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A REMARK CONCERNING ZEROS OF ONE
CLASS OF POLYNOMIALS

D. M. Simeunovié

Abstract. In this paper the distribution of zeros of a class of
real polynomials is considered. In some cases the intervals, each one
containing one zero, are determined with more accuracy.

1. One considers in [2] the polynomial
(1) P(z)=ap+a12+ a2’ 4+ -+ a,2" (n>3)

with coefficients ay satisfying the conditions

(2) ax>0(k=0,1,2,...,n)and 0 < L« B ... In=2 Inot
a az Qn-1 Qn

or more generally

Ap—1
an

% @n-2

ay

lax| > 0 (k=0,1,2,...,n) and 0 < )

< <--<

?

a2 An-1

where next theorems are proved.
A) Ifar, >0(k=0,1,2,...,n) and if
a

(3) >4 (k=1,2,...,n-1),

Ak—10k41
the polynomial (1) has only simple real negative zeros, one in each of the
intervals

2 2 2 2a,_ 2a,—
(32) (_ﬂ,o), (_ﬂ,_ﬂ)’...,(_ G 1,_M)_
a1 az 11 an Qn—1
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B) Ifar >0 (k=0,1,2,...,n) and if

a?
—kE >92 (k=1,2,...,n-1),
Qk—1Ckt1
the polynomial (1) has no zeros in the domain
T

. 2 .
C) If lag| >0 (k =0,1,...,n) and of

~% Sarg{z} <

2
aj

—F | 2>5 (k=1,2,...,n—1),
Ak-10k41 ]

the polynomial (1) is different from zero at the boundary of every circular
ring

Qp—

vE < |zl < V5
and has one zero inside each one of them.

2. In this paper we shall consider the polynomial (1), with coeffi-
cients ay satisfying, in addition to (2), the conditions

(k=12,3,...,n)

ak—2
k-1

1
ak

2
aj

(4)

where s is a constant.

The theorem A) holds for s = 4 and the theorem B) holds for s = 2.

The purpose of this paper is to establish some conditions on the
coefficients ax for which 1) some, or all, of zeros of the polynomial (1)
will be real and negative also for the values of the constant s < 4, and
2) intervals containing zeros of the polynomial (1) in the case s > 4 are
determined with more accuracy.

Let us first make a constatation.

If the coefficients of the polynomial

——>s (s>1) (k=12,...,n-1)
Gk—10k+1

Fs(z)=ap+ a1z + az? + azz® (ax > 0; £=10,1,2,3)

satisfy condition
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F3 has one real negative and two complex zeros.

If . -3, -2 # 3, F3 has also one real negative and two complex

aia3 7 apaz
Zeros. .
Lo 4 3 ; — _ a2
If e T e =3, B3 has a triple real negative zero z = e

Having in mind the preceding constatation about F3, we conclude
that for the value s < 3 the polynomial (1) has not necessarily all zeros
simple, real and negative. In order to have, in the polynomial (1), all zeros
simple and negative, there must be s > 3 in (4). In relation to that we
shall demonstrate next theorems.

Theorem 1. Ifin (1) ax >0 (k=0,1,2,...,n) and if

2 2 2 2
a a az_ ar 10
(5) > 2 >..> =2 5 ol > —
gy ~ Q103 Op—30p—1  Gpn_o0dy, 3

the polynomial (1) has at least n — 2 real negative zeros, at least one in
each of the intervals

2 2 2 2an-3 20
(6) (_ﬂ,o)’(_ﬂ,_ﬂ),...,(_m,_m)_
ay az ai An—-2 an-3

Theorem 2. If in (1) a3 >0 (k=0,1,2,...,7) and if

2 2 2 2
a a a a 10
(7) > 2 >..> 2>l >
apaz ~ aia; Up-3Gn-1  Gp—28n, 3
and further
2 2
a_ a;_ 1
(7&) 0< n—2 _ n—1 <=,
Qp-30n-1 Ap—-20p 5

the polynomial (1) has all zeros real and negative, one in each of the in-

tervals
EHNEE BE
01’ ’ az’ ai ’ ’ an—Z’ an_3 ’

(8) <_3ai2, _ 2an—3) , (_ 3an-1 : _3(ln—2) . 1)

2an 2an_1

) For n = 3 one takes a_1 = 0 in (6) and (8).
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Proof of Theorem 1. As in 2], consider the polynomial

2 Z"

A V4
- 14 =4 — 4.y —— >
(9) Q(Z) + T t T1T2 t + T72...Tq (n - 3)

where 0 < 7y < 79 < --- < 1, and moreover

(10) 2222...27‘”_12 T >3
™ T9 Tn—2 Tn—1
Let
T T r
(11) '—2"=3+Cl7 _3=3+C2,---, = :3+Cn_1,
71 T2 Tn—1
with
(12) ' 612022"'ch—1>0"

The modulus of the k-th term in (9) is maximal for 7y < |2| < rg41
(k =1,2,...,n — 1). For these values of z, the moduli of the terms of
the polynomial (9) continuously increase from the initial term 1 to the
maximal one, then decrease from the maximal term to the last one [1]
(volume I, part I, problem 117).

Let us first consider the case when n > 3 in (9). Let (ri72...7%)7 1
-(—z)* be the maximal term in (9) for z = —z (z > 0). One then obtains
from (9)

—k T z? z3
Q(—x)(Tng ...’I‘k)(—:l,‘) =|1- + - Feee
Tk+1 Te+1Tk+2  Th41Tk+2Tk43
(13) (=1)n* i
. + — - —_—
Tk+1Tk+2Tk+3 """ Tn
Tk TETEk—1 k TeTk—-1-.-T1
_? —_xZ _..._|_(_1) —:tk ,
with

Q(—z)(rir2 ... Tk)(——:z:)—k >

2 3
(14) >1-— 4% z L

Tk41 Tk+1Tk+2 Te+1Tk4+2Tk+3 T
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For z = 2r, (k = 1,2,...,n — 3), having in mind (11) and (12), one
obtains from (14)

(15) Q(=2rk)(r17r2. ..7',C)(—-21'k)"c >
1 27 _1_ ( 27 2 27'k+1 27 3 Thtl
2 Tk+1 + 2 7'k+1) ( Tky2 ) B <"'k+1) (Tk+2> ( )
_1_ 2 _]; 2 2 2 2 ( ) 1 )
2—3+Ck+2 (3+Ck) (3+Ck+1)_(3+0k) 3 + k41 (3 + ckt
12 1/ 2 )\ 1 2 _\_1 2 5
5_3+Ck+§(3+ck) T2 (3+6k+1) 27 3+Ck 5_( )

If we put

2

(16) 310 - ko
% -+ zz = h(tk)
we obtain from (15)
(17) Q(=2rk)(r1rs - ..rk)(—2'rk)_k > h(t).
The function h(tx) has zeros u; = _34_101@, up = 2 and uz =

’—3“"1405 with A(tx) > 0 for tx < 2. The condition # < 2, by (16), reduces

to 3+C < 2, wherefrom one obtains ¢, > . Now, by (12), conditions (11)
reduce to

T T - T 10
(18) 2>2y..y iy ho>

TL T2 Tn-2  Tn-1 3

When conditions (18) are satisfied, with r; > 0, for ¢ = 2r,,_, one
obtains from (13)

(19) Q(=2rn_2) (1172 .. . Tn2)(=2rp_2)k) =2 >
1 2rpg 1 (21»,,_2)2 (2rn_1) 1 2rpy 1 (rn_2)3
= - = > = - = :
2 Tn—1 * PANE . Tn 2 Tn-1 + 2 \Tpy >0
For n = 3, one obtains from (19)

(20) Q(—2r1)(r1)(-2r1)"1 > 0
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Having in mind (15), (17), (19) and (20), we conclude that
(21)  Q(=2rp)(rirz...ri)(=2r)* >0 (k=1,2,...,n—2).

As Q(0) > 0 and as by (21) Q(-2r1) < 0, Q(=2r2) > 0,...,(=1)""%
-Q(~2r,—2) > 0, we conclude that the polynomial (9) has at least n — 2
real negative zeros, at least one in each of the intervals

(22) (—2T1, 0)) (_2T2a _2T1)7 Tt (—2rn—25 _2rn—3) ’2)

if conditions (18) are satisfied and r; > 0.
Dividing (1) by ao one obtains the polynomial

P(z) 1 22 2"
ao =l+gtat taw
a1 a2 an
which can be written in the form
P(z) 1 22 2"
(23) o Tt mtaattan s
a1 ay a2 ai a2 an
If putting in (23)
- P
(232) B gy Doz B2l BB g
aj (15) an aop

one should obtain the polynomial (9). Conditions (18) then reduce to
(5) and the intervals (22) reduce to (6), which completes the proof of
Theorem 1.

Proof of Theorem 2. Let us consider the polynomial (9) with
Ty > 07

(24) By l8y ety Ty D
ry T T2 Thn-2  Tn-1 3
and
(24a) gt ™ 1
Tn-2 Tn—1 5

2) For n = 3 the intervals (22) reduce to (—271,0).
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From (24) and (24a) one obtains

Tn—2 Tn-1 i
Tp—1  Tn 500

Under conditions (24) relations (21) hold. For k = n — 1 and z =
2r.—1, by (24) and (25), one obtains, from (13)

3 3 —(n-1)
(26) Q <—§T‘n_1) (7‘17‘2 .. Tn—l) (__2_7'71,—1) Z
1_57‘7},—1 érn—-Q _ﬁ(rn—2)2(rn—3) >l_§.7'n_1+
3 2 7, O9rp_1 27 \Tn_1 Tne2/) 3 2 7T,
VUSSR NE AR o LS
9\ 7, 3

> — = .
—3 18 10 500 125 1500

For k = n and ¢ = 37y, there follows from (13)

(27) Q (—-grn) (rirg...7Ty0) (—-grn)_n > % .

We see, from the polynomial (9) and the relations (21), (26) and (27),
that Q(0) > 0, Q(=2r1) < 0, Q(=2r3) > 0, ...,Q(~2r,_2)(-1)""2 > 0,
Q (—%rn_1> (=)' >0,Q (—%Tn) (=1)* > 0, wherefrom we conclude
that the polynomial (9) has only simple real negative zeros, one in each of
the intervals

(=2r1,0), (=27r9,—2r1), -+, (—2rp—g, —2rn_3),
3 3 3
: (28) ('_57'71—13_‘27'71—2) ) ("‘57'7” _57'71—1> 3)

when conditions (24), (24a) are satisfied and 71 > 0.

By (23) and (23a), conditions (24) and (242) reduce to conditions
(7) and (7a), and intervals (28) to intervals (8), by which the proof of
Theorem 2 is completed.

3 For n = 3 intervals (28) reduce to intervals (—2ry, 0), ( 512, —27‘1), (—%Ts, %rz),
and intervals (8) reduce to intervals (— Zag ,0), (— Sar) 2an ), ( a2 —'-)

1 ay 2a3?' 2ag
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Theorem 3. Ifin (1) ar>0(k=0,1,2,...,n) and if

2
(29) —2>442 (h>0), (k=1,2,...,n—1),
Ak-10k41

the polynomial (1) is different from zero in each of the intervals

(30) _@they 2aka) g, o1y,
77 a

Proof. Consider the polunomial (9) where r; > 0 and where

(31) T/;+124+2h (h>0), (k=1,2,....,n~1),
k
If dividing (9) by ;55— (z # 0), one obtains
(32) Q(Z)(Tl’rz e Tk)z_k =
1 z 2 on—k
=zt e —" |4
2 Tk+1 Tk4+1Tk4+2 Tkt+1Tk+2 -+ Tn
+ (2+—+’"’°’"’° 1 ++Wk—z1—kﬁ)

Let z = |2|e% (0 < @ < 27). Then the real part in the first bracket,
at the right hand side of (32), is

2 n—k
(33) A:l-{-ﬂ 030+Lcos20+---+ 2] cos(n — k)6
2 T Th+1Tk+2 Tk41Tk42 -+ Tn
and the real part in the second bracket at the right hand side of (32) is

1 c0520+---+f'—k%lcosk0 }

_1 TkTk—
(34) B= 2+ 2] cos 0+ 22

We shall prove that
A+B>0
for every 6 and every z for which

(35) ok < lfl < @4k, (k=1,2,...,n—1),
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when conditions (31) are satisfied and where n > 3.

Let
(36) S=co+cicosd+cocos20 + .-+ ¢, cosmb .
If we put
So=1, S1=1+4cosf, S2=1+cosf+ cos220’”.
cos 20 cos vé

veisSy =14 cosb+ + -+ ,
2 v

(36) can be written in the form

(37) S=(co—c1)So+(c1-2¢2)51+: - +[m—1)em-1~MmCm] Sm—1+MCm Sm.

By [1] (vol. II, part VI, problem 28), for évery # and every v =
2,3,..., there is

é
(38) Sv:1+c080+¥+--- cos v >0,
whereas
(39) 14cos@>0.

If we have in (36)
(40) co>c¢1>22>3c3> > (m—1)em—y > me,, >0,

fhen, by (37), because of (38) and (39), there is

52>0.
If one puts in (36)
1 z| |22
=5, C1=—"—" €= —"—
2 Tk+1 Tht1Tk+2
|z|'n—k
0yl = Cpg =

b
Tk+17'k+2 R 9
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one obtains S = A. Further

Cytl1 = Cy 12 ) (v=1,2,...,n—k—-1).
Tktu+l
By (31) and (35), for every v = 1,2,...,n — k — 1, one has
2+h
vy = (o4 Devss = e [o— (04 1) B 2 e, [o— (00 B2 -
Tk+v+1 Tk+v41

Tk Tkt+1 Thktv
— _ 1)(2 . >
c [v (v+1)2+h) Th+1 Tk42 Tk+v+1] -

' 1
Z Cy [U - (’U + 1)(2+ h)m] fasy
1 v+ 1
= ¢y [’U—(U-}—l)m] > ¢y (U— 22v+1) >0.
As we have further
Co_clzl_l_z_zl_wﬁz_l__ﬁi.:(),
2 Ty T2 Tl 2 2(2+h)
conditions (40) hold, and therefrom A > 0.
If putting in (36)
CO:—‘l 61:_71 czzrk’rk_l cee  C :ck:TM_
2’ 2|’ |z 77 l2F 7
one shall obtain § = B. In this case
Cos1 :cv-’"—"‘z—fi, (v=1,2,....k=1).

By (31) and (35), for every v = 1,2,...,k — 1, one has

vey — (V4 1)epy1 = ¢y [’U —(v+ 1)Trz—|”] > ey [v —{(v+ 1)2’::} =

[ v+ 171 TR Tk—y ]
=Cy |V — . e Z
2 Tk Tk Th—v+1

>c [v—v+1 L ]
= 2 2v(2+h)

v+ 1
> ¢y ’U—22U+1 >0.
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As we have further

_mylom g
2

o=a= |Z| 27'1:

?

N[

conditions (40) hold also in this case; therefrom B > 0.
For n > 3 one has A > 0 and B > 0, but

(41) A+B>0.

Having in mind (32), (33) and (34), we conclude, from (41), that
the polynomial Q(z) in (9) is different from zero in the domains (35) when
conditions (31) are satisfied for n > 3. The domains (35) now become

(42) 2%l o< 2+ haer (k=1,2,...,n—1).
ak A
We conclude, from (42), that the polynomial (1) is different from zero
in every of the intervals (30), which completes the proof of Theorem 3.

3. The Theorem A) holds also under conditions (29), which means
that the polynomial (1) has also only simple real negative zeros, one in
each of the intervals (3a). By Theorem 3, the polynomial (1) has no zeros
in the intervals (30). These two facts will be stated by the next theorem.

Theorem 4. Ifin (1) ax >0 (k=0,1,2,...,n) and if

2
% >4+492n (B>0), (k=1,2,...,n—1),
Qk—10ky1

the polynomial (1) has only simple real negative zeros, one in each of the
intervals

(~20,), (202, _@4hea) ( 2o (@ h)
al’ ? a27 al bl a37 a2 25

(_ 2a,_1 3 (2+ h)an_z) ‘

2
Ap An-1
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