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Abstract. The most famous of many problems in nonlinear
analysis is Schauder’s problem (Scottish book, problem 54) of the
following form, that if C is a nonempty convex compact subset of a
linear topological space does every continuous mapping f : C — C
has a fixed point?

The answer we give in this paper is yes. In this connection
this paper proves and extends the Markoff-Kakutani theorem to ar-
bitrary linear topological space as an immediate consequence of the
preceding solution of Schauder’s problem.

During the last twenty years this old conjecture was inten-
sively examined by many mathematians. For sets in normed spaces
this has been proved by Schauder and for sets in locally convex spaces
by Tychonof.

In this paper we prove that if C' is a nonempty convex compact

subset of a linear topological space, then every continuous mapping
f :C — C has a fixed point.

On the other hand, in this sense, we extend and connected
former results of Brouwer, Schauder, Tychonoff, Markoff, Kaku-
tani, Darbo, Sadovskij, Browder, Krasnoselskij, Ky Fan, Reiner-
mann, Hukuhara, Mazur, Hahn, Ryll-Nardzewski, Day, Riedrich,
Jahn, Eisenack-Fenske, Idzik, Kirk, G6hde, Granas, Dugundji, Klee
and some others.
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1. Introduction and history

The problem of fixpoint for a given mapping f|X is very easy to
formulate: the question is if some &€ € X verifies f(£) = €. It is interesting
that many problems are reducible to the existence of fixpoints of certain
mappings. ‘

Brouwer’s theorem of fixed point is one of the oldest and best known
results in mathematics.

Schauder’s theorem of fixed point is a generalization of Brouwer’s
theorem to infinite dimensional normed linear spaces. Schauder’s theorem
states that every continuous mapping of a compact convex subset of a
normed linear space into itself has a fixed point.

Schauder’s problem (Scottish book, problem 54) is the following form:
Does every continuous mapping f : C — C of a nonempty convexr compact
subset C in arbitrary linear topological space have a fized point?

For locally convex spaces the answer is yes from Tychonoff [Ty].
Naimely, in 1935, Tychonoff had shown that if C' is a nonempty con-
vex compact subset of a locally convex space, then every continuous map
f:C — C has a fixed point.

Schauder’s theorem further was extended by Hukuhara [Hu], Mazur
[Mz], G6hde [G8], Fan [Fa], Dugundji [Dj], Granas [Gr], Klee [Ke], Kirk
[Ki], Idzik [Iz], Riedrich [Ri], Eisenack-Fenske [Ef], Jahn [Ja], Browder
[Bo], Darbo [Da], Sadovskij [Sa], Krasnoselskij [Kr], Reinermann [Re] and
many others.

Literature on applications of the Schauder theorem to nonlinear
problems is extensive. The first result was proved by Markoff [Ma] with
the aid of the Schauder-Tychonoff fixed point theorem.

Kakutani [Ka| found a direct elementary proof of the Markoff theo-
rem. Extensions of Markoff-Kakutani theorem is due to Day [Dy], Hahn
(Ha], and Ryll-Nardzewski [Ry].

In this paper we give the complete solution of the preceding well
known Schauder’s problem fixed point. Also, this solution is answering a
question of S. Ulam. In connection with this, in this paper, we extend
the Markoff-Kakutani theorem to arbitrary linear topological spaces as an
immediate consequence of the preceding solution of Schauder’s problem.

On the other hand, in this sense, we extend and connected for-
mer results of Brouwer, Schauder, Tychonoff, Markoff, Kakutani, Darbo,
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Sadovskij, Krasnoselskij, Browder, Ky Fan, Reinermann, Hahn, Ryll-Nar-
dzewski, Granas, Dugundji, Hukuhara, Mazur, Riedrich, Jahn, Eisenack-
-Fenske, Day and some others.

2. Main results and other facts

In connection with the preceding, let X topological space, let
T:X — Xandlet A: X xX — R} :=[0,400) be a function. A
topological space X satisfies the condition of CS-konvergence if there
exists a sequence {z,},eN in X such that A(zn,,Zpy1) — 0(n — 00) im-
plies that {z,},cN has a convergent subsequence.

On the other hand, a function T satisfies the condition of general
A-variation if there exists a continuous function G : X — RY and for
any z € X, with 2 # T'z, there exists y € X \{z} such that

(AG) A(z,y) < |G(z) - G(y)]

for some function A : X x X — RS with property A(a,c) < A(a,b)+A(b,c)
for all a,b,c € X.

We are now in a position to formulate the following general state-
ment, which is an extension to former results of Brouwer, Schauder, Ty-
chonoff and some others.

Theorem 1. (General A-variation Principle). Let T be a general A-
variation mapping of topological space X into itself, where X satisfies the
condition of CS-convergence. If y— A(z,y) is continuous and if A(z,y)=0
iff t =y, then T has a fized point £ € X.

Proof. Asis well known, the use of Zorn’s lemma may be replaced by
an induction argument (involving the Axiom of Choice) along the following
lines. In this sense defines

R={QC X :A(z,4)<|G(x) - G(y)| forallz,y€ Q}.

It is easy to verify that (R, <) is a partially ordered set (asymmetric
and transitive relation), where @1 < Q9 iff @1 C Q2. Namely, in view of
Zorn’s lemma, there exists a maximal set M C R such that

(1) A(z,y) < |G(z)— G(y)| forallz,y€ M.
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Denote by « the greatest lower bound of the set {G(z) : = € M},i.e,,
a:=inf{G(z): = € M}. Thus there exists a sequence of points {a,},eN
from M such that {G(an)},eN is decreasing and G(an) — a (n — 00). It
follows from (1) and from

A(an,an+1) < ‘G(an) - G(aﬂ-l-l)l

that A(an,@n41) — 0 (n — 00). This implies (from CS-convergence) that
its sequence {@,},eN contains a convergent subsequence {a,(x) }reN With
limit £ € X.

For any z € M, if G(z) # «, then for sufficiently large k we have the
following inequalities

A(E,z) < A(€, an(r)) + Alaniy, z) < A6 any) + |G(2) = Glanmy)l-

If G(b)=a for some be M, then we obtain in a similar way A(,b)=0.
For any z € M, if G(z) # a, then we have

A(2,an(r)) < |G(2) = Gan(r))|

and thus by the continuity of G and A, we obtain that A(z,£) < |G(z)—
—G(€)|. This means that £ € M and that there is no point y € X such
that £ # y and A(€,y) < |G(E) — G(y)|, because such y would belong to
M. Then it must be so that A(,T¢) =0, 1. e. , £ = T¢. This completes
the proof.

Further, we notice, the set C' in linear space is convex if for 2,y € C
and X € [0,1] implies Az + (1 — A) y € C. The metric space (X, p) is called
convex (metric convex) if for any two different points z,y € X there is
a point z € X (z # z,y) such that

(2) plz,y] = plz, 2] + plz, 9] -

In connection with this, if C C X convex set of a normed linear space
X, then C also and metric convex set with p[z,y] = ||z — y||, because for
any two different points z,y € C there is a point z := (z + y)/2 € C
(z # z,y) such that (2).

Lemma 1. Let (X,p) be a metric space. If C is a metric convex
set in X and if map T : C — C with the property that there is a point
a € C which is not fized point, then there exists a continuous function
G:C— R?i_ such that T s a general p-variation mapping.
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Proof. Let a € C be a fixed element such that ¢ # Ta and let z € C
be an arbitrary point with z # a. Since C is a convex (metric convex) set
in X, it follows from definition that for ¢ € C and for all z € C'\{a} there
exists a point y # a,z in C such that pla,z] = pla,y] + ply, z]. Hence, we
have, also and the following inequality

(3)  37'plz,y] < plz,y] = pla,z] ~ pla,y] for all z € C\{a}.

On the other hand, analogous to the preceding construction, we also
have the following inequality .

(4) 37'plz,y] < plz,y] = p[Ta,z] - p[Ta,y] for all z € C\{Ta}.

Also, immediately to join and take away the expression p[Ta,a] on
the right side of inequality (3) we obtain the following equivalent inequality
with (3), that is

(3" 37" ple,y] < pla,z] + p[Ta,a] - (pla,y] + p[Ta,a])

for all z € C\{a}.
From inequalities (3’) and (4) define function G : C — RY such that

| 3p[Ta,=] forz = a,
(5) G(z) = { 3(pla, z] + p[Ta,a]) forz € C\{a}

Then, clearly, from (3’), (4) and (5) we have for any z € C there
exists y #  in C such that p[z,y] < |G(z) — G(y)|. Thus, for any z € C
with 2 # Tz there exists y € X\{z} such that (AG), where A(z,y) :=
= plz,y]- Hence, it follows that T is a general p-variation mapping. The
proof is complete.

We are now in a position to formulate our the following famous
application.

Corollary 1. (Brouwer, [Br]). Suppose that C is a nonempty con-
vez, compact subset of R™, and that T : C — C is a continuous mapping.
Then T has a fized point in C.

Proof. From the preceding Lemma 1, we have that T : C — C' is
a general A-variation mapping, where A is a metric on R™. The set C is
compact in X, and thus C satisfies the condition of CS-convergence.
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From the preceding remarks, it is easy to see that T satisfy all the
required hypotheses in Theorem 1. Hence, it follows from Theorem 1 that
T has a fixed point in C.

Let X,Y be topological spaces. A continuous map F: X - Y isa
called compact if F(X) is contained in a compact subset of Y. If X and
Y are Banach’s spaces and T : D(T) C X — Y, then T is called compact
if T is continuous and T maps bounded sets into relatively compact sets.
Compact operators play a central role in nonlinear functional analysis.
Schauder’s theorem is a generalization of Brouwer’s theorem to infinite
dimensional normed linear spaces, with the preceding fact.

We can now formulate Brouwer’s theorem in a manner valid for all
normed linear spaces.

Corollary 2. (Schauder, [Sc]). Let C be a nonempty, closed, boun-
ded, conver subset of the Banach space X, and suppose T : C — C is a
compact operator. Then T has a fized point in C.

Also, we have and an alternate version of the preceding Schauder
fixed point theorem.

Corollary 3. (Schauder, [Sc]). Let C be a nonempty, compact, con-
vez subset of a Banach space X, and suppose T : C — C is a continuous
operator. Then T has a fized point.

This corollary is the direct translation of the Brouwer fixed point
theorem to Banach spaces.

Proof of Corollary 3. Since C is a convex subset of Banach space,
from Lemma 1, we have that 7' : C — C is a general A-variation, where
A(z,y) = ||z — y||- The set C is closed in X, and thus C is a complete
space. It is easy to see that T satisfy all the required hypoteses in Theorem
1. Hence, it follows from the Theorem 1 that 7" has a fixed point in C

Corollary 4. (Banach Contraction Principle). Let (X, p) be a com-
plete metric space and T : X — X contractive. Then T has a unique fized
point &, and Tz — &(n — o0) for each z € X.

Proof. From the condition of contraction, it is easy to see that T
is general p-(bounded) variation. Preciselly, every contraction mapping is
bounded variation and continuous. Hence, it follows from the Theorem 1
that T has a fixed point.
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At the and, we notice, also in this paper, we extend and results of
Darbo, Browder, Sadovskij, Tychonoff, Krasnoselskij, Ky Fan, Dugundj,
Granas, Kirk and Caristi, Kakutani and some others. In connection with
this, proofs are the analogous to the proofs of the preceding statements of
Brouwer, Schauder and Banach.

3. Answer to Schauder’s problem

From the preceding statement and some further facts we are now in
the position to formulate the following fact which is an extension of the
former results of Brouwer, Schauder, Tychonoff, Mazur, Hukuhara, Ky
Fan, Browder, Sadovskij, Darbo, Krasnoselskij, Reinermann, Dugundji,
Granas, Klee, Idzik, Riedrich, Eisenack-Fenske, Jahn and some others.

Theorem 2. (Answer is yes for Schauder’s problem). Let C be a
nonempty convex -compact subset of a linear topological space X and sup-
pose T : C — C s a continuous mapping. Then T has a fized point in
c .

To prove this statement, the following facts are essential.

Lemma 2. Let X be a metric space with the metric p. If Y C X is
a (complete or not complete) subspace and if T is a map of Y into itself,
then there exists a continuous function G : Y — RS such that T is a
general p-variation mapping.

Proof. Case 1. (Y is not complete). Let {,},cN be a Cauchy
sequence in Y which has no limit. Define map ¥ : Y — RJ by ¥(2) =
= limj o o[z, ;] for z € Y.

Given z € Y, let n be the smallest positive integer such that

6) < 3ple, o] V(@) — Ysn) < [U(2) ~ V()

We notice that then ¥(z,) converges to zero while ¥(z) > 0. Fur-
ther, given z € Y with n so determined, define y := z,, and let G(z) :=
= 3¥(z). Then, from (6) we have for any z € Y there exists y # z in
Y such that plz,y] < |G(z) — G(y)|. Thus, for any z € C with z # Tz
there exists y € Y \{z} such that (AG), where A(z,y) := p[z,y]. Hence, it
follows in this case that T is a general p-variation mapping.
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Case 2. (Y is complete). Let {z,},en be a Cauchy sequence in Y
which has limit £ € Y (= Cl1Y) and let £ # T¢. Define map ¢ : Y — RS by
o(z) = p[z,€] for z € Y\{¢}. Given z € Y (z # £), let n be the smallest
positive integer such that ‘

(7) 0 < 2plz, 2] < 9(2) = $(zn)

i.e., which is equivalent with inequality

(8)  0< 3056 < pla) + ol TE] - ((zn) + 4IE,TE])

On the other hand, for z = £, let n be the smallest positive integer
such that

©) 0 < 30lon,] < pl6, 7€) — plan,TE].

From inequalities (8) and (9), for given z € Y with n so determined,
define y := z,, and define function G:Y — R‘_)F such that

| [ 3p[z,TE] forz =¢,
S { 3(p(z) + pl€, TE)) forz € Y\{€} .

Then, in this case, from (8), (9) and (10) we have for any z € Y
there exists y # z in Y such that p[z,y] < |G(z) — G(y)|. Thus, for
any ¢ € Y with 2 # Tz there exists y € Y\{z} such that (AG), where
A(z,y) = p[z,y]. Hence it follows in this case that T is a general p-varia-
tion mapping. The proof is complete.

To prove Theorem 2 and the following fact is essential.

Lemma 3. Let X be a linear space. If C is a convez set in X and
if T is a map of C into itself, then there exists a continuous function
G:C — R(_)*_ such that T is a general A-variation mapping for some
function A:C x C — RS.

Proof. Consider the convex set C of linear space X as a quasi-metric
space with the quasi-metric g, where ¢ : C x C' — Rﬂ, is defined by

_ 0 forz =y,
(11) q(z,y) = { max{K(z), K(y)} forz # z,
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for a strictly convex function K : C — Rg. Then it is easy to see that ¢
is a quasi-metric, i.e., that for all z,y,2 € C we have : ¢(z,y) = q(y,z),
q(z,2) < ¢(z,y) + q(y,2),q9(z,y) > 0 and that z = y implies ¢(z,y) = 0.

On the other hand, if ¢(z,y) = 0, i.e., if K(z) = K(y) = 0, then
since K is a strictly convex function, we obtam

o=w K("”;y)zo,

which is a contradiction. Consequently z = y = 5%1, i.e., z = y. Thus
¢(z,y) = 0 implies ¢ = y, i.e., ¢ is a metric on C.

Applying Lemma 2 (or Lemma 1) to this case, we obtain then that
there exists a continuous function G : C — RS such that T is a general
g-variation mapping. The proof is complete.

Proof of Theorem 2. From Lemma 3 there exists a continuous
function G : C — RY such that T is a general A-variation mapping where
A(z,y) := q(z,y) and g defined in (11).

Since T is a continuous mapping, the function z — A(z,Tz) =
= ¢(z,Tz) is a continuous function. Also and the function y — A(z,y) =
= ¢(z,y) is continuous. The set C' is a compact in space X and thus C
satisfies the condition of CS-convergence.

It is easy to see that T satisfies all the required hypotheses in The-
orem 1. Hence, it follows from the Theorem 1 that T has a fixed point
£ € C. The proof is complete.

4. Some further applications °

As an immediate corollary of the preceding solved problem (Theorem
2), we obtain one of the basic results in nonlinear functional analysis which
is an extension of the Markoff-Kakutani theorem.

Theorem 3. Let C be a nonempty convex compact set in a linear
topological space X and let F be a commuting family of continuous affine
maps of C into itself. Then F has a common fized point £ € C.

Proof. Let Fix (T') be a fixed point set of a map T. By Theorem 2,
Fix (T) is a nonempty set for each T' € F. Moreover, Fix (T') is compact
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being closed in the compact set C, and Fix (T) is convex because T is
affine. _

We must prove that N{Fix(T") : T € F} is a nonempty set; because
each set Fix (T') is compact, it is sufficient to show that each finite inter-
estion :

Fix (Tt,...,T,) =[] Fix (T3)

i=1

is nonempty. We proceed by induction on the number n € N of T, the
result being true for n = 1. Assume that Fix(7T},...,T;) is nonempty
whenever ¢ < n, and consider any n members T1,...,7T, of 7. Bacause F
is commuting, we find that

Tn[Fl.X (T], eae ,Tn—l)] C Fix (Tl, s ,Tn—l_) 5

for if z € Fix (T1,...,Tn~1) then T3[Ty(z)] = Th[Ti(z)] = Tn(z) for each
i < nsoTn(z) € Fix(Th,...,Th-1).

Since Fix (T1,...,Tn—1) is a nonempty compact convex set, we con-
clude from Theorem 2 that Fix (T1,...,Ty) is a nonempty set. This com-
pletes the induction and the proof.

On the other hand, as an immediate consequence of Theorem 1, we
obtain the following geometrical fact on fixed points.

Theorem 4. Let T be a self-map on a topological space X and A :
: X x X — RS be a function with properties : A(a,b) = 0 iff a = b and
A(a,c) < A(a,b) + A(b,c) for all a,b,c,€ X. Suppose that there ezists a
continuous function G : X — Rg_ such that

A(z,Tz) < |G(z) — G(Tz)|

for every x € X. If X satisfies the condition of CS-convergence and if -
b— A(a,b) is continuous, then T has a fized point £ € X.
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