1(x), . . . , gn(x))
and suppose that g(x) 6= 0 for all x ∈ ClK(0, r). Then define

f(x) = −rg(x)/‖g(x)‖,
and, now f is continuous map of compact, convex set ClK(0, r) into itself.
By General Brouwer fixed point theorem (Theorem 6.7) there exist at least
countable or finite fixed points x = f(x). Taking norms, we see that ‖x‖ = r.
Furthermore,

n∑
i=1

gi(x)ξi = −r−1‖g(x)‖
n∑
i=1

fi(x)ξi = −r−1‖g(x)‖
n∑
i=1

ξ2i < 0,

contrary to the preceding fact (7). Thus, we have that g(x) = 0 for countable
or finite x ∈ ClK(0, r). The proof is complete.

11. An Extension of Leray-Schauder Principle

We will now show how to use topological methods, and in particular, the
General Schauder fixed point theorem for continuation with respect to λ-
parameter. In this sense we have the following Leray-Schauder Principle in
the form such as.
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Theorem 11.1. (Leray-Schauder [1934], Tasković [2005]). Let X be a Ba-
nach space. Suppose that the operator T : X → X is compact and that there
exists an r > 0 such that

x = λT (x) with 0 < λ < 1 implies ‖x‖ ≤ r,(8)

then the equation of the form as x = T (x) has at least countable or finite
solutions. (Notice that (8) is trivially fulfilled if the following inequality
holds as supx∈X ‖T (x)‖ <∞).

Proof. (Application of Tasković theorem 6.11). Let X be a Banach space
and T is a compact operator. We define an operator

S(x) =

 T (x) if ‖T (x)‖ ≤ 2r,
2rT (x)

‖T (x)‖
if ‖T (x)‖ > 2r;

and we claim that S : M → M is compact on M :=
{
x ∈ X : ‖x‖ ≤ 2r

}
.

Obviously, S is continuous. To establish compactness, let {xn}n∈N be a se-
quence in M . We consider two cases, namely there is: (a) a subsequence
{yn}n∈N of {xn}n∈N such that ‖T (yn)‖ ≤ 2r for all n ∈ N, and (b) a subse-
quence {yn}n∈N such that

∥∥T (yn)∥∥ > 2r for all n ∈ N.
In case (a), the compactness of T implies that there is a subsequence

{zn}n∈N of {yn}n∈N such that S(zn) = T (zn)→ y as n→∞.
In case (b), one can choose {zn}n∈N so that 1/‖T (zn)‖ → α and T (zn)→

y as n→∞ for suitable α and y, so that S(zn)→ 2rαy as n→∞.
The Tasković fixed point theorem (Theorem 6.11) provides us with at

least countable or finite x ∈ M for which S(x) = x. If
∥∥T (x)∥∥ 6 2r, then

T (x) = S(x) = x. The other case,
∥∥T (x)∣∣ > 2r, is impossible, for otherwise,

S(x) = λT (x) = x, 0 < λ =
2r∥∥T (x)∥∥ < 1,

which forces ‖x‖ = 2r, while the condition (8) requires that ‖x‖ 6 r. The
proof is complete.

Annotations. We notice that by using Theorem 11.1 we can obtain an existence proof for
the stationary Navier-Stokes equations (i.e., stationary movement of a viscous fluid).

12. Global alternative n-person games

The game theory is a mathematical search for the optimal balance of con-
flicting interests, such as between two partners. As such, it is applicable to
a wide variety of situations: social games, economic sompetetion between
organizations, conflicts in nature, and so on. In former, the optimal strate-
gies for both partners turn out to be described by saddle points in 1928 of
John von Neumann.

Let P := (P,4) be a partially ordered set by the ordering relation 4.
The function g : P k → P (k is a fixed positive integer) is decreasing on the
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ordered set P if ai, bi ∈ P and ai 4 bi (i = 1, . . . , k) implies g(b1, . . . , bk) 4
g(a1, . . . , ak).

Let L be a lattice and g a mapping from L2 into L. For any g : L2 → L it
is natural to consider the following property of local comparability, which
means, if ξ ∈ L is comparable with g(ξ, ξ) ∈ L then ξ is comparable with
every t ∈ L.

In this section, the optimal strategies for both partners turn out to be
described by the equalities, whose existence we established in Taskov i ć
[2005]. For example in the following:

Let P := (P,4) be a totally ordered set and let g : P 2 → P be a decreasing
mapping. We consider two players, A and B. Players A and B have available
sets of strategies X ⊂ P and Y ⊂ P , respectively. Each point x ∈ X and
y ∈ Y represents a possible choice by A and B, respectively. If A chooses
x, and B chooses y, then the function (x, y) 7→ max{x, y, g(x, y)} represents
the gain by A and the function (x, y) 7→ min{x, y, g(x, y)} represents the
gain by B. The point ξ ∈ P is called an optimal strategy if the following
equality holds

ξ := max
x∈X,y∈Y

min
{
x, y, g(x, y)

}
= min

x∈X,y∈Y
max

{
x, y, g(x, y)

}
.

In connection with this, we notice that the existence of the preceding
optimal strategy is established in Taskov i ć [2005].

In further, let g : P k → P (k is a fixed positive integer) be a decreasing
function and consider players A1, . . . , Ak with sets of strategies X1, . . . , Xk

in P , respectively. Each point λ(x1) ∈ X1, . . . , λ(xk) ∈ Xk for x1, . . . , xk ∈
X where X is a nonempty set represents a possible choice by A1, . . . , Ak;
respectively. The object (point) ξ ∈ P is called an k-optimal strategy, in this
case, if the following equality holds

ξ := max
λ(x1)∈X1,...,λ(xk)∈Xk

min{λ(x1), . . . , λ(xk), g(λ(x1), . . . , λ(xk))} =

= min
λ(x1)∈X1,...,λ(xk)∈Xk

max{λ(x1), . . . , λ(xk), g(λ(x1), . . . , λ(xk))}.
(G)

In analogous with the preceding facts, the existence of the k-optimal strat-
egy, in the preceding case, we established in Taskov i ć [2005], i.e., if and
only if the following equality holds in the form as

min

{
λ1(a1), . . . , λk(ak), g

(
λ1(a1), . . . , λk(ak)

)}
=

= max

{
λ1(a1), . . . , λk(ak), g

(
λ1(a1), . . . , λk(ak)

)}(Ge)

for some a1, . . . , ak ∈ X. (Intelligibly, in this case initial X is a nonempty
set. This is a game from the facts of chapter two of the book by Taskov i ć
[2005].)
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In connection with the preceding facts and results, if L := (L,4) is a
complete lattice with the local comparability, we have the following n-person
game:

Interpretations. In connection with the preceding, the object (point) ξ ∈ L in (G) is called
a global equilibrium object of the game.

In this sense, for k = n we consider n-players P1, . . . , Pn. Let each player have available a
strategy set consisting of a nonempty set Ki ⊂ L (i = 1, . . . , n). We may regard the components
of pi ∈ Ki (i = 1, . . . , n) for suitable Ki as for the choices of Pi.

Let λi(p) := fi(p1, . . . , pn) ∈ L denote the winnings for Pi for the situation where Pj choose
strategy pj (j = 1, . . . , n). Thus, if all players Pj (j 6= i) choose strategy gj ∈ Kj then Pi
maximizes his winnigs by choosing pi. Then the game has a global equilibrium object if and only
if (Ge) holds.

Further, in the case L := R, as an immediate consequence of the preceding global n-person
games, we obtain well-known main theorem for n-person games of Na sh [1952].

We notice that Nash’s equilibrium point is only a case of the global equilibrium object for
global n-person games.

Roots of algebraic equations as global polynomial equilibrium objects. We note
that, by the application of k-optimal strategy one can simultaneously obtain the upper and lower
bounds of the roots of the following equation

xn = a1xn−1 + a2xn−2 + · · ·+ an(
a1 + · · ·+ an > 0; ai ≥ 0 (i = 1, . . . , n)

)
.

(AE)

As an immediate consequence of (G) and (Ge) we obtain the following statement de facto, for
transversal objects.

Transversal objects. A point ξ ∈ R+ := (0,+∞) is the root (as a transversal object) of the
equation (AE) if and only if the following equality holds

ξ := max
λ2,...,λn∈R+

min

{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+

an

λn−1
n

}
=

= min
λ2,...,λn∈R+

max

{
λ2, . . . , λn, a1 +

a2

λ2
+ · · ·+

an

λn−1
n

}
.

(Ro)

In connection with this, the object (point) ξ ∈ R in (Ro) is called a global polynomial
equilibrium object (point) of the polynomial game (AE).

Interpretations for (Ro). We can consider n-players P1, . . . , Pn. Let each player have avail-
able a strategy set consisting of a nonempty set Xi ⊂ R (i = 1, . . . , n). We may regard the
components of ai ∈ Xi (i = 1, . . . , n) for suitable Xi as for the choices of Pi. The mappings

fi(x) := xi + a1x
i−1 + · · ·+ ai : R→ R

are continuous and represents the loss of Pi if each player Pj chooses the strategy aj ∈ Xj . Then
there exists a global polynomial equilibrium point ξ ∈ R such that (Ro). In this game we
have that g(λ1, . . . , λn) := a1 + a2/λ2 + · · ·+ an/λ

n−1
n !

Applying k-optimal strategy we obtain directly the following equality for positive root of
equation (AE), i.e., for the following transversal sets. Thus we have a new economicaly n-person
game.

Theorem 12.1. (Polynomial n-person game). Let I1, . . . , In be indices sets and θij ≥ 0 be real
numbers which satisfy the following condition∑

ij∈Ij

θij = j − t for j = 1, . . . , n and 0 < t < 1.

Then ζ ∈ R+ is the root (as a global polynomial equilibrium point) of the following algebraic
equation of the form xt = a1xt−1 + · · · + anxt−n ((a1, . . . , an) 6= (0, . . . , 0)) if and only if the
following equality holds

max
Mij

min

Mij ,

 n∑
j=1

aj∏
ij∈Ij M

θij
ij


1/t
 = min

Mij

max

Mij ,

 n∑
j=1

aj∏
ij∈Ij M

θij
ij


1/t
 := ζ.

(Pe)
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Interpretations for polynomial n-person games. Further, we can consider n-players
P1, . . . , Pn. Let each player have available a strategy set consisting of a nonempty set Xi ⊂ R
(i = 1, . . . , n). We may regard the components of ai ∈ Xi (i = 1, . . . , n) for suitable Xi as for the
choices of Pi. The maps

fi(x) := xt + a1x
t−1 + · · ·+ aix

t−i (
(a1, . . . , ai) 6= (0, . . . , 0)

)
are continuous and represents the loss of Pi if each player Pj chooses the strategy aj ∈ Xj . Then
there exists a polynomial equilibrium point ξ ∈ R such that (Pe). In this polynomial n-person
game we have that

g(Mi1 , . . . ,Min ) :=

 n∑
j=1

aj∏
ij∈Ij M

θij
ij


1/t

.

Transversal n-person games. We consider n-players P1, . . . , Pn. Let
each player have available a strategy set consisting of a nonempty compact,
convex set Ki in a topological vector space Ei for all i = 1, . . . , n. Then, for
a bisection (controlling) function g : Rn → R, there exist at least count-
able or finite transversal equilibrium elements ξk ∈ R in the following
form as

ξk := max
λ1,...,λn∈R

min
{
λ1, . . . , λn, g(λ1, . . . , λn)

}
=

= min
λ1,...,λn∈R

max
{
λ1, . . . , λn, g(λ1, . . . , λn)

}
if in addition the following facts are satisfied: 1) all maps λi : K1×· · ·×Kn →
R are continuous and 2) all maps p 7→ λi(p) are convex (if we fix an arbitrary
pi ∈ Ki in p = (p1, . . . , pn)).
Annotations. The number ξk ∈ R represents the loss of Pi if each player

Pj chooses the strategy pj ∈ Kj . If

g(λ1, . . . , λn) := min
pi∈Ki

λi(q1, . . . , qi−1, pi, qi+1, . . . , qn)

then we obtain well-knownNash’s n-person game. The function g : Rn →
R is a controlling function. In a transversal equilibrium point no player
has a reason to change his strategy in the other players keep their strategy
(loss minimization). The following facts are essential as direct consequences
of the Axiom of Infinite Choice and Theorem 6.11:

1) Every transversal n-person game has at least countable or finite solu-
tions (=: transversal equilibrium elements).

2) Every Nash’s n-person game has at least countable or finite solutions
(=: Nash’s equilibrium points).

13. Alternative n-person games

By a multivalued map or a correspodence T : M ⊂ X → 2Y we mean
a map which assings to each point x ∈ M a subset T (x) ⊂ Y . For M = ∅,
let T = ∅. Here 2Y denotes the set of all subsets of Y . Every singlevalued
map R : X → Y can be identified with a multivalued map of the preceding
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form by setting T (x) = {R(x)} for all x ∈ X. Thus T (x) is a singleton,
consisting of the image point R(x).

The point ξ is called a fixed point of T iff ξ ∈ T (ξ). Naturally, T (M) denotes the union of
all sets T (x) over x ∈M , i.e.,

T (M) =
⋃
X∈M

T (x).

The graph of T is defined to be the set G(M) = {(x, y) : x ∈ M, y ∈ T (x)}. An important
example of a multivalued map is the solution operator T of the equation S(y) = x and S : Y → X,
which assings to each point x ∈ X the set T (x) of solutions y ∈ Y . If there is no solution, then
T (x) = ∅. This T is called the generalized inverse operator of S. The theory of multivalued
maps has the important applications in game theory and mathematical exonomics.

Further, let T : M → 2N be a multivalued map, where M and N are topological spaces. If
A ⊂ N , the preimage T−1(A) is defined maturally enough to be the set of all x ∈ M with
T (x) ∩ A 6= ∅. The map T is called upper semicontinuous iff T−1(A) is closed for all closed
sets A in N . The map T is called lower semicontinuous iff T−1(A) is open for all open sets A
in N .

Annotatons. For a single valued map T :M → N upper semicontinuous and lower semicon-
tinuous is identical with sontinuous. If M ⊂ X and N ⊂ Y , where X and Y are Banach spaces
or more generally, locally convex spaces, then M and N are to have the induced toplogy. Open
and closed in definitions then means relatively open and relatively closed, respectively. For closed
subsets M and N , however relatively closed and closed in X and Y are the same. Similarly, for
open subsets M and N , relatively open and open in X and Y are the same.

Under the preceding conditions, the map T is upper semicontinuous if and only of for every
x ∈ M and every open set V in N with T (x) ∈ V , there exists a neighborhood U(x) such that
T (U(x)) ⊂ V .

Also, the map T is lower semicontinuous if and only if for every x ∈M and every neighborhood
V (y) of every y ∈ T (x), there exists a neighborhood U(x) such that T (u) ∩ V (y) 6= ∅ for all
u ∈ U(x).

Proposition 13.1. Let X be a locally convex space and let K be a nonempty
compact convex subset of X. If T : K → 2K if the set T (x) is nonempty
convex for all x ∈ K and the preimages T−1(y) are relatively open with
respect to K for all y ∈ K, then T has at least countable or finite fixed
points.

Proof. We regard X as a real space. Since K is compact and the set T−1(y)
is open in K, there are finitely many points y1, . . . , yn such that

K =
n⋃
i=1

T−1(yi).

Let {f1, . . . , fn} be a partition of unity subordinate to this cover. Set in
the following that is K0 = Cl(conv{y1,. . . , yn}) and

p(x) =

n∑
i=1

fi(x)yi for all x ∈ K0;

hence, if X0 = span({y1, . . . , yn}), then K0 ⊂ X0 and diam(X0) < ∞. The
mapping p is continuous and p(K0) ⊂ K0. For fi (i = 1, . . . , n) is continuous
and for all x ∈ K0 we have 0 ≤ fi(x) ≤ 1 and

∑n
i=1 fi(x) = 1. We show

that p(x) ∈ T (x) for all x ∈ K0. Indeed, if fi(x) 6= 0, then the fact that
sup(fi) ⊂ T−1(yi) immediately implies that x ∈ T−1(yi), so that yi ∈ T (x)
and T (x) is convex.
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Applyng Theorem 6.7 to the mapping p : K0 → K0 provides us with the
existence at least countable or finite fixed points xk = p(xk), i.e., xk ∈ T (xk).
The proof is complete.

Variational Inequalities. In this section we apply some forms state-
ments of Generalized Brouwer fixed point theorem for the proof of the fol-
lowing Hartman-Stampacchia variational inequality in the form as:〈

T (x0), x0 − x
〉
≥ 0 for all x ∈ K.(Va)

Theorem 13.1. Let K be a nonempty, compact and convex set. If the map
T : K ⊂ X → X∗ is continuous, where X is a locally convex space and X∗ is
the corresponding dual space with the strong∗ topology, then the variational
inequality (Va) has at least countable or finite solutions xk ∈ K.

We notice that if X is a Banach space, then the strong∗ topology on X∗
is the same as the usual norm topology on X∗.
Proof of Theorem 13.1 If (Va) is false, then for every x0 ∈ K there

is an x ∈ K such that the following inequality holds as 〈T (x0), x0 − x〉 < 0.
We define the multivalued mapping S : K → 2K by

S(x0) :=
{
x ∈ K : 〈T (x0), x0 − x〉 < 0

}
;

thus, the set S(x0) is nonempty for all x0 ∈ K. Furthermore, S(x0) is
convex. We show that the set S−1(x) is relatively open in K. First of all,
we have

S−1(x) =
{
x0 ∈ K : 〈T (x0), x0 − x〉 < 0

}
,

hence, let {xα}α∈I be a Moore-Smith sequence inK\S−1(x) with xα → y, so
that 〈T (xα), xα−x〉 ≥ 0 for all α ∈ I. Since T is continuous, T (xα) converges
to T (y) in the strong∗ topology, so 〈T (y), y − x〉 ≥ 0, and y ∈ K\S−1(x).

Thus K\S−1(x) is relatively closed and S−1(x) is relatively open. By
Proposition 13.1 there exists at least countable or finite fixed points xk ∈
S(xk). This leads to the contradiction 〈T (xk), xk − xk〉 < 0. The proof is
complete.

Our goal is to give Browder Fixed Point Theorem for multivalued maps
with boundary conditions. It is the following result.

Theorem 13.2. (Browder [1968], Tasković [2005]). Let K be a nonempty
compact convex set in a locally convex space X. If the map T : K → 2X is
upper semicontinuous, if the set T (x) is nonempty closed and convex for all
x ∈ K such that one of the following two boundary conditions is satisfied:
(1’) for every x ∈ ∂K there are points y ∈ T (x) and u ∈ K, and a number
λ > 0 such that y = x + λ(u − x); (2’) for every x ∈ ∂K there are points
y ∈ T (x) and u ∈ K, and a number λ < 0 such that y = x+λ(u−x). Then
T has at least countable or finite fixed points.

Proof. We assume that (1’) holds and that T has no fixed point. Let
M(x) = {x}\T (x) for all x ∈ K. THe set M(x) is closed, convex, and
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nonempty. Since 0 3M(x), Hahn-Banach theorem for convex sets says that
there is a functional w(x) ∈ X∗ such that (w(x), z) < 0 for all z ∈M(x). By
choosing a suitable cover of M(x), we can find an open set U(M(x)) such
that M(x) ⊂ U(M(x)) and (w(x), z) < 0 for all ∈ U(M(x)). We define

N(w(x)) =
{
v ∈ K : (w(x), z) < 0 for all z ∈M(v)

}
,

the map T is upper semicontinuous, so that for every xi ∈ K there exists
a neighborhood V (xi), relative open in K, such that M(v) ⊂ U(M(xi)) for
all v ∈ V (xi). Thus V (xi) ⊂ N(w(xi)). The set K is compact, and hence
covered by finitely many of the V (xi), so K =

⋃n
i=1 V (xi). Let

r(x) =

n∑
i=1

fi(x)w(xi) for all x ∈ K,

where {f1, . . . , f −N} is a partition of unity subordinate to this cover. The
map r : K → X∗ is continuous whenever X∗ has the strong* topology.
By Theorem 13.1 there axist at least countable or finite x ∈ K such that
(r(x), x − v) ≥ 0 for all v ∈ K. Let x ∈ int(K). For every z ∈ X there is
then an ε > 0 such that x±εz ∈ K. From the preceding facts ∓(r(x), z) ≥ 0
for all z ∈ X, which says that r(x) = 0 in contradicion with (r(x), z) < 0
for all z ∈ M(x). Also, for x ∈ ∂K, by (1’) there exists y ∈ T (x) such that
(r(x), x− y) < 0 for x− y ∈M(x). This again contradicts (r(x), x− y) ≥ 0.
This proves statement in the case (1’). For the case of boundary condition
(2’), simple replace the "<" sign with the ">" sign we have the proof, also.
The proof is complete.

Theorem 13.3. (Generalized Kakutani theorem). Let K be a nonempty
compact convex set in a locally convex space X, let the set T (x) be nonempty
closed and convex for all x ∈ K, and let the multivalued map T : K → 2K

be upper semicontuous, then T has at least countable or finite fixed points.
Observe that Kakutani fixed point theorem (Theorem 7.3) as and the preceding Generalized

Theorem of Kakutani (Theorem 13.3) are special cases of Theorem 13.2. In the case of Theorem
13.3, we have T (x) ⊂ K. Therefore we can choose the point u = y for a fixed y ∈ T (x), and
λ = 1. For the proof see: Ta skov i ć [2001, p. 443].

We notice that Kakutani proved this statement for X = Rn. The generalization is due to Ky
Fan [1952] and G l i ck sb e r g [1952]. Newertheles we will look at some important special cases
of it here. In this sense, Tychonoff Fixed Point Theorem it follows directly from Theorem 13.3,
as and the following two consequences:

Corollary 13.1. (Generalized Theorem of Tychonoff). Let T : K ⊂ X →
K be continuous, where K is a nonempthy, compact, convex set in locally
convex space X. Then T has at least countable or finite fixed points.

Corollary 13.2. (Global Schauder Fixed Point Theorem, Tasković [2005]).
Let M be a nonempty closed bounded and convex subset in the reflexive
separable Banach space X. If the map T : M → M is weakly sequentally
continuous (i.e., if xn ⇀ x as n → ∞, then also T (xn) ⇀ T (x)), then T
has at least countable or finite fixed points.
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Proof. Let X have the weak topology. Then X becomes a locally convex
space. The set M is weakly compact. Since X is separable, the weak
topology on M is metrizable. Therefore T is weakly continuous. Now the
conclusion follows from Generalized Tychonoff Fixed Point Theorem.

Corollary 13.3. (Tasković, [2005]). Let M be a nonempty closed convex
set in the Banach space X, T :M → 2M is upper semicontinuous, T (M) is
relatively compact, and the set T (x) is nonempty closed and convex for all
x ∈M , then T has at least countable or finite fixed points.

Proof. Set K = Cl(conv(T (M))), so K ⊂ M , and aplly Theorem 13.3 to
the restriction T : K → 2K . The proof is complete.

Transversal reasonable pricing systems. We consider an economic system with n pro-
ducers P1, . . . , Pn, who simultaneously produce goods and sell them to other prodicers. Let Pi
produce ai goods Gi per unit of time (e.g., per month). Let pi be the price for one Gi. The
proces are to be variable. We want to find a reasonable pricing system, p = (p1, . . . , pn). For
the end, we assume that we have the following transversal represents control (or function
control) p 7→ g(p1, . . . , pn) as an interpretation of some nature fact (for example, as an economic
interpretation). In the case for function control in the form

g(p1, . . . , pn) := piai =

n∑
j=1

pjDij(p),(Fc)

and Dij(p) ≡ 0 for i = 1, . . . , n we have the following economic interpretation: The number
Dij(p) is the demand by produces Pi for good Gi. Thus pjDij is equal to the price which Pi
must pay for Gj if Pi wishes to purchase the desired amount. Further piai is equal to the income
which Pi realizes from the sale of Gi. Now (Fc) says that all procedure use all of their income to
obtain more goods. Let p > 0 mean that pi ≥ 0 for all i and p 6= 0.

Use Theorem 13.3 (Generalized Kakutani theorem) we have following re-
sult: If the nonnegative continuous functions p 7→ Dij(p) satidfy (Fc) for all
p > 0, and if the given fixed numbers ai are all positive, then there exist at
least countable or finite pricing systems pk > 0 such that

aj −
n∑
i=1

Dij(Pk) ≥ 0, j = 1, . . . , n,

furthemore, of the sign ">" holds in this inequality for some r, then pr = 0.
Interpretation. The economic interpretation of these results is as fol-

lows. There is at least countable or finite pricing systems for which the
supple are at least as great as the demand. The price of goods in excess
supply is zero.
Existence of a transversal reasonable pricing system: In connec-

tion with the preceding, if pi : X → R (i = 1, . . . , n) and X is a the function
control p 7→ g(p1, . . . , pn) is a decreasing function such that

p1(b1) = · · · = pn(bn) := ξ = g(ξ, . . . , ξ)

for some b1, . . . , bn ∈ X if and only if the following equality holds in the
form as

ξ := min
p1,...,pn∈R

max
{
p1, . . . , pn, g(p1, . . . , pn)

}
=
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= max
p1,...,pn∈R

min
{
p1, . . . , pn, g(p1, . . . , pn)

}
.

This result follows direct from the facts in Tasković [2005]. The object
(point) ξ ∈ R in this equality is called global equilibrium pricing of the
global princing system game.

Interpretation: There is a solution ξ ∈ R of the global pricing system game for which the
supply is at least as great as the demaned.

Theorem 13.4. (Global alternative n-person game). If L := (L,4) is a
complete lattice with the local comparability and if g : Ln → L (n ∈ N is a
fixed number) is a decreasing mapping, then there exist at least countable or
finite global equilibrium objects ξk ∈ L.

This statement is an immediate consequence of the facts (G) and (Ge)
and the well-konwn fact: that every decreasing mapping on complete lattice
has at least countable or finite fixed apices.

Further, adequate with these facts, use Theorem 6.7 (General Brouwer
theorem) we obtain direct the following solutions for the global n-person
games.

Theorem 13.5. (General n-person game). Let Ki be a compact convex
nonempty set in a topological vector space Ei for all i = 1, . . . , n. If gi :
Rn → R defined as gi(p) := gi(λ1(p1), . . . , λn(pn)) and λi(pi) : Ki → R, are
continuous for i = 1, . . . , n, then there exist at least countable or finite global
equilibrium objects ξk ∈ R.

Interpretations. We consider n-players P1, . . . , Pn. Let each player have available a trategy
set sonsisting of a nonempty set Ki ⊂ Ei (i = 1, . . . , n). We may regard the components of
pi ∈ Ki (i = 1, . . . , n) for suitable Ki as for the choices of Pi.

Let λi(p) := fi(p1, . . . , pn) ∈ R denote the winnings for Pi for the situation where Pj choses
strategy Pj (j = 1, . . . , n). Thus, if all players Pj (j 6= i) choose strategy qj ∈ Kj , then Pi
maximizes his winnings by choosing pi. Then the global n-person game has at least countable or
finite global equilibrium objects (points) ξk ∈ R.

Further, as an immediate consequence of the preceding general n-person games, we obtain
well-known main theorem for n-person games of Na sh [1951].

Main theorem for n-person games of Nash. Now we consider n-players P1, . . . , Pn.
Supose, each player Pi has a strategy set Ki available. We assume: Ki is a compact, convex,
nonempty set in a topological vector space Ei for all i = 1, . . . , n. The maps fi : K1×· · ·×Kn → R
are continuous, represents the loss of Pi if each player Pj chooses the strategy pj ∈ Kj , and all
maps p 7→ f(p) are convex if we fix an arbitrary pi in p = (p1, . . . , pn). Then there exists a Nash
equilibrium point, i.e., there exists a point (q1, . . . , qn) with qj ∈ Kj for all j = 1, . . . , n such
that for all i = 1, . . . , n

fi(q1, . . . , qn) = min
pi∈Ki

fi(q1, . . . , qi−1, pi, qi+1, . . . , qn).

Moreover, from Theorem 13.5 it follows that every n-person game has at least countable or
finite Nash equilibrium points!

Indeed, let the function control g(f1, . . . , fn) := fi(p1, . . . , pn) for i = 1, . . . , n. Since the
equation fi(p) = minti∈Ki

fi(p) for p := (q1, . . . , qi−1, pi, qi+1, . . . , qn) has at least one solution
(as the continuous function fi on the compact set Ki), it follows that then hold all conditions
in Theorem 13.5, thus applying the preceding general n-person game to this n-person game we
obtain that there is at least countable or finite Nash equilibrium points of the game.

Annotation. We notice taht this fact has a simple interpretation. In a Nash equilibrium
point no player has a reason to change his strategy if the other players keep their strategy (loss
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minimization)! Also, if Ei = Rni and

Ki :=
{
pi ∈ Ei : 0 ≤ pi,k ≤ 1; k = 1, . . . , ni

}
,

then the pi,k can be viewed as the probability with which player Pi makes his kth decision.

Further, we obtained an alternative minimax statement by using a fixed
point statement for multivalued maps.

Theorem 13.6. (Tasković, [2012]). Suppose that A and B is a nonempty,
closed, bounded, convex set in a reflexive Banach space X and Y respectively.
Let f : A × B → R be a function such that x 7→ f(x, y) is lower semicon-
tinuous and quasi-convex on A for all y ∈ B, and y 7→ f(x, y) is upper
semicontinuous and quasi-concave on B for all x ∈ A. Then the function f
has at least countable or finite saddle points (xk, yk) such that

min
x∈A

max
y∈B

f(x, y) = max
y∈B

min
x∈A

f(x, y) ≡ f(xk, yk).(9)

Proof. (Application of Proposition 13.1). We set a = minx∈A maxy∈B f(x, y)
and we set that b = maxy∈B minx∈A f(x, y). First, we show that b exists.
By the equality (9), there is, for every y ∈ B a point z(y) ∈ A with

f(z(y), y) = min
x∈A

f(x, y).

We set h(y) = −f(z(y), y). Then we have −f(x, y) ≤ h(y) for all x ∈
A. We show below that the function h : B → R is lower continuous and
quasiconvex. Therefore b = −miny∈B h(y) exists. We set At = {y ∈ B :
h(y) ≤ t} and

Bt(w) =
{
y ∈ B : −f(z(w), y) ≤ t

}
;

then for t ∈ R fixed, it follows that At ⊂ Bt(w) for all w ∈ B. Hence, Bt(w)
is closed and convex.

We show that h is lower semicontinuous, i.e., the set At is closed for all
t ∈ R. Indeed, if (yn) is any sequence in At with yn → w as n → ∞, then
yn ∈ Bt(w). Hence w ∈ Bt(w), so that h(w) ≤ t. Thus w ∈ At.

We show that h is quasi-convex, i.e., At is convex for all t ∈ R. Indeed,
suppose v, y ∈ At. Set w = λv + (1− λ)y for 0 ≤ λ ≤ 1. Then v, y ∈ Bt(w)
and hence w ∈ Bt(w), so w ∈ At. We notice that existence of a is established
similarly. The inequality b ≤ a follows immediately from

min
x∈A

f(x, y) ≤ min
x∈A

max
y∈B

f(x, y) = a.

We show that a ≤ b with the aid of the fixed-point result in Proposition
7. To this end we provide X and Y with the weak topology. Let s = a− ε
and t = b+ ε for ε > 0. We construct a map T : A×B → 2A×B by setting

T (x, y) =
{
(u, v) ∈ A×B : f(u, y) < t, f(x, v) > s

}
.
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That T (x, y) 6= ∅ follows from minx∈A f(x, y) ≤ b and maxy∈B f(x, y) ≥
a. The set T (x, y) is convex, by conditions of statement. On the other hand,
the preimage

T−1(u, v) =
{
(x, y) ∈ A×B : f(u, y) < t, f(x, v) > s

}
is weakly relatively open in A × B. For the sets in the following adequate
forms as {

x ∈ A : f(x, v) ≤ s
}

and
{
y ∈ B : f(u, y) ≥ t

}
are closed and convex by the conditions of statement, and hence are weakly
closed with respect to A, B. Therefore the complementary sets{

x ∈ A : f(x, v) > s
}

and
{
y ∈ B : f(x, y) < t

}
are weakly open. By Proposition 13.1, there is at least countable or fi-
nite fixed points of T , i.e., (x, y) ∈ T (x, y). Thus we obtain the following
inequalities in the form as

a− ε = s < f(x, y) < t = b+ ε,

and since ε > 0 is arbitrary, we have that a ≤ b. Thus a = b and the
conclusion follows from the definition that (xk, yk) ∈ A×B is a saddle point
of f iff

f(xk, y) ≤ f(xk, yk) ≤ f(x, yk)
for all (x, y) ∈ A×B. The proof is complete.

14. Peano theorem for inclusions

Such differential inclusions are mathematical models of dynamical systems
for which we have no complete description. We consider the initial value
problem

x′(x) ∈ F (x(t), t), x(t0) = x0,(Pp)

where t ∈ R and x ∈ Rn. Here, F (x, t) associates to the state x of the
system at time t, the set of feasible velocities. Examples for ths are given by
large system in biology, economics, and the social scienci. We are looking
for a solution x : R→ Rn.

Theorem 14.1. (Generalized Peano Theorem). We are given t0 ∈ R and
x0 ∈ Rn, where (x0, t0) ∈ U . Let F : U ⊂ Rn+1 → 2R

n be a lower semicon-
tinuous multivalued map on the region U such that F (x, t) is a nonempty
closed convex set in Rn for all (x, t) ∈ U . Then the value problem (Pp) has
at least countable or finite C1-solutions x = x(t) in a neighborhood of t0.

Proof. By Michael’s selection theorem there is a continuous selection f :
U → Rn of F . So it is sufficient to consider the classical initaial value
problem

x′(t) = f(x(t), t), x(t0) = x0.(10)
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Now the local result (10) follows from the classical Generalized Peano
theorem (Proposition 9.1). The proof is complete.

Annotation. As a reference for differential inclusions, we recommedn
Aub in-Ce l l i n a [1983]. There one also finds interesting applications to
optimal control and viability theory.
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