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THE MATUSZEWSKA SEQUENCES
.Dragan Duréié

Abstract. In this paper we prove a representation theorem
for ARV -sequences, which we call ”Matuszewska sequences”, in the
Bojani¢-Seneta sense. We also find a connection between the class
of ARV-sequences and the functional Matuszewska class ERV, and
the relations between the sequencial class ARV and the sequencial
classes RV S and xRV

1. Introduction

In [6] W. Orlicz and W. Matuszewska introduced the functional
class ERV of extended regularly varying functions. A function f :
:{a, +00) = (0,400)(a > 0) is ERV if it is measurable and it satisfies
(1) A< kp(A) < kp(A) < A4

for some ¢,d € R and every A > 1 where

13y _ i f(Az) - Tm f(Az)
k() _r—er-i{loo f(z)’ R —ILI'P“’ f(z)

The class ERV is one of classes of regularly varying functions in
Karamata sense [1]. It is an important functional class of asymptotic
analysis. It is well-known (see e.g. [2]) that

) RV C ERV C CRY,
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where RV is the class of regularly varying functions, and CRV is the
class of regularly varying functions which have continuous index
functions. The class ERV is also called the functional Matuszewska class.

The increasing sequence of positive numbers (¢,) which satisfy con-
dition

. CIx

lim Dl _
n—+00  Cp

A—1

define the class of x-regularly varying sequences (denoted *RV'). The
sequencial class xRV was very widely used in the Theory of theorems of
Tauberian type, and in Fourier analysis (see e.g. [7], [8]). Fundamental
results about this class can be found in [3].

Before, introducing new sequencial class we shall prove the next
statement.

Lemma 1. Let (a,) be the sequence of positive numbers and (b,) be
a decreasing sequence of positive numbers, such that a, ~ b, (n — ©0).
Then the sequence (cy), ¢n = Y g=10k (n € N) is xRV, and there is a
d > 0 such that k.()) < A% (A > 0).

Proof. Consider the sequence (d,) (n € N), where d, = Y p_; be. If
it is convergent, then the sequence (¢, ) (n € N) also convergies, so lemma
holds true. Further assume that (d,) divergies. Since d2, < 2d, (n € N),
we find that kq(A) < 400 for A € (0,2]. Then f(z) = dj5) (z > 1) satisfies
kf(A) < kg(A)- M for all X € (0,2] and

M = lim lim sup — < 400 .

afl+ n—+o00 o€[l,a n
Hence k¢(A) < 400 (A > 0). Since kg(A) < kg(A) (A > 0), we find

that increasing sequence (d,) is ORV. Besides, we have that g(n) = d,
(n € N), g(z) is linear on every interval [n,n + 1] (n € N), continuous,
increasing and concave on interval [1,+00), and it is ORV because f(z) <
g(z) < f(z+ 1) (z > 1). Hence kg(A) < 400 (A > 0) and
‘ Az)

ky(A) = lim 922) 350

= tm L) 0
is concave for every A € (1/2,2). Function kj()) is continuous on interval

(1/2,2), so kg(A) = @ does for every A € (1/2,2). Hence ky4(A) is
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continuous for every A > 0. This qives that function g(z) (z > 1) is CRV.
Since

d
lim -2 = lim M =1,
n— 400 d n—+00 g(n)
A—1 A—1

we find that (d,) is *RV. Since the index function

g9(Az)
M= lim == (A>0
g( ) :L'—r+oo g(:c) ( )
is continuous and increasing, we find that left Matuszewska index of g(z)
(z>1)is kg = kg_(1) > 0 (see [2]). The right Matuszewska index of the
some function is:

_ iy BeM 1
Rom i) = i 2

= -1

- L ké(%)

T

_ 1-k(3) i B _ ky(t) — 1

A=lt 1 — % /\—>1+ A t—1—- t—1
= ki (1)< C < 400
Hence, g(z) (z > 1) belongs to the functional Masuszewska class

([2]). Hence, there is a d > 0 such that kz(A) < A? for every A > 1. This
implies

(/\) _ hm d[)‘"] LE g([)\n]) < h_m g()‘n) < kg(/\) < /\d

n—+oo  dn T ns4oo g(n)

for all A > 1. Further we consider functions r(z) = a(y}, s(z)=bp (z>1).

Then r(z) ~ s(z), £ — +o0, and integrals [ r(t)dt, [ s(t)dt dlvergles as

T — 4oo. We find that [{" r(t)dt ~ [ s(t)dt as ¢ — +oo, which implies

k=1 @k~ Y p—q bk as n — oo. Hence (¢,) is *RV. So for some d > 0 we
have k.()) < A4 (A > 1).

This completes the proof. O

Corollary 1. Let (a,) be a sequence of positive numbers, and ()
its sequence of exponents of the slow variability [9], such that the sequence
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(bn), bn = @) ~ ¢cn as n — +oo. If (c,) is a decreasing sequence of
positive numbers, then the sequence (s}), sh, = Y.ty az"(H”) (n € N)
where p € [—1,0) is *xRV, and there holds ky()\) < A? for every A > 1 and
some d > 0.

In some analogy with the functional class ERV, we can define the
sequentional class ARV. We call that a sequence (¢,) (n € N) is ARV if
it is positive, increasing, which also satisfies

(1) E(X) <
for some d € Ry and every A > 1, where

ke(A) = Tm 2

n—+00 Cp

If RVS is the class of all increasing regularly varying sequences [1],
and xRV is the class of all *-regularly sequences [3], then it is known that

(2") RVS C ARV C +RV .

Sequencial classes RV S and *RV have a great importance in the
Fourier analysis (see e.g. [8]), and in particular in the theory of Tauberian
type theorems (see e.g. [5]).

2. Results

Proposition 1. Let (¢,,) be an increasing sequence of positive num-
bers, then the following statements are equivalent to each other:

(a) the sequence (¢,) € ARV,
(b) the function f(z) = ¢z (x > 1) is ERV.

Proof. (a) = (b). The function f(z) = ¢ (z > 1) is positive and
measurable. Besides, it satisfies

1< kHA) S kp(A) € ke(A) - ke(1 + 6)
for every A > 1 and every § > 0. Hence

1< Ek3(A) S k(M) < ke(X) < A%
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for every A > 1 and some d > 0. In other words we have that f(z) (z > 1)
is ERV.

() = (a). Since (c,) (n € N) is an increasing sequence of positive
numbers and

ke(A) < kp(X) < 2

for every A > 1 and some d > 0, we find that sequence (¢,) (n € N) is
ARV. O

The next Corollary follows immediately from the proof of Proposi-
tion 1.

Corollary 2. If a sequence (cn) (n € N) is ARV and f(z) = ¢y
(x > 1), then k(X)) = kg(A) for every A > 0.

Using the Proposition 1, Corollary 2, and some results from pa-
pers [2] and [4], we conclude that index function k.(A) (A > 0) of an
arbitrary ARV-sequence (¢,) (n € N) is continuous, and there holds
ki (A\),k._(X) € RY for every A > 0. Hence the function k() (A > 0) is
non-differentiable at the most countably many points.

The next result is in fact a Representation Theorem.

Theorem 1. Let (c,) (n € N) be an arbitrary increasing sequence
of positive numbers. Then the next conditions are equivalent to each other:

(a) the sequence {c,) (n € N) is ARV;
(b) there is an n, € N such that

cn_exp{sn+ Z &C} (n > no),

k=n,

where €, —> ¢ € R as n — o, and (6,) (n € N) is a bounded sequence.

Proof. (a) = (b). Assume that sequence (¢,) is ARV. Then by -
Proposition 1 the function f(z) = ¢f; (¢ > 1) is ERV. Then, by a result
from [1], then is a b > 1 such that

¢n = f(n) = exp {51(n) + /n 6(t)dt} (n>0b).
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Here 6(t) is a bounded, measurable function in interval [b,+00) (b >
1), and €1(z) is a bounded, measurable function in the interval [b,+00)
(b > 1), such that €1(z) — ¢; € R as 2 — +o00.

Let n, = [b]+ 1,5 = f;*° ﬂtﬂdt, we have that function €(t) = €1(t) +s
is bounded and measurable on the interval [b,+00) (b > 1), and &(t) —
ci+p=C€Rast — +oo. Hence

Cn = €Xp {E(n )+ Z } (n > n,),

k=no
where ¢(n) = e, — ¢, as n — oo and
k
o=k Mdt
k-1
for b > n, + 1 and 0,, = 0. Hence we finally get

/ * 6(t)dt
k—1

for every b > n, + 1, because the function é(t) is bounded on the interval
[b,+00).
(b) = (a). HA>1 and n > n, then

(An]
c n
% = exXp {g[/\n] €n + Z }

k=n+1

k| =k

< k- sup |6(¢)|log (1+—1—)<2 sup |6(t)| < M
t>k—1 k-1 ko1

Since ﬁﬁn_.+oo(6[,\n] —&n) =0 and

bk Pal+1 gy
2. | < sup |é PE
= sup |6l log Y (0> ny)
k>n+1

which implies log k. ()\) < d-log}, (A > 1), and so we find that k.()) < A4
(A>1).

Hence the sequence (c,) (n € N)is ARV. This completes the proof.
0

Proposition 2. Let a function f(z) (z > 1) be increasing and ERV .
Then there hold:

~
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(a) the sequence (¢,) (n € N), ¢n = f(n), 1s ARV ;
(b) kg (X) = ke(A) (A > 0).

Proof. (a) Since (c,) (n € N) is an increasing sequence of positive
numbers and
k (}\)_ ]_1 [An] 1_ f([)‘ ]) < m f(’\n)

n—+oo  Cp n—>+oo f(n) “n—+4oo (n) -

— f(Az)
< Jim e < kg(A) <\

for every A > 1, and some d € R, which implies that this sequence is ARV .
(b) By relation (a) we have that k.(A) < ks(X) for every A > 0. On
the other hand, for every A > 0 we have

— f09) o JQED — _JOe)
=00 0 SR TG e RO
lim M—kc(x).

T—++400 f((L‘) a

because f € CRV (see e.g. [2]). Hence, we get kf(A) = k.()) for every
A>0.0
' By Proposition 2 follows

(2%) RVS C ARY,

where RV S is the class of increasing regularly varying sequences.
The next proposition is an analogous to the Proposition 2, so we
omit the proof.

Proposition 3. Let f(z) (z > 1) be an increasing function from the
class CRV. Then

(a) the sequence (c,) (n € N), ¢p = f(n), is *xRV;
(b) there holds kg(A) = kc.(A) (A > 0).

Now Proposition 3 we have that
(2*%)- ARV C *RV.

So improved that: RV.S C ARV C = RV.
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