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Monotone Principle of Forked
Points and Its Consequences

Milan R. Tasković

Abstract. This paper presents applications of the Axiom of Infi-
nite Choice: Given any set P , there exist at least countable choice
functions or there exist at least finite choice functions. The author con-
tinues herein with the further study of two papers of the Axiom of
Choice in order by E. Ze rme l o [Neuer Beweis für die Möglichkeit
einer Wohlordung, Math. Annalen, 65 (1908), 107–128; translated in
van Heijenoort 1967, 183–198], and by M. Taskov i ć [The axiom of
choice, fixed point theorems, and inductive ordered sets, Proc. Amer.
Math. Soc., 116 (1992), 897–904]. Monotone principle of forked points
is a direct consequence of the Axiom of Infinite Choice, i.e., of the
Lemma of Infinite Maximality! Brouwer and Schauder theorems are
two direct censequences of the monotone principle od forked points.

1. Introduction and history

Let X := (X,M) be a topological space and T : X → X, where M :
X → R0

+ := [0,+∞). In connection with this, in 1985 we investigated the
concept of TCS-convergence in a spaceX, i.e., a topological spaceX satisfies
the condition of local TCS-convergence iff x ∈ X and if M(Tnx) → 0
(n→∞) implies that {Tn(x)}n∈N has a convergent subsequence.

Theorem 1.1. (Localization Monotone Principle, Tasković [1990, Th. 1]).
Let T be a mapping of a topological space X := (X,M) into itself, where X
satisfies the condition of local TCS-convergence. Suppose that there exists a
mapping ϕ : R0

+ → R0
+ such that(

∀t ∈ R+ := (0,+∞)
)(
ϕ(t) < t and lim sup

z→t+0
ϕ(z) < t

)
(ϕ)
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and the following inequality holds in the form as

M(T (x)) ≤ ϕ(M(x)) for every x ∈ X,(1)

where M : X → R0
+ is a T -orbitally lower semicontinuous function and

M(u) = 0 implies T (u) = u. Then T has at least one fixed point in X.

For x ∈ X the set σ(x,∞) := {x, Tx, T 2x, . . .} is called the orbit of x.
A function f mapping X into the reals is f -orbitally lower semicontinuous
at p if {xn}n∈N is a sequence in σ(x,∞) and xn → p (n → ∞) implies
that f(p) ≤ lim. inf f(xn). A space X is said to be T -orbitally complete
iff every Cauchy sequence which is contained in σ(x,∞) for some x ∈ X
converges in X.

Let X := (X,A) be a topological space and T : X → X, where A :
X×X → R0

+. In 1985 year we investigated the concept of TCS-convergence
in a space X, i.e., a topological space X satisfies the condition of TCS-
convergence iff x ∈ X and if A(Tnx, Tn+1x) → 0 (n → ∞) implies that
{Tn(x)}n∈N has a convergent subsequence. As an immediate consequence
of Theorem 1.1 we have the following statement on topological spaces.

Theorem 1.2. (Monotone Principle, Tasković [1990, Th. 2]). Let T be
a mapping of a topological space X:=(X, A) into itself, where X satisfies
the condition of TCS-convergence. Suppose that there exists a mapping ϕ :
R0
+ → R0

+ such that (ϕ) and

A(Tx, Ty) ≤ ϕ
(
A(x, y)

)
for all x, y ∈ X,(2)

where x 7→ A(x, T (x)) is a T -orbitally lower semicontinuous function and
A(u, v) = 0 implies u = v. Then T has a unique fixed point ζ ∈ X and
Tn(x)→ ζ as n→∞ for each x ∈ X.

Proof. LetM(x) := A(x, T (x)), then it is easy to see that A and ϕ satisfy
all the required hypotheses in Theorem 1.1. Uniqueness follows immediately
from condition (2). The proof is complete.

Survey of facts. For the preceding monotone principles, specially for Localiza-
tion Monotone Principle of Fixed Point, James Dugund j i, in the letter for me
of October 5 in 1984 year, briefly among the rest writes that he is convinced of the
role of Localization Monotone Principle in the fixed point theory (and nonlinear
functional analysis).

This opinion of J. Dugundji has been confirmed many a time, via various phe-
nomena, as one can see from many results proven in nonlinear analysis and nature.

In this paper we considered and formulated some new monotone principles for
fixed points and for fixed apices as a new way in the nonlinear functional analysis.

We notice that Djuro Kurepa in 1971, first version of my Monotone Principle
of Fixed Point, has been sent to Professor J ean Le ray (Paris) for the opinion.
Some of Leray’s ideas I am to realize in several published papers. In general form
for the first time, fundamental elements of Monotone Principle I give in: Proc.
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Amer. Math. Soc., 94 (1985, Theorem 2), 427–432. For later facts on this see:
Ta skov i ć [1990].

History of TCS-convergence. For the first time in 1985 I introduced the
conditions of TCS-convergence and local TCS-convergence with the intention to
transmit it to the properties of Cauchy sequence from metric spaces on topological
spaces, see: Ta skov i ć [1990].

This conceptions are very operational and useful for "calculation” on topological
spaces. In this sense after this viewpoint appears in most of my papers and books
from fixed point theory (see: Ta skov i ć [1986], [1990] and [2001]). We can briefly
say, in connection with this, that the results of forked points are based on RBS-
convergence and BCS-convergence. It is a new viewpoint which is an extension of
the TCS-convergence.

At the interval of the next seven years more authors have considered appearance
of TCS-convergence as a special case od the property TCS-convergence, precisely,
in this way, d-completeness of topological spaces, see: H i ck s [1992], H i ck s-
Rhoade s [1992], Sa l i g a [1996], and Popa [2002].

A topological space X is an d-complete space iff for the function d : X×X →
R0

+ with the property d(x, y) = 0 if and only if x = y the following condition
∞∑

n=1

d(xn, xn+1) < +∞

implies that the sequence {xn}n∈N converges in X. It is simple to see that the
d-completeness is only one very special case of the condition of TCS-convergence.

Recently, 10 years next appeared Monotone Principle in 1985, in connection
with this Ja chymsk i, Matkowsk i, and Sw i a̧ t kowsk i [Journal of Applied
Analysis, 1 (1995), 125–134, Theorem 1, p. 130] proved a very special case of
Monotone Principle of Fixed Point on Hausdorff spaces. For the same also see:
Aamr i-Moutawak i l [2003].

2. Monotony and Forked Points

Further, by the "Axiom of Infinte Choice" we mean a statement in the
following form as: Given any set S, there exist at least countable choice
functions or there exist at least finite choice functions.

In general, equivalents of the Axiom of Infinite Choice appear frequently
in almost all branches of mathematics in a large variety of different forms.

In this part of the paper we present an equivalent form of the Axiom of
Infinite Choice which is expressible in the following sense.

Lemma 2.1. (Lemma of Infinite Maximality, Tasković [2012]). Let P be an
inductive partially ordered set with ordering 4, then P has at least countable
maximal elements or P has at least finite maximal elements.

In this part on topological spaces we formulate new monotone principles of forked points. This
text continues the further study of the papers by M. R. Taskov i ć [A monotone principle of
fixed points, Proc. Amer. Math. Soc., 94 (1985), 427-432, Lemma 2 and Theorem 2], and M. R.
Taskov i ć [Some new principles in fixed point theory, Math. Japonica,35 (1990), 645-666]. New
monotone principles to include some recent results of author, which contains, as special cases,
some results of S. Banach, J. Dugundji, A. Granas, F. Browder, D. W. Boyd, J. S. Wong, J.
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Caristi, T. L. Hicks, B. E. Rhoades, B. Fisher, S. Massa, Dj. Kurepa, M. Kwapisz, W. Kirk, S.
Park, M. Krasnoselskij, V. J. Stečenko, T. Kiventidis, I. Rus, K. Iséki, J. Walter, J. Daneš, A.
Meir, E. Keeler, S. Romaguera, J. Matkowski, K. Goebel, L. Collatz, J. Istrǎţescu, A. Miczko, B.
Palczewski, C. S. Wong, and many others.

Further, in this part we introduced a fundamental result of a new forks theory which unified
and connected three known theories on fixed point, transversality and von Neumann’s minimax
theory. In classical von Neumann’s theory fundamental notions is saddle point. In new general
convex forks theory its role plays transversal and forked points. In this sense we formulate a new
way in nonlinear functional analysis.

Let X be an arbitrary nonempty set, T be a mapping from X into X,
and P := (P,4) a nonempty partially ordered set. A mapping f : X → P
(or f : X → X) has a forked point (or furcate point) p ∈ X if the following
equality holds in the form

f(p) = f(Tp) for some p ∈ X;(Ra)

frequently, we say that in this case (Ra), the mapping f : X → P or
f : X → X has a pair (p, Tp) of bifurcation points, or that T : X → X has
a forked (or forks) point p ∈ X.

We notice that many problems in nonlinear functional analysis (as and
in the fixed point theory) are reducible to the existence of forked points of
certain mappings.

Further, let P := (P,4) be a partially ordered set with a minimum (or
with the property that every nonempty subset in P has an infimum) such
that every decreasing sequence {xn}n∈N in P has a limit in P , denoted by
limn→∞ xn.

In connection with this, we shall introduce the concept of lower ordered
RBS-convergence in a topological space X for B : X → P , i.e., a topolog-
ical space X satisfies the condition of lower ordered RBS-convergence
iff {an(x)}n∈N is an arbitrary sequence in X with arbitrary x ∈ X and if
B(an(x)) → b = b(x) ∈ P (n → ∞) implies that {an(x)}n∈N has a conver-
gent subsequence {an(k)(x)}k∈N which converges to ξ ∈ X, where

B(ξ) 4 inf
x∈X

lim
k→∞

B
(
an(k)(x)

)
.

In this part of the paper, we apply the technick of maximal elements to
the equations of the forks theory. As an immediate consequence of Lemma
2.1 we obtain the following ordered principle.

In this sense, let X be a topological space, Define a relation 4B,con on X
by the following conditions:{

x 4B,con y if and only if B(x) 4 B(y),
x =B,con y if and only if B(x) = B(y),

(fk)

where B : X → P is a function with the given conditions.
It is verify that 4B,con is a partial ordering (asymmetric and transitive

relation) in X. The poset X together with this partial ordering, is denoted
by XB,con.
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Theorem 2.1. (Ordering Principle). Let X be a topological space with the
poset XB,con. If X satisfies the condition of lower ordered RBS-convergence,
then XB,con has at least countable or finite minimal elements zk ∈ XB,con

with zk 4B,con x for given x ∈ XB,con.

Proof. Let C be a chain in XB,con and now let t ∈ C be given. Denote by
α := inf{B(x) : x ∈ C}. If B(m) = α for some m ∈ C, then m is a lower
bound in C. For, if x 4B,con m for some x ∈ C\{m}, then B(x) 4 B(m),
which yields B(x) ≺ α, which is a contradiction. Therefore, one san assume
B(x) 6= α for all x ∈ C. Then the set M(x, n) of all y ∈ C with y 4B,con x
and α ≺ B(y) ≺ αn (αn → α) is nonempty for each n ∈ N and x ∈ C.
In fact, there is a y ∈ C satisfying α ≺ β(y) ≺ αn, and so y belongs
to M(x, n) if y 4B,con x; if x 4B,con y then since B(x) 4 B(y) we have
α ≺ B(x) 4 B(y) ≺ αn, which shows that x belongs to M(x, n). Let I be
a choice function for the family of all nonempty subsets of C. Then, by the
recursion theorem, there is a sequence {xn}n∈N in C such that x0 = t and
xn+1 = I(M(xn, n)) for n ∈ N. Since xn+1 4B,con xn for all n ∈ N, we have
B(xn+1) 4 B(xn) for all n ∈ N, i.e., {B(xn)}n∈N converges.

This implies (from lower ordered RBS-convergence) that there exists ξ ∈
XB,con such that B(ξ) 4 · · · 4 B(xn) for n ∈ N. Now let x ∈ C. Then we
can find an i ∈ N such that B(ξ) 4 B(xi) ≺ αi 4 B(x). Since x and xi are
in the chain C, we obtain ξ 4B,con x. This shows that ξ is a minorant of C.
By the nature of C (by Lemma of Infinite Maximality) it follows that there
is at least countable or finite zk ∈ XB,con which are minimal in XB,con. �

We notice that the proof of this statement is totally an analogy with the
former proofs of ordered principles.

As an immediate consequence of Theorem 2.1 (Ordering Principle) we
obtain the following result in the forks theory.

Theorem 2.2. (Monotone principle of forked points). Let T be a mapping
of a topological space X into itself, where X satisfies the condition of lower
ordered RBS-convergence. If

B(Tx) 4 B(x) for every x ∈ X,(B)

then for T there exist at least countable or finite forked points ξk ∈ X, i.e.,
then the following equalities hold in the form

B(Tξk) = B(ξk) = αk := inf
x∈X

lim
n→∞

B
(
bkn(x)

)
(Ri)

for some sequences {bkn(x)}n∈N in X which converges to the forked points
ξk ∈ X.

Proof. Consider the partially ordered set XB,con and let ξk be minimal ele-
ments. Using (B), it also following from (fk) that Tx 4B,con x for all x ∈ X
and Tξk 4B,con ξk in XB,con and, because ξk are minimal it follows that
Tξk =B,con ξk. The proof is complete. �
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A brief proof of a special variant of this statement based on some elementary facts may be
found in Taskov i ć [2005]. For this, also see Taskov i ć [2001].

Proof of a special case of Theorem 2.2. Let x be an arbitrary point
in X. Then from the inequality (B) we obtain the following inequalities in
the form

· · · 4 B(Tn+1x) 4 B(Tnx) 4 · · · 4 B(Tx) 4 B(x)(3)

for every n ∈ N ∪ {0} and for every x ∈ X. Thus, for the sequence
{B(Tnx)}n∈N∪{0} from (3), we obtain that B(Tnx)→ b ∈ P (n→∞) with
arbitrary x ∈ X. This implies (from the lower ordered RBS-convergence)
that its sequence {Tnx}n∈N∪{0} contains a convergent subsequence
{Tn(k)(x)}k∈N with a limit point ξ ∈ X. Since X satisfies the condition
of lower ordered RBS-convergence, from (3), we have

α := inf
x∈X

lim
n→∞

B(Tnx) 4 lim
n→∞

B(Tnξ) 4 · · ·

· · · 4 B(Tξ) 4 B(ξ) 4 inf
x∈X

lim
k→∞

B(Tn(k)x) = α;

i.e., B(Tξ) = B(ξ) = α. This means that (Ri) holds, i.e., that the map-
ping T : X → X has a forked point ξ ∈ X, where the existing sequence
{bn(x)}n∈N, de facto, is the preceding subsequence of the sequence of iter-
ates {Tn(k)x}k∈N. The proof is complete.

Let X be an arbitrary nonempty set, T : X → X, and P := (P,4) be a
nonempty poset. A mapping f : X → P (or T : X → X) has a k-forked
point (or k-furcate point) p ∈ X if for arbitrary fixed integer k > 1 the
following equalities hold in the form

f(T kp) = · · · = f(Tp) = f(p) for some p ∈ X;(Rk)

Frequently, we say that in this case (Rk), the mapping f : X → P or
f : X → X has cycle or k-pair (p, Tp, . . . , T kp) of bifurcation points, or that
T : X → X has a k-forked or a k-forks point p ∈ X.

In connection with this, from the proof of Theorem 2.2, we obtain, as a
direct extension of the preceding result, the following general statement.

Theorem 2.3. (Existence of k-forked points). Let T be a mapping of a topo-
logical space X into itself, where X satisfies the condition of lower ordered
RBS-convergence. If

B(Tx) 4 B(x) for every x ∈ X,(B)

then for T there exist at least countable or finite k-forked points ξt ∈ X, i.e.,
then the following equalities hold in the form

B(T kξt) = · · · = B(Tξt) = B(ξt) = αt := inf
x∈X

lim
n→∞

B
(
btn(x)

)
(Mk)

for an arbitrary fixed integer k > 1 and for some sequence {btn(x)}n∈N in X
which converges to ξt ∈ X.
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Interpretation and facts. We notice, first, that Theorem 2.1 hold even we are to make
weaker the condition of lower ordered RBS-convergence, in the sense that this condition holds
only for iteration sequences.

In this sense, let X be an arbitrary nonempty set, T : X → X, P := (P,4) be a nonempty
poset, and B : X → P . A topological space X satisfies the condition of orbital lower ordered
RBS-convergence iff {Tn(x)}n∈N is an arbitrary iteration sequence in X with arbitrary x ∈ X
and if B(Tn(x))→ b = b(x) ∈ P (n→∞) implies that {Tn(x)}n∈N has a convergent subsequence
{Tn(k)(x)}k∈N which converges to ξ ∈ X, where

B(ξ) 4 inf
x∈X

lim
k→∞

B
(
Tn(k)(x)

)
.

Also, we shall introduce the concept of RBS-completeness in a space X for a function B : X →
P , i.e., a topological space X is called lower ordered RBS-complete (orbital lower ordered
RBS-complete) iff {an(x)}n∈N is an arbitrary sequence (an arbitrary iteration sequence) in X
with arbitrary x ∈ X and if B(an(x))→ b = b(x) ∈ P as n→∞ implies that {an(x)}n∈N has a
convergent subsequence in X.

On the other hand, a function B : X → P is lower ordered RBS-continuous (orbital lower
ordered RBS-continuous) at p ∈ X iff {an(x)}n∈N is an arbitrary sequence (an arbitrary iteration
sequence) in X with arbitrary x ∈ X and if an(x)→ p (n→∞) implies that

B(p) 4 inf
x∈X

lim
n→∞

B
(
an(x)

)
.

Second, we are now in a position to formulate the following explanations of the preceding
theorems as corresponding equivalent forms:

Theorem 2.4. Let T be a mapping of a topological space X into itself and
let X be orbital lower ordered RBS-complete. If (B) holds and if B : X → P
is an orbital lower ordered RBS-continuous map, then for T there exist at
least countable or finite k-forked points ξt ∈ X.

This result is contained in Theorem 2.2 as the case for k = 1, i.e., for the case of a forked
point. In this sense we obtain an immediate result for P := R0

+ and 4:=≤.

In this sense, we shall introduce the concept of lower BCS-convergence in
a topological space X for B : X → R0

+, i.e., a topological space X satisfies
the condition of lower BCS-convergence (orbital lower BCS-convergence)
if {an(x)}n∈N is an arbitrary sequence (an arbitrary iteration sequence) in X
with arbitrary x ∈ X and if B(an(x))→ b = b(x) > 0 (n→∞) implies that
{an(x)}n∈N has a convergent subsequence {an(k)(x)}k∈N which converges to
ξ ∈ X, where

B(ξ) 6 inf
x∈X

lim inf
k→∞

B
(
an(k)(x)

)
.(Bi)

In connection with this, the preceding result is an extension of our former Localization Mono-
tone Principle of fixed point proved for the first time in Taskov i ć [1985].

A brief proof of a special case of this statement based on some elementary facts may be found
in Taskov i ć [2001] and [2002]. For this, also see Taskov i ć [2005].

Annotations. From (B) and Ordering Principle it directly follows that the mapping T of
a topological space X into itself on the set XB,con has at least countable or finite fixed points
ξt ∈ X as minimal elements of this set.

Even more, from Theorem 2.2 it follows that T , as a mapping of a topological space X into
itself where X with the property of lower BCS-convergence, has a fixed point ξ ∈ X if and only
if ξ is a minimal element of the set XB,con for which we have ξ =B,con Tξ.

Annotations. A fine illustration for Theorem 2.2 is a well known statement in 1936 which
was given by Fr eudentha l and Hurew i c z in the following form: If (X, ρ) is a compact
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metric space and if T is a mapping of X into itself such that

ρ
[
T (x), T (y)

]
< ρ[x, y] for all x, y ∈ X (x 6= y),(4)

then the mapping T has a unique fixed point ξ ∈ X.
Indeed, first, since X is a compact space it follows that the condition of lower (orbital) BCS-

convergence holds. Second, let B(x) := ρ(x, Tx), thus applying Theorem 2.2 we have that there
exists ξ ∈ X such that (Ri). But, from (4) for ξ 6= Tξ we obtain

B(ξ) = B(Tξ) = ρ
[
T (ξ), T 2(ξ)

]
< ρ[ξ, T (ξ)] = B(ξ),

i.e., we obtain a contradiction. This means that ξ = Tξ for some ξ ∈ X. The uniqueness follows
immediately from (4). The proof is complete.

In connection with this statement of Fr eudentha l-Hur ew i c z [1936] there exist more
extensions. An extension of this statement to give Ede l s t e i n [1962] to change the compactness
with the following weak condition in the form: if {Tn(x)}n∈N is an arbitrary iteration sequence
in X with arbitrary x ∈ X, then he has at least one convergent subsequence in X.

On the other hand we notice that this result of Freudenthal and Hurewicz in 1936 appeared,
also, at the same year independently by N i emyt zk i [1936].

These facts are direct examples for the preceding Theorem 2.2. Also, this facts can be great
for further considerations specially in the fixed point theory.

Extensions theorems of Brouwer and Schauder. This part is pri-
marily devoted to illustraing the preceding results, thus in the forks theory
we obtain extensions of Brouwer and Schauder theorems.

Proposition 2.1. Let X be a convex subset in linear topological space Y and
let T be a mapping of X into itself. Then there exists a lower semicontinuous
function B : X → R0

+ such that inequality (B) holds.

Proof. Let B : X → R0
+ be a convex function with the property B((x +

y)/2) ≥ B(x) for all x, y ∈ X, where B is a lower semicontinuous function
on the convex set X. Then, immediate (B) holds, because 0 ≤ B((x +
y)/2) − B(x) ≤ B(y) − B(x) for all x, y ∈ X. Thus, B(T (x)) ≤ B(x) for
every x ∈ X, i.e., inequality (B) holds. The proof is complete. �

Further, in this section we apply the monotone principle of forked points
(for P := R0

+ and 4:=≤) to the Schauder’s 54th problem in Scottish Book.
In this sense we have the following extension and a new solution of Schauder’s
problme on linear topological spaces.1

1History of Schauder’s problem. The most famous of many open problems in non-
linear analysis is Schauder’s problem (in Scottish book, problem 54). For some answers on
this problem see papers of: Tychonoff, Fréchet, Leray, Borsuk, Steinhaus, Mazurkiewicz,
Kuratowski, Knaster, Krasnoselskij, Ky Fan, Klee, Caristi, Kirk, Browder, Dugundji,
Granas, and many others.

J. S chaude r himself set down this problem in 1927 and 1930 respectively and had
it published in: Math. Zaitschrift and Studia Mathematica. The problem gained the
importance when it was put forward by S t e f anBanach in 1930 at the World congress
of mathematicians in Moscow.

First positive answer for locally convex space was given by Tychono f f in 1935. It
was J. S chaude r who presented (personally) Tychonoff’s paper in Zbl. für Math. 12
(1936), with number 308.
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Proposition 2.2 (Extension and solution of Schauder’s problem). Let D
be a nonempty convex subset in linear topological space X and suppose that
T : D → D is a continuous mapping. Then T has at least countable or finite
fixed points in D.

Proof. (Application of Theorem 2.2 ). From Proposition 2.1 (for convex lower
semicontinuous function B := D → R0

+) inequality (B) holds on nonempty
compact convex set D, thus direct it follows that B satisfies the condition of
lower BCS-convergence, also, i.e., D and B satisfy all the required hypothesis
in Theorem 2.2. Applying Theorem 2.2, in this case, we obtain that T has at
least countable or finite forked points ξk ∈ D, such that B(T (ξk)) = B(ξk).
This implies, form the facts of B, T (ξk) = ξk. The proof is complete. �

We are now in a position to formulate our following known applications.
In this sense we obtain three fundamental famous principles of Brouwer,
Banach and Schauder.

Theorem 2.5 (General Brouwer Theorem). Suppose that C is a nonemty
convex, compact subset of Rn, and that T : C → C is a continuous mapping.
Then T has at least countable or finite fixed points in C.

In this sense, as a direct consequence of Theorem 2.5, we obtain the
following well-known Brouwer’s theorem.

Theorem 2.6 (Brouwer, [1912]). Suppose that C is a nonempty convex,
compact subset of Rn, and that T : C → C is a continuous mapping. Then
T has a fixed point in C.

We also have, as an immediate and direct consequence of Theorem 2.2,
as a version of the Schauder fixed point theorem.

Theorem 2.7 (Schauder, [1930]). Let C be a nonempty, compact, convex
subset of a Banach space X, and suppose T : C → C is a continuous opera-
tor. Then T has a fixed point in C.

We notice that this statement is a direct translation of the Brouwer fixed
point theorem to Banach spaces.

Proof. Since C is a convex and compact subset of Banach space, from Theo-
rem 2.1 (Ordering Principle) and Theorem 2.2, we obtain this statement. �

Theorem 2.8 (General Schauder Theorem). Let C be a nonempty, compact,
convex subset of a Banach space X, and suppose T : C → C is a continuous
operator. Then T has at least countable or finite fixed points in C.

This statement is a direct consequence of Theorem 2.1 (Ordering Princi-
ple) and Theorem 2.2. Also, the following result is a direct consequence of
Theorem 2.1 (Ordering Principle) and Theorem 2.8.
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Answer to Schauder’s problem is affirmative. From the preceding
statements and some further facts we are now in the position to formulate
the following solution which is, also, an extension of Schauder problem.

Theorem 2.9 (Answer is yes for Schauder’s problem). Let C be a nonempty
convex compact subset of a linear topological space X and suppose that T :
C → C is a continuous mapping. Then T has a fixed point in C.

This result is a special case of the former Proposition 2.2. Thus the proof of this statement
we omit. For the first proof of Theorem 2.8 see Taskov i ć [1998].

Annotation. Let us emphasize that the above solution for the Schauder’s problem was
presented by Taskov i ć in 1998. Another different solution for the same problem was published
by R. Cauty in 2001, three years later after M. R. Tasković. See: Ta skov i ć [1998] and Cauty
[2001]! Also see: Rus [1999].

Generalized Peano’s Theorem. Further we give an application of General Schauder fixed
point theorem to differential equations. As a parallel and contrast to the Picard-Lindelöf theorem
we consider the initial value problem of the form as

x′(t) = f
(
t, x(t)

)
, x(t0) = y0,(5)

on [t0 − c, t0 + c]. Geometrically, (5) means that we are looking for a curve which satisfies the
differential equation and passes through (t0, y0). At the end points t = t0 ± c, where x′(t) is to
be interpreted as the appropriate one-sided derivative.

Proposition 2.3. (Peano [1890], Ta skov i ć [2012]). Let there be given real numbers t0 and
y0, and the rectangle of the form as

Qb :=
{
(t, x) ∈ R2 : |t− t0| ≤ a, |x− y0| ≤ b

}
,

where a and b are fixed positive numbers. Suppose that f : Qb → R is continuous and bounded
with the following condition of the form as∣∣f(t, x)∣∣ ≤ K for all (t, x) ∈ Qb,

and fixed K > 0. Set c := min{a,K/b}. Then the initial value problem (5) has at least countable
or finite continuously differentiable solutions on [t0 − c, t0 + c].

Proof. (Application of Theorem 2.8). In addition to initial value problem (5), we also consider
the integral equation of the form as

x(t) = y0 +

∫ t

t0

f
(
s, x(s)

)
ds,

and next write this as the operator equation x = T (x), for x ∈ M ⊂ X, where X := C
(
[t0 −

c, t0 + c]
)
, M =

{
x ∈ X : ‖x − y0‖ ≤ b, and ‖x‖ = maxt0−c≤t≤t0+c |x(t)|

}
. The set M is

closed, convex, and bounded in X; also from this it follows T (M) ⊂ M . Since the operator T is
compact,we have that Tasković fixed point theorem (Theorem 2.8) implies the existence at least
countable or finite solutions x = T (x), x ∈M . The proof is complete. �

As an immediate consequence of Theorem 2.3 we obtain the following direct generalization of
Caristi’s fixed point theorem.

Theorem 2.10. Let T be a self-map on a complete metric space (X, ρ). Suppose that there
exists a lower semicontinuous function G : X → R0

+ and an arbitrary fixed integer k > 0 such
that

ρ[x, Tx] 6 G(x)−G(Tx) + · · ·+G
(
T 2kx

)
−G

(
T 2k+1x

)
(Tk)

and G(T 2i+1x) ≤ G(T 2ix) for i = 0, 1, . . . , k and for every x ∈ X. Then T has at least countable
or finite fixed points ξt in X.
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Proof. (Application of Theorem 2.3). Let x be an arbitrary point in X. We can show then that
the sequence of iterates {Tnx}n∈N is a Cauchy sequence. Let n and m (n < m) be any positive
integers. From (Tk) we have

ρ[Tnx, Tmx] 6
m−1∑
i=n

ρ[T ix, T i+1x]→ 0 (m,n→∞).

Hence, {Tnx}n∈N is a Cauchy sequence in X and, by completeness, there is ξt ∈ X such that
Tnx → ξt (n → ∞). Therefore, X satisfies the condition of orbital lower BCS-convergence for
B(x) = G(x).

We also have B(Tx) ≤ B(x) for every x ∈ X, i.e., (B) in Theorem 2.3. Applying Theorem 2.3
we obtain a form of (Mk), i.e., B(T 2k+1ξt) = B(T 2kξt) = · · · = B(Tξt) = B(ξt) = αt for some
ξt ∈ X. Thus from (Tk) we have

ρ[ξt, T ξt] 6 G(ξt)−G(Tξt) + · · ·+G
(
T 2kξt

)
−G

(
T 2k+1ξt

)
= (2k + 1)(αt − αt) = 0,

i.e., ξt = Tξt for some ξt ∈ X. The proof is complete. �

Remark. We notice that a brief proof of Theorem 2.10 based on the Ordered Principle may
be found in Taskov i ć [1998]. We can also give a proof for special case of this statement based
on Zorn’s lemma as well as on Brézis-Browder ordering principle.

Also, as an immediate consequence of the preceding results we obtain the following statement
of fixed point.

Theorem 2.11. Let T be a self-map on a complete metric space (X, ρ). Suppose that there
exists a lower semicontinuous function G : X → R0

+ such that

ρ[x, Tx] 6
+∞∑
i=0

(
G
(
T 2ix

)
−G

(
T 2i+1x

))
(Tm)

and G(T 2i+1x) ≤ G(T 2ix) for i ∈ N ∪ {0} and for every x ∈ X. Then T has at least countable
or finite fixed points ξt in X.

Proof of Theorem 1.1. (Application of Theorem 2.2). Let x be an arbitrary point in X.
The function B : X → R0

+ is lower semicontinuous and satisfies, by (ϕ), B(Tx) ≤ B(x) for every
x ∈ X, i.e., the inequality (B) in former Theorem 2.2.

Applying results to the sequence {B(Tnx)}n∈N we obtain that B(Tnx) → 0 (n → ∞), and
thus X satisfies the condition of orbital lower BCS-convergence with the inequality (B). Applying
Theorem 2.2 we have B(Tξt) = B(ξt) := αt for some ξt ∈ X. Also, from (ϕ), for αt 6= 0 we have

αt = B(ξt) = B(Tξt) 6 ϕ(B(ξt)) < B(ξt) = αt

for some ξt ∈ X. This is a contradiction, which means that αt = 0, i.e., ξt = Tξt for some ξt ∈ X.
The proof is complete.

Remarks. An important event. We notice that the preceding facts and consequences are
an affirmation that Monotone Principle of Forked Points is a natural extension of the Monotone
Principle of Fixed Point, and Localization Monotone Principle of Fixed Point.

Recently, 15 years later appeared Localization Monotone Principle in 1985, in connection with
this Suzuk i [J. Math. Anal. Appl. 253 (2001), 440–458, Theorem 1, p. 451] which proved a
very special case of Localization Monotone Principle of Fixed Point.
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