APPLICATION OF AN EXPANDED MIN-MAX THEOREM AND TABLES OF DECISION MAKING FOR SOLVING MULTI-CRITERION CONFLICT SITUATIONS

Spasoje D. Mučibabić

Abstract. This paper proves that it is possible to define optimal strategy for multi-criterion conflict situation using Min-max theorem of Tasković in conjunction with tables of decision making.

1. Introductory notes

Majority of practical multi-criterion conflict problems give themselves to Modelling to multi-criterion games. An optimal solution can be obtained using Tasković's Min-max theorem and tables of decision making. Tables of decision making are considered to be a language or means to define, analyse and solve a problem of decision making.

A general form of a decision making table is as shown in the Figure 1.

Conditions	(Not) meeting conditions
Actions (procedures)	(Not) activating procedures

Figure 1. General form of a decison making table

AMS Mathematics Subject Classification 1991. Primary: 11B39, 11B37.

Key-words and phrases: Multicriteria conflict situation, solving, John von Neumann's minimax principle, Tasković's minimax theorem, Minimax theory.

2. Fundamentals of Min-max theorem for solving multicriterion games

For the problem involving two players with many criteria, however, the following stands true [1 and 3]:

With multicriteria conflict situations, the function g(X) is defined through priority order vector I and priority value vector V:

$$g(X) = g(x_1, x_2, \dots, x_k), \qquad g(x_1, x_2, \dots, x_k) = \Lambda,$$

where Λ is a vector of weight coefficient.

This vector is calculated on the basis of priority vector: $V(v_1, v_2, ..., v_n)$, for $v_i \in [0,1]$, form the area \mathbf{R}^n and determined in accordance with priority order vector: $I(i_1, i_2, ..., i_n)$.

There e_q, e_{q+1} denote the importance of criteria. Some equations stand thrue as follows:

$$V_q = \frac{e_q}{e_{q+1}}, \quad 0 \le \lambda_q < 1, \quad q \in [1, 2, \dots, k],$$

$$\sum_{q=1}^k \lambda_q = \lambda_1 + \lambda_2 + \dots + \lambda_k = 1, \quad \text{for } \lambda_q \ge \lambda_{q+1}.$$

The vectors Λ and V are related as follows:

$$v_q = \left(\frac{\lambda_q}{\lambda_{q+1}}\right) .$$

This relationship is the basis for determinatin of the function g(X) and the vector Λ . It is shown by the following expression:

$$\lambda_q = \frac{\prod_{i=q}^k v_i}{\sum_{q=1}^k \prod_{j=q}^k v_i} .$$

The given expression can be derived as follows:

$$v_1 = \lambda_1/\lambda_2, \quad v_2 = \lambda_2/\lambda_3, \dots, v_{k-1} = \lambda_{k-1}/\lambda_k, \quad v_k = 1$$

resulting in:

$$\prod_{i=1}^{q-1} v_i = v_1 \cdot v_2 \cdot \ldots \cdot v_{q-1} = \frac{\lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_{q-1}}{\lambda_2 \cdot \ldots \cdot \lambda_{q-1} \cdot \lambda_q} = \frac{\lambda_1}{\lambda_q},$$

$$1 + \sum_{i=q}^k \frac{1}{\prod_{i=1}^{q-1} v_i} = \frac{\sum_{q=1}^k \prod_{i=q}^k v_i}{\prod_{i=q}^k v_i},$$

resulting in $\lambda_1 = \prod_{i=q}^k v_i / \sum_{q=1}^k \prod_{i=q}^k v_i$, the relationship between Λ and V.

3. Example

Types of emergency situations (US) (A) to be solved are traffic accidents (SbN) involving passenger cars (a_1) , SbN with lorries (a_2) , SbN with military vehicles (a_3) and SbN involving other vehicles (a_4) . Conditions (S) under which SbN_s take place are activites in sevice (s_1) and out of service (s_2) . To make a choice of the most suitable solution, we consider a situation from three major aspects – criterion (cause) such as lower concentration (z_1) behaviour of a person at work (z_2) , ownership (z_3) .

Order of priority we set first: $i = (i_1, i_2, i_3)$.

We allocate a payment matrix for each criterion (z_1, z_2, z_3) in accordance with possibilities of actions A and conditions S and order of priority.

For criterion z_1 :

A/S	a_1	a_2	a_3	a_4
s_1	1	2	5	3
s_2	2	8	0	1

For criterion z_2 :

A/S	a_1	a_2	a_3	a_4
s_1	4	3	1	8
s_2	1	5	2	2

For criterion z_3 :

$\overline{A/S}$	a_1	a_2	a_3	a_4
s_1	4	4	2	1
s_2	2	1	2	4

Step 1: To solve games according to each criterion

For criterion z_1 :

	a_1	X				X	L.,		
A	a_2		X				X		
	<i>a</i> ₃			X				X	
	a ₄				X				X
S	s_1	X	X	X	X				
	s ₂					X	X	X	X
	z_1	X	X	X	X	X	X	X	X
K	<i>z</i> ₂								
	<i>z</i> ₃								
V((A_i, S_j, K_z)	1	2	5	3	2	8	0	1
	A _{1/2}		0,4	300		0,5700			
	$S_{1/2}$		0,7800 0,220						
	$V(A,S,\overline{K})$:	= μ	R(t)	i, s;	$z_1)$	=	1,6	700)

For criterion z_2 :

	a_1	X				X				
Α	a_2		X				X			
	a_3			X				X		
	a_				X		L		X	
S	s_1	X	X	X	X					
	<i>s</i> ₂					X	X	X	X	
	z_1									
K	z_2	X	X	X	X	X	Х	X	X	
	z_3									
V((A_i, S_j, K_z)	4	3	1	8	1	5	2	2	
	$A_{1/2}$		0,1	250		0,8750				
	S _{1/2} 0,8333 0,1667									
	$V(A, S, K) = \mu_R(a, s; z_2) = 1,7500$									

Adding matrixes using unique criterion:

For criterion z_3 :

					_				
	a_1	X				X			
Α	a_2		X				X		
	a_3			X				X	
	a4				X				X
S	s_1	X	X	X	X				
	82			L		X	X	X	X
	z_1								
K	<i>z</i> ₂								
	z_3	X	X	X	X	X	X	X	X
V((A_i, S_j, K_z)	4	4	2	1	2	1.	2	4
	$A_{1/2}$		0,7	550		0,2450			
	$S_{1/2}$		0,6500				0,3500		
	$V(A, S, K) = \mu_R(a, s; z_3) = 2,0600$								

 $\begin{bmatrix} 1,6060 & 2,2460 & 4,2480 & 37240 \\ 1,8480 & 72440 & 0,4080 & 1,2860 \end{bmatrix}$

a_1	X				X			
a_2		X				X		
<i>a</i> ₃			X				X	
a_4				X				X
s_1	X	X	X	X				
82					X	X	X	X
z_1	X	X	X	Х	X	X	X	X
<i>z</i> ₂	X	X	X	X	X	X	X	X
<i>z</i> ₃	X	X	X	X	X	X	X	X
$(\overline{A_i}, S_j, K_z)$	2	2	4	4	2	7	0	1
$A_{1/2}$ 0,2000 0,8000							00	
$S_{1/2}$ 0,8600 0,1400						00		
(A, S, K) =	μ_R	(a,	s; 2	1,	z ₂ ,	$z_3)$	=	1,7712
	$\begin{array}{c} a_2 \\ a_3 \\ a_4 \\ \hline \\ s_1 \\ s_2 \\ \hline \\ z_1 \\ z_2 \\ \hline \\ z_3 \\ \hline (A_i, S_j, K_z) \\ A_{1/2} \\ \hline \\ S_{1/2} \\ \end{array}$	$\begin{array}{c c} a_2 \\ a_3 \\ a_4 \\ \hline \\ s_1 \\ s_2 \\ \hline \\ z_1 \\ x_2 \\ x_3 \\ \hline \\ X \\ \hline \\ x_2, K_z \\ x_3 \\ \hline \\ X \\ \hline \\ A_{1/2} \\ \hline \\ S_{1/2} \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Step 2: To link criteria to define function g(x). The g(x) function is defined as described above:

Priority vectors V(5,4,1)

$$V_i = \frac{e_{q_i}}{e_q} \qquad \lambda_q = \frac{\prod_{i=q}^k V_i}{\sum_{g=1}^k \prod_{i=g}^k V_i}$$

$$\lambda_1 = 10/13 = 0,8000$$

$$\lambda_2 = 4/13 = 0,1600$$

$$\lambda_3 = 1/13 = 0,0400$$

Step 3: To reduce problems to a matrix:

$$\begin{bmatrix} 1 & 2 & 5 & 3 \\ 2 & 8 & 0 & 1 \end{bmatrix} \cdot \lambda_1 = \begin{bmatrix} 0,80 & 1,60 & 4,00 & 1,28 \\ 1,60 & 6,40 & 0,00 & 0,80 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 3 & 1 & 8 \\ 1 & 5 & 2 & 2 \end{bmatrix} \cdot \lambda_2 = \begin{bmatrix} 0,64 & 0,48 & 0,16 & 1,28 \\ 0,16 & 0,80 & 0,32 & 0,32 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 4 & 2 & 1 \\ 2 & 1 & 2 & 4 \end{bmatrix} \cdot \lambda_3 = \begin{bmatrix} 0,16 & 0,16 & 0,08 & 0,04 \\ 0,08 & 0,04 & 0,08 & 0,16 \end{bmatrix}$$

4. Conclusion

An application of Professor's Tasković Min-max theorem (YUJOR, 1993) has been shown:

$$\begin{split} \xi &= \max_{x \in X, y \in Y} \min \left[x, y, g(x, y) \right] = \\ &= \min_{x \in X, y \in Y} \max \left[x, y, g(x, y) \right] \end{split}$$

in solving multi-criterion conflict situations combined with tables of decision making. They are considered to be a highly efficient language to define, analyse and solve problems of decision making.

5. References

- M. R. Tasković: Minimax theory with transversal points, YUJOR, Vol. 3 (1993), No. 2, Beograd, 129-158.
- [2] S. D. Mučibabić: Višekritierijumski aspekti odlučivanja u konfliktnim situacijama, Doktorska disertacija, FON, Beograd, 1995.
- [3] S. D. Mučibabić: Multicriteria approach to solving real conflict situations, Math. Moravica, 1 (1997), 71-83.

Generalštab Vojske Jugoslavije Kneza Miloša 33, 11000 Beograd, Jugoslavija Received January 7, 1998.