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Dedicated to Professor Dusan D. Adamovié on his 70th birthday.

Abstract. In this paper we continue the study and consider-
ations of some minimax statements on ordered sets.

1. Introduction

John von Neumann’s minimax theorem can be stated as follows: if
X and Y are finite demensional simplices and f is a bilinear function on
X x Y, then f has a saddle point, i.e.,

glea}cggpf(x,y) = ;nelggleaa;f(w,y) -

There have been several generalizations of this theorem. The result
of Sion [7] is the best representive of von Neumann’s theory.

In this paper we prove some general minimax theorems on partially
ordered sets which are other type. On these theorems role of saddle point.
play transversal point (see: Taskovié [9]).

In connection with the preceding, the following our former results
allows us to prove the basic statements for further facts.

Let (P, <) be a partially ordered set by the ordering relation <. The
function g : P¥ — P (k is a fixed positive integer) is decreasing on the
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ordered set Pif a;, b; € P and a; < b; (¢ = 1,...,k) implies g(b1,...,bx) <
= g(al ceo ,(I,k)-

Let L be a lattice and g a mapping from L? into L. For any g : L? —
L it is natural to consider the following property of local comparability,
which means, if J € L is comparable with g(J,J) € L then J is comparable
with every ¢ € L.

We begin with the following essential statements from Taskovié [10].

Lemma 1. (Sup-Inf Inequalities). Let (L <) be a lattice and let g :
L? — L be a decreasing mapping. If L has property of local comparability,
then for arbitrary functions p: X — Landg:Y — L (X and Y are
arbitrary nonempty sets) the following relations are valid:

(5) €< g(&,8) implies €& < sup{p(x),q(z),9(p(z),q(¥))},

and

(D 9(€,6) 2 & implies inf{p(z),q(z),9(p(z),q(y))} 2 &,

for allz € X and for all y € Y. Hence, in particular, £ = g(§,€) implies

(U)  inf{p(2),q(v), 9(p(c), a(¥))} = € = sup{p(=),q(y), 9(p(z), 4(v))} ,

foralze X and for allye Y.

A brief proof of this statement based on the former facts may be
found in Taskovié [10].

An immediate consequence (special case for totally ordered sets) of
the preceding Lemma 1 is the following its form.

Lemma la. (Minimax Inequalities). Let P be a totally ordered set
by the order relation <, and let g : P2 — P be a decreasing mapping. Then
for functions p, g : X — P (X is a nonempty set) the following relations
are valid:

(a) £ 2g(&€) implies & < max{p(z),q(yv),9(p(z),q(¥))},

and

(b) 9(€,€) 2 £ implies min{p(r),q(s),9(p(r),q(s))} 2 &,
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for all z,y,r,s € X. Hence, in particular, £ = g(&,&) implies

(¢) min{p(r),q(s),g(p(r),q(s))} < € < max{p(z),q(y), 9(p(z), q(¥))} ,

forall z,y,r,s € X.

We notice, quantifying the assertions (S), (I) and (U) we obtain the
following interesting conclusions (which, incidentally are their equivivalent
formulations for X = Y'):

(ES) £ =xg(§,¢&) implies 61Z,i;lefxsup{p(w),q(y),g(p(z),q(y))},

and

(EI)  g(&,6) & implies xs;lepxinf{p(w),q(y),g(p(w),q(y))}if;

and g(&, &) = € implies the following inequalities:

(EU) sup inf{p(z),q(y),9(p(x),q(y))} 2 £ X

z,yeX
= z}ynefx sup{p(z),q(y), 9(p(z), q(y))} -

Remark. The above statements (Lemma, 1) still hold when g : L* —
L (k is a fixed positive integer) is a decreasing function. The proof is quite
similar; the assertions corresponding to (S) and (I) look as follows:

(S E=xg(& ..., implies € X sup{A1,..., A, 9(A1,---,20)}

and

(I,) 9(6776) = E Zmphes inf{Alv"',’\k,g(/\l,"'aAk)} = 5

for arbitrary functions A1,...,Ax : X — L, where X is an arbitrary
nonempty set. Also, in particular, £ = g(¢,...,£) implies

(U’) inf{’\la"'a’\k,g(’\la"'a’\k)} 2EX Sup{’\lr"))‘kag(Al,-'- 7’\k)}

for arbitrary functions A; € X (2 = 1,...,k), where X is an arbitrary
nonempty set. To simplify the notation we will give the proof only for the
case k = 2.
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2. Sup-Inf Equalities

With the help of the preceding statements we now obtain the funda-
mental fact of tihis section. With this statements we precision, correction
and expand our the former results of new minimax theory (Theorems 1
and 3 in [11]).

Theorem 1. (Sup-Inf Theorem). Let (L <) be a lattice and let g :
: L? — L be a decreasing mapping. If L has property of local comparability,
then for some arbitrary functionsp : X — L andq: X — L (X is an
arbitrary nonempty set) the equality

(SD) max inf{p(z),q(y), 9(p(z),e(v))} =

= min sup{p(z),q(y),9(p(z),q(y))}
z,yeX
holds if and only if

(i) inf{p(=0), ¢(%0), 9(»(20), 9(%0))} = sup{p(70), ¢(20), 9(p(70), 4(20))}

for some xg, yo,To, 20 € X.

Proof. This follows at once form (EU) of Lemma 1 and the trivial
fact that the strict inequality cannot hold in (EU).

In this sense, the necessity of the condition being trivial, we only
prove its sufficiency. If (Si) holds, then we have the following relations

(1) p(r0),4(20), 9(p(70), 9(20)) = 5 = ¢ X p(20), 9(¥0), 9(P(20), 4(%0))
for s := sup{p(ro),¢(20), 9(p(70),4(20))}, 1 := inf{p(20),q(¥0), 9(p(z0),

q(%0))}, and for some zg,yo,70,20 € X. Since g : L? — L is decreasing,
from (1) we obtain

(1) 9(i,2) = g(s,5) 2 g(p(r0),4(20)) X s =1 X
= g(p(wo),q(yo)) 2 g(s,8) = g(i,i) ’

ie, ¢ =s = g(i,7) = g(s,s). Applying Lemma 1 (case (U)) from local
comparability we have

- inf{p(z), 9(y), 9(p(x),q(¥))} = i = s < sup{p(z),q(¥), 9(p(z), q(v))}
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for all z,y € L. Therefore, we have (SI). The proof is complete.

An immediate consequence (special case) of the preceding statement
is the following principle.

Theorem la. (Minimax Principle). Let P be a totally ordered set
by the order relation <, and let g : P2 — P be a decreasing mapping. Then
for some arbitrary functionsp: X — P and ¢: X — P (X is an arbitrary
nonempty set) the equality

(MM) Jnax min{p(z),4(y), 9(p(2),9(v))} =

= min max{p(z),q(y), 9(p(z),q(y))}
z,y€X
holds if and only if

(Mm) p(20) = q(yo) := € = g(£,£) for some zo,y0 € X .

Proof. Applying Theorem 1 we obtain that (MM) is an equivalent
with (Si), i.e., since P is a totally ordered set the equality (Si) is in the
following form

min{p(z0), ¢(30), 9(p(z0), a(30))} = max{p(ro), a(20), ¢(p(ro), a(0))}

for some totally comparable elements p(zo),q(¥o),9(p(0),q(v0)),p(r0),
¢(zo) and g(p(ro), ¢(20)) on P. Hence, we get that p(zo) = ¢(yo) = p(r0) =
= ¢(z0), i.e., from (1) we have £ := p(z0) = ¢(yo) = ¢(§,€), i.e., (Mm).
The proof is complete.

The statement above still holds when g : P¥ — P (k is a fixed
positive integer). The proof is quite similar. Therefore, let (P, <) be a
totally ordered set by the order relation <, and g : P¥ — P (k € N) be a
decreasing mapping. Then, the equality

k i e R =
(U ) Al,?.r‘lgi(epmln{Ab ,)\k7g(,\1, , Ak)}
= Al,.IEi)\I;EPma‘X{/\I’ ceey /\k,g(/\l, . )‘k)}

holds if and only if
M(a)=---= Ak(ak) =& =g(,...,§) forsome aj,...,ap € X,

where \; : X — P(i = 1,...,k) are arbitrary functions and X is a
nonempty set.
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We remark that when X = P, p(z) = = and ¢(y) = y Theorem la
reduces to that of our the following former result.

Corollary 1. (Taskovié, [10]). Let P be a totally ordered set by the
order relation <, and let g : P> — P be a decreasing mapping. Then the
equality

max min{z,y,9(z,y)} = min max{z,y,9(z,y)}
z,y€P z,yeP

holds if and only if there is £ € P such that g(£,€) = €.

In connection with the preceding, we note that we can give an exten-
sion of the preceding Theorem 1, as a direct consequence of the preceding
facts, in the following sense.

Theorem 2. (General Sup-Inf Theorem). Let (L,=X) be a lattice
and let g : L* — L be a mapping. Then for some arbitrary p: X — L and
g:X — L (X is an arbitrary nonemptu set) the following equality holds

(87) Jnax inf{p(z),q(y), 9(p(z),q(y))} =

= min sup{p(z),q(y),9(p(z),4(v))}
z,y€X
if and only if the following inequalities hold

(DI) inf{p(z),q(y), 9(p(=),q(y))} X inf{p(20),q(%0),9(p(20), q(v0))} =
= sup{p(7o), 9(20), 9(P(70), 9(20))} = sup{p(z),q(y),9(p(z),9(y))}

for some zo,yo,70,20 € X and for all z,y € X.

On the other hand, if L is a totally ordered set, then condition (DI)
an equivalent with the following equality

nax min{p(z),q(y), 9(p(z),q(y))} = JEE}( max{p(z),q(y),9(p(z),q(y))} -

Also, in connection with the preceding equality (Uk), if g : P¥ — P
(k is a fixed positive integer) is not decreasing mapping, we can extension
equality (Uk). In this sense, if g : P¥ — P (k is a fixed positive integer)
some arbitrary mapping then equality (Uk) holds if and only if the following
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inequalities hold

min{A1, ..., Ak, 9(A1,- - Ak)} X
< min{A(a1),...,Ae(ak),g(A1(a1),. .., Ak(ak))} =
= max{A1(b1), .-, Ak(bk), g(A1(b1), - .., Ak(br))} =X
< max{Ay,... s A G( A1y, Ak)}

for some ay,bq,...,a5,bp € X, where \; : X — P (i = 1,...,k) are
arbitrary functions and X is a nonempty set.

On the other hand, the next result follows form the preceding state-
ments.

Corollary 2. Let L be a lattice with the order relation <. Then for
some arbitrary mappings p: X — L and ¢ : X — L (X is an arbitrary
nonempty set) the following equality holds

max inf{p(z),q(y)} = Join sup{p(z), ¢(y)}

if and only if the following inequalities hold

inf{p(z),q(y)} % inf{p(z0), ¢(30)} = sup{p(76), 9(20)} = sup{p(z),q(y)}

for some zo, Yo, 70,20 € X and for all z,y € X.

We note, in the preceding statements (as in Corollary 2) we can
defined the preceding functions p,q : X — L and different sets, in sense
that p: X — Land ¢:Y — L (X and Y are arbitrary nonempty sets).
Then the preceding statements hold too. In this sense, for some arbitrary
functions f; : X; — L(i = 1,...,k) the following equality holds

max inf{fi(z1),..., fi(ze)} =

z1€X1,.., ok €Xg
= min sup{f1($1),---,fk($k)}

21€X1,...,xk€EXg

if and only if the following inequalities hold

inf{fl(xl), e ,fk(illk)} j inf{fl(al), ey fk(ak)} =
= sup{f1(b1),-- -, fe(bs)} = {fi(z1), .-, fu(@k)}

for some a;,b; € X; (¢ =1,...,k)and forall z; € X; (i =1,...,k).
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In this part of this section, we show that the existence of a separa-
tion in the preceding sense, is essential for applications of the preceding
statements. This is a separation for the preceding equalities of Minimax
type.

In this sense we give a characterization of general variational equal-
ity. With this result we precision, correction and expand our the former
statement of separation (Theorem 4 in [11]). It is the following result.

Theorem 3. (Statement of Separation). Let L be a lattice with the
order relation <, and with local comparability. Then for some arbitrary
mappingsp: X > Landq:Y — L (X andY are two arbitrary nonempty
sets) the following equality holds

(IS) Max p(z) =Min q(y)

if and only if there exists a decreasing function g : L? — L such that the
following inequalities hold

(PQ) p(z) 2 9(p(2),9(v)) < q(y)

forallz € X and y €Y, and if there is £ € L such that the {N p(X) and
ENq(Y) are nonempty sets.

Proof. Necessity. Let the einequalities (PQ) hold and let, from the
conditions, there exist points zo € X and yo € Y such that £ = p(z¢) =
= q(yo)- Thus, we obtain the following inequalities and equality of form
(from Lemma 1)

inf{p(z),q(y),9(p(z),9(y))} = € = g(&,€) < sup{p(z),q(y), 9(p(x),q(y))}

for some zg € X and 9o € Y, and for all z € X and y € Y. This means,
from Theorem 1 and from (PQ), that the equality (MM) holds, which give
the equality (IS) of this statement.

Sufficiently. Assume that equality (IS) holds. Thus, there is £ € L
such that p(z) 2 € < g(y)forallz € X andy € Y, where p(zo) = q(yo) = ¢
for some zo € X and yo € Y. If a decreasing function ¢ : L? — L defined
by ¢(s,t) = £, then, directly, we obtain inequalities (PQ). The proof is
complete.

At the end of this section, based on the preceding statements, as an
immediate consequence we have the following fact.
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Corollary 3.Let P be a set totally ordered by the order relation <,
and let g : P? — P be a decreasing mapping. Then the following equality
holds

Ty = pppaeey)

if and only if there is £ € P such that g(£,£) = &.

3. Sup-Inf Inequalities

We give now some immediate applications of the preceding state-
ments to sup-inf inequalities. b _

As an immediate consequence of Lemma 1a we obtain the following
inequalities.

Lemma 3. Let P be a totally ordered set by the order relation <,
and let g : P?> — P be a decreasing mapping. If for some arbitrary mapping

fiP?— Pis f(§,€) 2 &, and f(€,€) X g(§,€), then

(S1) f(& &) X max{p(z), ¢(y), 9(p(z),q(y))}

for allz,y € X, where p,q: X — P and X is an arbitrary nonempty set.
Quantifying the precedintg assertion (Sf) we obtain the following

conculsion that f(&,€) <X € and f(€,€) < g(&, &) implies
1(&:6) 2 min max{p(z), a(v),9(p(2),4(4))} -

With the following statements we precision, correction and expand
our the former results of Sup-Inf Inequalities (Theorems 6, 7 and 8 in [11]).

In connection with this, we now obtain the fundamental fact of this
section, which is essential for inequalities.

Theorem 4. (Sup-Inf Inequality). Let (L,=X) be a lattice with zero
and unit, and let A,B : X xY — L (X and Y are arbitrary nonempty
sets). Then for arbitrary mappings a,c : X — L and b,d : Y — L with
a(z),b(y), A(z,y) < ¢(z),d(y), B(z,y) forallz € X and y € Y, the fol-
lowing inequality holds

(N) __inf_ supfa(e),b(v), A(,9)} £ sup inf{e(s), d(y), B(z,)}

, zeX,y€
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if and only if the following inequality holds

(on) sup{a(z),b(y), A(e,y)} 2 inf{c(z),d(y), B(z,y)}

forallz € X andy€Y.

Proof. Since inequality (OI) holds for all z € X and y € Y, directly,
quantifying this inequality we obtain the preceding inequality (IN). On the
other hand, if (IN) holds, we assume that inequality (OI) not hold. Then
there is some zg € X and yo € Y such that

a := inf{c(z0), d(y0), B(z0, ¥0)} < sup{a(zo),b(¥0), A(zo,%0)} := B ,

which a contradiction with inequality 8 < inf{c(z),d(y), B(z,y)} for all
¢ € X and y € Y, i.e., with 8 < a. The proof is complete.

As an immediate consequence of the preceding statement we obtain
the following statement.

Theorem 4a. Let L,<) be a lattice with zero and unit, and let
AB: X xY — L (X and Y are arbitrary nonempty sets). Then for
arbitrary- mappings a,c: X — L and b,d Y — L with a{z),b(y), A(z,y) =
< ¢(z),d(y), B(z,y) forallz € X andy € Y, the following inequality holds

peind  supia(e),b(y), Az, 9)} < S sup{c(z), d(y), B(z, )}

if and only if the following inequality holds

(S8) sup{a(z),b(y), A(z,y)} = sup{c(z),d(y), B(z,y)}

forallze X andy€eY.

At the end of this section, we give a separation of statement for
separation of the preceding inequalities. :

Theorem 4b. (Separation of Inequalities). Let L be a conditionally
complete lattice with the order relation <, and let the functionsc: X — L
and b : X — L (X and Y are two arbitrary nonempty sets) satisfies the
inequality b(y) <X c(z) for all z € X and y € Y. Then the following
inequality holds

(NT) Inf b(y) X Sup ()
yeY zeX
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if and only if there exist functions A,B : X XY —» L,a: X — L and
d:Y — L such that the following inequalities hold

(NT) a(z) 2 A(z,y) 2 b(y) X c(z) X B(z,y) 2 d(y)

forallz € X and forallye Y.
Proof. Let the inequality (NT) holds, and let « ::Iél}f; b(y) and
Y

B :=Sup c(z). Defined functions A(z,y)=a(z)=a and B(z,y)=d(y)=p4
zeX

we obtain, directly, that inequalities (NI) hold. On the other hand, since L
is conditionally complete if inequalities (NI) hold, from Theorem 4 and the
inequality (OI), we directly obtain the inequality (IN), i.e., the inequality
(NT) of this statement.

Finally, we give the following characterization a min-sup (max-inf)
inequality via finite sets in the following form.

Theorem 5. Let S be a conditionally complete lattice by the order
relation X, and f,g: X XY — S (X and Y are nonempty sets) such that
z — f(z,y) has a minimum on X and y — g(z,y) has a mazimum on'Y .
Then the inequallity

(2) min sup f(z,y) X max 1nf g9(z,y)
z€X yeY €Y z

holds if and only if for any two finite sets {z1,...,z,} CX and {y1, ..., yn} C
C Y there exist 1o € X and yo € Y such that

@) . f(wo,wk) 2 9(ziyo) for 1<i<n, 1<k<m.

Proof. Let the inequality (2) holds. Then there exist zo € X and
yo € Y such that

f(zo,yx) = sup f(zo,y) X inf g(z,y0) = 9(zi,%0)
yey .’L‘EX

forall:=1,2,...,nand forall kK = 1,2,...,m. This means that (3) holds.
Conversely, according to this condition, from (3),

(4) sup f(zo, k) X | mf g(w“yo)
1<k<m
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holds for any two finite sets {z1,22...,z,} C X and {y1,%2...,ym} C Y.
Since § is a conditionally complete lattice, from (4) we have
sup sup f(zo,yx) = inf inf f(zi,90) -
m<p<Card ¥ 1<k<m ( ) n<p<Card X 1<ikn ( )
Hence we obtain the following inequality

< inf
:1615 f(zo,y) 2 ;gxg(:v,yo) ,

which is an equivalent with the inequality (2). The proof is complete.
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