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Some Fixed Point Theorems for
(CAB)-contractive Mappings and Related Results

Arslan Hojat Ansari, Maher Berzig, and Sumit Chandok∗

Abstract. In this paper, we introduced the concept of (CAB)-contractive
mappings and provide sufficient conditions for the existence and unique-
ness of a fixed point for such class of generalized nonlinear contractive
mappings in metric spaces and several interesting corollaries are de-
duced. Also, as application, we obtain some results on coupled fixed
points, fixed point on metric spaces endowed with N -transitive binary
relation and fixed point for cyclic mappings. The proved results gener-
alize and extend various well-known results in the literature.

1. Introduction and Preliminaries

Fixed point theory is one of the traditional branch of nonlinear analy-
sis. The importance of fixed point theory has been increasing rapidly over
the time as this theory provide useful tools for proving the existence and
uniqueness of the solutions to various mathematical models (integral and
partial differential equations, variational inequalities etc). Also, it has a
broad range of application potential in various fields such as engineering,
economics, computer science, and many others.

It is well known that the contractive-type conditions are very indispens-
able in the study of fixed point theory and Banach’s fixed point theorem
[1] for contraction mappings is one of the pivotal result in analysis. This
theorem that has been extended and generalized by various authors (see,
e.g., [2],[7],[8],[9],[15],[17],[28]) and has many applications in mathematics
and other related disciplines as well. In [26], Samet and Turinici extended
and generalized the Banach contraction principle to spaces endowed with an
arbitrary binary relation, and they unified many known results. Recently,
there have been so many exciting developments in the field of existence of
fixed point in partially ordered metric spaces and fixed point for cyclic map-
pings. For more details, we refer the reader to the Bhaskar et al. [6], Berzig
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et al. [4], Chandok et al. [10, 11, 13, 12, 14], Karapinar et al. [18], Kim et
al. [20], Nieto et al. [22, 23], O’Regan et al. [24], Ran et al. [25], Samet et
al. [27], and Turinici [29].

In this paper, we introduced the concept of (CAB)-contractive mappings,
which generalize well exist nonlinear contractive type mappings. These
classes of mappings are used to obtain some fixed point theorems in met-
ric spaces by generalizing and extending some well-known results. Moreover,
several interesting corollaries are deduced for coupled fixed point, fixed point
on metric spaces endowed with N -transitive binary relation and fixed point
for cyclic mappings. Finally, we prove that some existing results in the
literature are particular cases from our main theorems.

To begin with, first we give some definitions and notations which will be
used in the sequel.

Definition 1.1 (see [19]). A function ψ : [0,∞)→ [0,∞) is called altering
distance function if the following properties are satisfied:
(a1) ψ is continuous and non-decreasing;
(a2) ψ(t) = 0 if and only if t = 0.
We denote Ψ the set of all altering distance functions.

Definition 1.2. The pair of functions (ψ, φ) is a pair of generalized altering
distance where ψ, φ : [0,+∞)→ [0,+∞) if the following hypotheses hold:

(a1) ψ is continuous and non-decreasing;
(a2) limn→∞ φ(tn) = 0 ⇒ limn→∞ tn = 0.

Definition 1.3. A mapping h : [0,+∞) → [0,+∞) is an A-class function
if h(t) ≥ t,∀t ≥ 0.
We denote A the set of all A-class functions.

Example 1.1. The following functions h : [0,+∞)→ [0,+∞) are elements
of A:

(1) h(t) = at − 1, a > 1, t ∈ [0,+∞);
(2) h(t) = mt, m ≥ 1, t ∈ [0,+∞).

Definition 1.4 ([3]). Let X be a set, and let R be a binary relation on X.
A mapping T : X → X is an R-preserving mapping if x, y ∈ X : xRy ⇒
TxRTy.

In the sequel, let N denote the set of all non-negative integers, let R denote
the set of all real numbers.

Definition 1.5 ([3]). LetN ∈ N. R isN -transitive onX if x0, x1, . . . , xN+1 ∈
X : xiRxi+1 for all i = {0, 1, . . . , N} ⇒ x0RxN+1.

The following remark is a consequence of the previous definition.

Remarks 1.1. Let N ∈ N. We have:
(i) If R is transitive, then it is N -transitive for all N ∈ N;
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(ii) If R is N -transitive, then it is k N -transitive for all k ∈ N.

Definition 1.6 ([5]). Let (X, d) be a metric space andR1, R2 two binary re-
lations on X. A metric space (X, d) is (R1,R2)-regular if for every sequence
{xn} in X such that xn → x ∈ X as n→ +∞, and xnR1xn+1, xnR2xn+1 for
all n ∈ N, there exists a subsequence {xn(k)} such that xn(k)R1x, xn(k)R2x
for all k ∈ N.

Definition 1.7 ([3]). A subsetD ofX is (R1,R2)-directed if for all x, y ∈ D,
there exists z ∈ X such that (xR1z) ∧ (yR1z) and (xR2z) ∧ (yR2z).

Definition 1.8. Let X be a set and α, β : X × X → [0,+∞) are two
mappings. We define two binary relations R1 and R2 on X by

xR1y ⇐⇒ α(x, y) ≤ 1 and xR2y ⇐⇒ β(x, y) ≥ 1.

for all x, y ∈ X.

2. Main Results

Definition 2.1. A mapping f : [0,∞)4 → R is a 1-1-upclass function if the
following conditions hold for all u, v, s, t ∈ [0,∞)

(1) f(1, 1, s, t) is continuous;
(2) 0 ≤ u ≤ 1, v ≥ 1⇒ f(u, v, s, t) ≤ f(1, 1, s, t) ≤ s;
(3) f(1, 1, s, t) = s ⇒ s = 0 or t = 0.

We denote C the set of all 1-1-upclass functions.

Example 2.1. The following functions f : [0,∞)4 → R are elements of C
for all u, v, s, t ∈ [0,∞):

(1) f(u, v, s, t) = us− vt, f(1, 1, s, t) = s ⇒ t = 0;

(2) f(u, v, s, t) =
us− vt
1 + vt

, f(1, 1, s, t) = s ⇒ t = 0;

(3) f(u, v, s, t) =
us

1 + vt
, f(1, 1, s, t) = s ⇒ s = 0 or t = 0;

(4) fa(u, v, s, t) = loga
ut+ aus

1 + vt
, a > 1, fa(1, 1, s, t) = s ⇒ s = 0 or

t = 0;

(5) f(u, v, s, t) = ln
u+ eus

1 + v
, f(1, 1, s, 1) = s ⇒ s = 0;

(6) fa(u, v, s, t) = (us+ a)
1

1+vt − a, a > 1, fa(1, 1, s, t) = s ⇒ t = 0;

(7) fa(u, v, s, t) = us loga+vt a, a > 1, fa(1, 1, s, t) = s ⇒ s = 0 or t = 0

Definition 2.2. Let (X, d) be a metric space. A mapping T : X → X
is (CAB)-contractive mapping if there exists a pair of generalized altering
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function (ψ, φ), h ∈ A and f ∈ C such that
h(ψ(d(Tx, Ty))) ≤ f(α(x, y), β(x, y), ψ(d(x, y)), φ(d(x, y))),

for all x, y ∈ X,(1)

where α, β : X ×X → [0,+∞).

If f(u, v, s, t) = us− vt and h(t) = t, we obtain

Definition 2.3 ([5]). Let (X, d) be a metric space. A mapping T : X → X
is (αψ, βφ)-contractive mappings if there exists a pair of generalized distance
(ψ, φ) such that

ψ(d(Tx, Ty)) ≤ α(x, y)ψ(d(x, y))− β(x, y)φ(d(x, y)), for all x, y ∈ X,
where α, β : X ×X → [0,+∞).

Now we are ready to state our first main result.

Theorem 2.1. Let (X, d) be a complete metric space, N ∈ N\{0}, and
T : X → X be an (CAB)-contractive mapping satisfying the following con-
ditions:
(A1) Ri is N -transitive for i = 1, 2;
(A2) T is Ri-preserving for i = 1, 2;
(A3) there exists x0 ∈ X such that x0RiTx0 for i = 1, 2;
(A4) T is continuous.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. Let x0 ∈ X such that x0RiTx0 for i = 1, 2. Define the sequence {xn}
in X by xn+1 = Txn for all n ≥ 0.

If xn = xn+1 for some n ≥ 0, then x∗ = xn is a fixed point T . Assume
that xn 6= xn+1 for all n ≥ 0. From (A2) and (A3), we have

x0R1Tx0 ⇒ α(x0, Tx0) = α(x0, x1) ≤ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≤ 1.

Similarly, we have

x0R2Tx0 ⇒ β(x0, Tx0) = β(x0, x1) ≥ 1⇒ β(Tx0, Tx1) = β(x1, x2) ≥ 1.

Using mathematical induction, and (A2) it follows that

(2) α(xn, xn+1) ≤ 1 for all n ≥ 0,

and, similarly, we have

(3) β(xn, xn+1) ≥ 1 for all n ≥ 0,

Substituting x = xn and y = xn+1 in (1), we obtain

ψ(d(Txn, Txn+1)) ≤ h(ψ(d(Txn, Txn+1)))

≤ f(α(xn, xn+1), β(xn, xn+1), ψ(d(xn, xn+1)), φ(d(xn, xn+1)))

So, by (2) and (3) it follows that
(4)
ψ(d(xn+1, xn+2)) ≤ f(1, 1, ψ(d(xn, xn+1)), φ(d(xn, xn+1))) ≤ ψ(d(xn, xn+1)).



Arslan Hojat Ansari, Maher Berzig, and Sumit Chandok 101

Using monotone property of ψ, we have

d(xn+1, xn+2) ≤ d(xn, xn+1),

for every n ≥ 1. Hence the sequence {d(xn, xn+1)} is a decreasing sequence.
So for the nonnegative decreasing sequence {d(xn, xn+1)}, there exists some
r ≥ 0, such that

(5) lim
n→∞

d(xn, xn+1) = r.

Assume that r > 0. On letting n → ∞ in (4), so by using (5) and the
continuity of ψ and f , we obtain

(6) ψ(r) ≤ f(1, 1, ψ(r), φ(r)) ≤ ψ(r),

thus f(1, 1, ψ(r), φ(r)) = ψ(r). Now, by using Definition 2.1, we get that
either ψ(r) = 0 or φ(r) = 0, in both cases it follows that r = 0, which
implies

(7) lim
n→∞

d(xn, xn+1) = 0.

On the other hand, by (2) and (A1), we obtain

(8) α(xm, xm+kN+1) ≤ 1 for all m, k ≥ 0.

Similarly, by (3) and (A1), we obtain

(9) β(xm, xm+kN+1) ≥ 1 for all m, k ≥ 0.

Now, for some m, k ≥ 0, substituting x = xm and y = xm∗ in (1), where
m∗ := m+ kN + 1, we get

ψ(d(Txm, Txm∗)) ≤ h(ψ(d(Txm, Txm∗)))

≤ f(α(xm, xm∗), β(xm, xm∗), ψ(d(xm, xm∗)), φ(d(xm, xm∗))).

So, using (8) and (9), we have
(10)
ψ(d(xm+1, xm∗+1)) ≤ f(1, 1, ψ(d(xm, xm∗)), φ(d(xm, xm∗))) ≤ ψ(d(xm, xm∗)).

Using monotone property of ψ, we have

d(xm+1, xm∗+1) ≤ d(xm, xm∗).

Hence the sequence {d(xm, xm∗)} is a decreasing sequence. So for the non-
negative decreasing sequence {d(xm, xm∗)}, there exists some s ≥ 0, such
that

(11) lim
n→∞

d(xm, xm∗) = s.

Assume that s > 0. On letting n → ∞ in (4), so by using (11) and and
the continuity of f , we obtain

(12) ψ(s) ≤ f(1, 1, ψ(s), φ(s)) ≤ ψ(s),
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which f(1, 1, ψ(s), φ(s)) = ψ(s), again using Definition 2.1, we get ψ(s) = 0
or φ(s) = 0, which implies that s = 0 and so

(13) lim
n→∞

d(xm, xm∗) = 0.

Now, we shall prove that {xn} is a Cauchy sequence. If possible, let {xn}
be not a Cauchy sequence. Then there exists δ > 0 for which we can find
subsequences {xnk

} and {xmk
} of {xn} with nk > mk > k such that

(14) d(xnk
, xmk

) ≥ δ.
Further, corresponding to mk, we can choose nk in such a way that it is

the smallest integer with nk > mk and satisfying (14). Therefore, we have

(15) d(xnk−1, xmk
) < δ.

Using (14), (15) and triangle inequality, we have

(16)
0 < δ ≤ d(xnk

, xmk
) ≤

≤ d(xnk
, xnk−1) + d(xnk−1, xmk

) < δ + d(xnk
, xnk−1).

On letting k →∞ and using (7), in (16), we have

(17) lim
k→∞

d(xnk
, xmk

) = δ.

Furthermore, for each k ≥ 0, there exist µk, ηk > 0 such that m∗k :=
mk +Nµk + 1 = nk + ηk. Hence, by (14) we have

(18)

δ ≤ d(xmk
, xm∗

k
) ≤ d(xmk

, xnk−1) +

m∗
k−1∑

nk−1
d(xi, xi+1)

< δ +

m∗
k−1∑

nk−1
d(xi, xi+1)

Again, letting k →∞ and using (7), we get

(19) lim
k→∞

d(xmk
, xm∗

k
) = δ.

Also, consider

|d(xmk
, xm∗

k
)− d(xmk−1, xm∗

k−1)| ≤ d(xmk−1, xmk
) + d(xm∗

k
, xm∗

k−1).

On letting k →∞ in the above inequality and using (7), (13), (19), we get

(20) lim
k→∞

d(xmk−1, xm∗
k−1) = δ.

Now, by setting x = xmk−1 and y = xm∗
k−1 in (1), we obtain

ψ(d(xmk
, xm∗

k
)) ≤ h(ψ(d(Txmk−1, Txm∗

k−1)))

≤ f
(
α(xmk−1, xm∗

k−1), β(xmk−1, xm∗
k−1),

ψ(d(xmk−1, xm∗
k−1)), φ(d(xmk−1, xm∗

k−1))
)
.
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Now, using (8) and (9), we get

ψ(d(xmk
, xm∗

k
)) ≤ f(1, 1, ψ(d(xmk−1, xm∗

k−1)), φ(d(xmk−1, xm∗
k−1))) ≤

≤ ψ(d(xmk−1, xm∗
k−1)).

On letting k →∞ in the above equation, using (19), (20), and continuity of
ψ and f , we obtain

f(1, 1, ψ(δ), φ(δ)) = ψ(δ)

which implies either ψ(δ) = 0 or φ(δ) = 0, so we get δ = 0. This shows that
{xn} is a Cauchy sequence. As (X, d) is complete metric space, there exists
x∗ ∈ X such that limn→∞ xn = x∗.

Since T is continuous, we get

lim
n→∞

Txn = Tx∗.

Since xn+1 = Txn, we have also

lim
n→∞

Txn = x∗.

By the uniqueness of the limit, we get Tx∗ = x∗, that is, x∗ is a fixed point
of T . �

Theorem 2.2. In Theorem 2.1, if we replace the continuity of T by the
(R1,R2)-regularity of the metric space (X, d), then T has a fixed point x∗ ∈
X.

Proof. Following the lines of the proof of Theorem 2.1, we get that {xn} is a
Cauchy sequence. Since (X, d) is a complete metric space, then there exists
x∗ ∈ X such that xn → x∗. Furthermore, the sequence {xn} satisfies (2)
and (3), that is, xnR1xn+1, and xnR2xn+1 for all n ∈ N.

Now, since (X, d) is (R1,R2)-regular, then there exists a subsequence
{xn(k)} of {xn} such that xn(k)R1x

∗, that is, α(xn(k), x
∗) ≤ 1 and xn(k)R2x

∗,
that is, β(xn(k), x

∗) ≥ 1, for all k. By setting x = xn(k) and y = x∗, in (1),
we obtain

ψ(d(Txn(k), Tx
∗)) ≤ h(ψ(d(Txn(k), Tx

∗)))

≤ f(α(xn(k)x
∗), β(xn(k), x

∗), ψ(d(xn(k), x
∗)), φ(d(xn(k), x

∗))),

which implies that

ψ(d(xn(k)+1, Tx
∗)) ≤ f(1, 1, ψ(d(xn(k), x

∗)), φ(d(xn(k), x
∗)))

≤ ψ(d(xn(k), x
∗)).

Hence using the monotone property of ψ, we obtain

d(xn(k)+1, Tx
∗) ≤ d(xn(k), x

∗).

On letting k →∞, we get d(x∗, Tx∗) = 0, that is, x∗ = Tx∗. �
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Theorem 2.3. Adding to the hypotheses of Theorem 2.1 (respectively, Theo-
rem 2.2) that X is (R1,R2)-directed, we obtain uniqueness of the fixed point
of T .

Proof. Suppose that x∗ and y∗ are two fixed points of T . SinceX is (R1,R2)-
directed, there exists z ∈ X such that

(21) α(x∗, z) ≤ 1, α(y∗, z) ≤ 1

and

(22) β(x∗, z) ≥ 1, β(y∗, z) ≥ 1

Since T is Ri-preserving for i = 1, 2, from (21) and (22), we get

(23) α(x∗, Tnz) ≤ 1, α(y∗, Tnz) ≤ 1, ∀n ≥ 0;

and

(24) β(x∗, Tnz) ≥ 1, β(y∗, Tnz) ≥ 1, ∀n ≥ 0.

Using (23), (24) and (1), we have

ψ(d(x∗, Tn+1z)) = ψ(d(Tx∗, T (Tnz)))

≤ h(ψ(d(Tx∗, T (Tnz))))

≤ f(α(x∗, Tnz), β(x∗, Tnz), ψ(d(x∗, Tnz)), φ(d(x∗, Tnz)))

≤ f(1, 1, ψ(d(x∗, Tnz)), φ(d(x∗, Tnz)))

≤ ψ(d(x∗, Tnz)).

So, we get

(25)
ψ(d(x∗, Tn+1z)) ≤ f(1, 1, ψ(d(x∗, Tnz)), φ(d(x∗, Tnz)))

≤ ψ(d(x∗, Tnz)).

Using the monotone property of ψ, we have for each n ≥ 0,

d(x∗, Tn+1z) ≤ d(x∗, Tnz).

It follows that {d(x∗, Tnz)} is monotone decreasing and consequently, there
exists r ≥ 0 such that d(x∗, Tnz)→ r. On letting n→∞, in (25) and using
the continuity of ψ and f , we obtain

f(1, 1, ψ(r), φ(r)) = ψ(r),

which implies either ψ(r) = 0 or φ(r) = 0, then d(x∗, Tnz)→ 0, as n→∞.
Similarly, we obtain d(y∗, Tnz) → 0, as n → ∞. By the uniqueness of

limit, we have x∗ = y∗. �

3. Consequences

In this section, we derive some consequences from our main results.
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3.1. Coupled fixed point results in complete metric spaces.

Definition 3.1 (see [16]). Let F : X × X → X be a given mapping. We
say that (x, y) ∈ X × X is a coupled fixed point of F if F (x, y) = x and
F (y, x) = y.

Lemma 3.1. A pair (x, y) is a coupled fixed point of F if and only if (x, y)
is a fixed point of T where T : X ×X → X ×X is given by

(26) T (x, y) = (F (x, y), F (y, x)) for all (x, y) ∈ X ×X.

Definition 3.2. Let (X, d) be a metric space and F : X × X → X be
a given mapping. A mapping F is an (CAB)-type contractive mapping if
there exists a pair of generalized altering function (ψ, φ), h ∈ A and f ∈ C
such that for all x, y, u, v ∈ X

h(ψ(d(F (x, y), F (u, v)))) ≤ f
(
α((x, y), (u, v)), β((x, y), (u, v)),

ψ(max{d(x, u), d(y, v)}), φ(max{d(x, u), d(y, v)})
)
,

where α, β : X2 ×X2 → [0,+∞).

Definition 3.3. Let X be a set, and S1,S2 be two binary relations on X×X
defined by

(x, y), (u, v) ∈ X ×X : (x, y)S1(u, v)⇒ α((x, y), (u, v)) ≤ 1

and

(x, y), (u, v) ∈ X ×X : (x, y)S2(u, v)⇒ β((x, y), (u, v)) ≥ 1.

Definition 3.4. Let (X, d) be a metric space. We say that (X × X, d) is
(S1,S2)-biregular if for all sequences {xn, yn} in X ×X such that xn → x ∈
X, yn → y ∈ X as n→∞, and (xn, yn)Si(xn+1, yn+1), (yn+1, xn+1)Si(yn, xn)
for i = 1, 2, and for all n ∈ N, there exists a subsequence {xn(k), yn(k)} such
that (xn(k), yn(k))Si(x, y), (y, x)Si(yn(k), xn(k)) for i = 1, 2 and for all k ∈ N.

Definition 3.5. We say thatX×X is (S1,S2)-bidirected if for all (x, y), (u, v) ∈
X×X, there exists (z1, z2) ∈ X×X such that ((x, y)Si(z1, z2))∧((z2, z1)Si(y, x))
and ((u, v)Si(z1, z2)) ∧ ((z2, z1)Si(v, u)) for i = 1, 2.

Corollary 3.1. Let (X, d) be a complete metric space and F : X ×X → X
be an (CAB)-type contractive mapping satisfying the following conditions:
(i) Si is N -transitive for i = 1, 2 (N > 0);
(ii) For all (x, y), (u, v) ∈ X ×X, we have

(x, y)Si(u, v)⇒ (F (x, y), F (y, x))Si(F (u, v), F (v, u)) for i = 1, 2;

(iii) There exists (x0, y0) ∈ X ×X such that
(x0, y0)Si(F (x0, y0), F (y0, x0)),

(F (y0, x0), F (x0, y0))Si(y0, x0)
for i = 1, 2;
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(iv) F is continuous, or (X ×X, d) is (S1,S2)-biregular.
Then, F has a coupled fixed point (x∗, y∗) ∈ X ×X. Moreover, if X ×X

is (S1,S2)-bidirected, then we have the uniqueness of the coupled fixed point.

Proof. By Lemma 3.1, a pair (x, y) is a coupled fixed point of F if and only
if (x, y) is a fixed point of T . Now, consider the complete metric space
(Y, δ), where Y = X ×X and δ((x, y), (u, v)) = max{d(x, u), d(y, v)} for all
(x, y), (u, v) ∈ X ×X. Hence

ψ(d(F (x, y), F (u, v)) ≤ h(ψ(d(F (x, y), F (u, v))))

≤ f
(
α((x, y), (u, v)), β((x, y), (u, v)),

ψ(δ((x, u), (y, v))), φ(δ((x, u), (y, v)))
)
,

and

ψ(d(F (v, u), F (y, x))) ≤ h(ψ(d(F (v, u), F (y, x))))

≤ f
(
α((v, u), (y, x)), β((v, u), (y, x)),

ψ(δ((v, y), (u, x))), φ(δ((v, y), (u, x)))
)
.

Since ψ : [0,∞)→ [0,∞) is nondecreasing, then

ψ(max{r, s}) = max{ψ(r), ψ(s)} for all r, s ∈ [0,∞).

Hence, for all ξ := (ξ1, ξ2), η := (η1, η2) ∈ X ×X, we have

ψ(δ(Tξ, Tη)) ≤ h(ψ(δ(Tξ, Tη)))

≤ f(a(ξ, η), b(ξ, η), ψ(δ(ξ, η)), φ(δ(ξ, η))),

where a, b : Y × Y → [0,+∞) are the functions defined by

a((ξ1, ξ2), (η1, η2)) = max{α((ξ1, ξ2), (η1, η2)), α((η2, η1), (ξ2, ξ1))}
and

b((ξ1, ξ2), (η1, η2)) = min{β((ξ1, ξ2), (η1, η2)), β((η2, η1), (ξ2, ξ1))}
and T : Y → Y is given by (26). We shall prove that T is (a, b, ψ, φ, h, f)-
contractive mapping.

Define two binary relations R1 and R2 by ξR1η ⇔ a(ξ, η) ≤ 1 and ξR2η
⇔ b(ξ, η) ≥ 1 for all ξ, η ∈ X ×X.

First, we claim that Rj for j = 1, 2, are N -transitive. Let (xi, yi) ∈
X × X for all i ∈ {0, . . . , N}, such that (xi, yi)Rj(xi+1, yi+1) for j = 1, 2,
that is, a((xi, yi), (xi+1, yi+1)) ≤ 1 and b((xi, yi), (xi+1, yi+1)) ≥ 1 for all
i ∈ {0, . . . , N}.

By definitions of a and b, it follows that
α((xi, yi), (xi+1, yi+1)) ≤ 1

α((yi+1, xi+1), (yi, xi)) ≤ 1
for all i ∈ {0, . . . , N},
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and
β((xi, yi), (xi+1, yi+1)) ≥ 1

β((yi+1, xi+1), (yi, xi)) ≥ 1
for all i ∈ {0, . . . , N},

or
(x0, y0)Sj(xi+1, yi+1)

(xi+1, yi+1)Sj(xi, yi)
for j = 1, 2 and for all i ∈ {0, . . . , N}.

Hence by (i), we have

(x0, y0)Sj(xN+1, yN+1) and (xN+1, yN+1)Sj(x0, y0) for j = 1, 2,

that is,

α((x0, y0), (xN+1, yN+1)) ≤ 1; α((yN+1, xN+1), (y0, x0)) ≤ 1;

β((x0, y0), (xN+1, yN+1)) ≥ 1; β((yN+1, xN+1), (y0, x0)) ≥ 1;

or
(x0, y0)Rj(xN+1, yN+1) for j = 1, 2.

Then our claim holds.
Let ξ = (ξ1, ξ2), η = (η1, η2) ∈ Y such that a(ξ, η) ≤ 1 and b(ξ, η) ≥

1. Using condition (ii), we obtain immediately that a(Tξ, Tη) ≤ 1 and
b(Tξ, Tη) ≥ 1. Then T is Rj-preserving for j = 1, 2. Moreover, from condi-
tion (iii), we know that there exists (x0, y0) ∈ Y such that (x0, y0)RjT (x0, y0)
for j = 1, 2. If F is continuous, then T also is continuous. Then all the hy-
potheses of Theorem 2.1 are satisfied.

If (X × X, d) is (S1,S2)-biregular, then we easily have that (X × X, d)
is (R1,R2)-regular. Hence, Theorem 2.2 yields the result. We deduce the
existence of a fixed point of T that gives us from (26) the existence of a
coupled fixed point of F . Now, since X ×X is (S1,S2)-bidirected, one can
easily derive that X ×X is (R1,R2)-directed by regarding Lemma 3.1 and
Definition 3.5. Finally, by using Theorem 2.3, we obtain the uniqueness of
the fixed point of T , that is, the uniqueness of the coupled fixed point of
F . �

3.2. Fixed point results on metric spaces endowed with N-transitive
binary relation. In this subsection, we establish a fixed point theorem on
metric space endowed with N -transitive binary relation S.

Corollary 3.2. Let X be a non-empty set endowed with a binary relation S.
Suppose that there is a metric d on X such that (X, d) is complete metric
space. Suppose there exists a pair of generalized altering distance (ψ, φ),
h ∈ A and f̃ ∈ C such that T : X → X satisfies the following contraction

h(ψ(d(Tx, Ty))) ≤ f̃(1, 1, ψ(d(x, y)), φ(d(x, y))), for all xSy.
Suppose also that the following conditions hold:

(i) S is N -transitive (N > 0);
(ii) T is a S-preserving mapping;
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(iii) there exists x0 ∈ X such that x0STx0;
(iv) T is continuous or (X, d) is S-regular.
Then T has a fixed point. Moreover, if X is S-directed, we have the

uniqueness of the fixed point.

Proof. Define the mappings α, β : X ×X → [0,+∞) by

α(x, y) =

{
1, if xSy,
2 + h(ψ(d(Tx, Ty))), otherwise

and

β(x, y) =

{
1, if xSy,
0, otherwise

Now by using Definition 1.8, the conclusion follows directly from Theo-
rems 2.1-2.3 where f is given by

f(u, v, s, t) =

{
f̃(u, v, s, t), if u ≤ 1;

u, otherwise. �

3.3. Fixed point results for cyclic contractive mappings. In [21], Kirk
et al. generalized the Banach contraction principle and obtained some new
fixed point results for cyclic type contractive mappings. On the similar lines
we obtained some new results for cycllic type contraction mappings in this
section.

Let us define the binary relations R1 and R2.

Definition 3.6. Let X be a nonempty set and Ai, i ∈ {1, . . . , N} be
nonempty closed subsets ofX. We define two binary relationsRk for k = 1, 2
by

x, y ∈ X : xRky ⇔ (x, y) ∈ Γ :=

N⋃
i=1

(Ai ×Ai+1) with AN+1 := A1.

Corollary 3.3. For i ∈ {1, . . . , N}, let Ai be nonempty closed subsets of
a complete metric space (X, d), and let T : X → X be a given mapping.
Suppose that the following conditions hold:
(i) T (Ai) ⊆ Ai+1 for all i ∈ {1, . . . , N} with AN+1 := A1;
(ii) there exist a pair of generalized altering distance (ψ, φ), h ∈ A and

f̃ ∈ C such that

h(ψ(d(Tx, Ty))) ≤ f̃(1, 1, ψ(d(x, y)), φ(d(x, y))), for all (x, y) ∈ Γ.

Then T has a unique fixed point in ∩Ni=1Ai.
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Proof. Let Y :=
⋃N

i=1Ai. For all i ∈ {1, . . . , N}, we have by assumption that
each Ai is nonempty closed subset of the complete metric space X, which
implies that (Y, d) is complete. Define the mappings α, β : Y ×Y → [0,+∞)
by

α(x, y) =

{
1, if (x, y) ∈ Γ,

2 + h(ψ(d(Tx, Ty))), otherwise;

and

β(x, y) =

{
1, if (x, y) ∈ Γ,

0, otherwise.

Hence, Definition 3.6 is equivalent to Definition 1.8.
We start by checking that R1 and R2 are N -transitive. Indeed, let

x0, . . . , xN+1 ∈ Y such that xkR1xk+1 and xkR2xk+1 for all ∈ {0, . . . , N},
that is, α(xk, xk+1) ≤ 1 and β(xk, xk+1) ≥ 1, for all k ∈ {0, . . . , N} such
that x0 ∈ Ai, x1 ∈ Ai+1, . . . , xk ∈ Ai+k,. . . ,xN+1 ∈ Ai+N+1 = Ai+1, which
implies that (x0, xN+1) ∈ Ai×Ai+1 ⊆ Γ. Hence, we obtain α(x0, xN+1) ≤ 1
and β(x0, xN+1) ≥ 1, that is, x0R1xN+1 and x0R2xN+1, which implies that
R1 and R2 are N -transitive.

Next, from (ii) and the definition of α and β, we can write

h(ψ(d(Tx, Ty))) ≤ f(α(x, y), β(x, y), ψ(d(x, y)), φ(d(x, y))), for all x, y ∈ Y

where f is given by

f(u, v, s, t) =

{
f̃(u, v, s, t), if u ≤ 1

u, otherwise.

Thus, T is (CAB)-contractive mapping.
We claim next that T is R1-preserving and R2-preserving. Indeed, let

x, y ∈ Y such that xR1y and xR2y, that is, α(x, y) ≤ 1 and β(x, y) ≥ 1;
hence, there exists i ∈ {1, . . . , N} such that x ∈ Ai, y ∈ Ai+1. Thus,
(Tx, Ty) ∈ Ai+1 × Ai+2 ⊆ Γ , then α(Tx, Ty) ≤ 1 and β(Tx, Ty) ≥ 1, that
is, TxR1Ty and TxR2Ty. Hence, our claim holds.

Also, from (i), for any x0Ai for all i ∈ {1, . . . , N}, we have (x0, Tx0) ∈
Ai × Ai+1, which implies that α(x0, Tx0) ≤ 1 and β(x0, Tx0) ≥ 1, that is,
x0R1Tx0 and x0R2Tx0.

Now, we claim that Y is (R1,R2)-regular. Let {xn} be a sequence in
Y such that xn → x ∈ Y as n → ∞, and xnR1xn+1, xnR2xn+1 for all n,
that is, α(xn, xn+1) ≤ 1, β(xn, xn+1) ≥ 1 for all n. It follows that there
existi, j ∈ {1, . . . , N} such that xn ∈ Ai+n for all n ∈ N and x ∈ Aj , so
x(j−i−1+N)+kN ∈ Aj−1+(k+1)N = Aj−1 for all k ∈ N.

By letting n(k) := (j − i− 1 + N) + kN for all k ∈ N, we conclude that
the subsequence {xn(k)} satisfies (xn(k), x) ∈ Aj−1 × Aj ⊆ Γ for all k ∈ N,
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hence α(xn(k), x) ≤ 1 and β(xn(k), x) ≥ 1 for all k, that is, xn(k)R1x and
xn(k)R2x, which proves our claim.

Hence, all the hypotheses of Theorem 2.2 are satisfied on (Y, d), and we
deduce that T has a fixed point x∗ ∈ Y . Since x∗ ∈ Ai for some i ∈
{1, . . . , N} and x∗ = Tx∗ ∈ Ai+1 for all i ∈ {1, . . . , N}, then x∗ ∩Ni=1 Ai.

Moreover, it is easy to check that X is (R1,R2)-directed. Indeed, let
x, y ∈ Y with x ∈ Ai, y ∈ Aj , i, j ∈ {1, . . . , N}. For z = x∗ ∈ Y , we have
((α(x, z) ≤ 1) ∧ (α(y, z) ≤ 1)) and ((β(x, z) ≥ 1) ∧ (β(y, z) ≥ 1)). Thus, X
is (R1,R2)-directed.

Finally, the uniqueness follows by Theorem 2.3. �

4. Some related results

As a consequence of our results some fixed point theorems of Berzig and
Karapınar in [5] can be derived from our main results by taking f(x, y, z, t) =
xz − yt.

Corollary 4.1. Theorem 2.1 from [5] is a particular case of Theorem 2.1.

Corollary 4.2. Theorem 2.2 from [5] is a particular case of Theorem 2.2.

Corollary 4.3. Theorem 2.3 from [5] is a particular case of Theorem 2.3.

Moreover, corollaries in [5] on coupled fixed point, fixed point on partially
ordered metric spaces and fixed point for cyclic mappings can be derived
from our results by taking f̃(1, 1, z, t) = z − t. So, we have

Corollary 4.4. Corollary 3.1 from [5] is a particular case of Corollary 3.1.

Corollary 4.5. Corollary 3.2 from [5] is a particular case of Corollary 3.2.

Corollary 4.6. Corollary 3.3 from [5] is a particular case of Corollary 3.3.

Competing interests

The authors declare that there is no conflict of interests regarding the
publication of this article.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
équations integrales, Fund. Math., 3(1922), 133–181.

[2] M. Berzig, Coincidence and common fixed point results on metric spaces endowed with
an arbitrary binary relation and applications, J. Fixed Point Theory Appl. 12(2013),
221–238.

[3] M. Berzig and M-D. Rus, Fixed point theorems for α-contractive mappings of Meir-
Keeler type and applications, Nonlinear Anal. Model. Control. 19 (2), 178–198.

[4] M. Berzig, E. Karapınar, and A. Roldán. Discussion on generalized-(αψ, βϕ)-
contractive mappings via generalized altering distance function and related fixed point
theorems, Abstr. Appl. Anal. 2013 (2013) Article ID 634371.



Arslan Hojat Ansari, Maher Berzig, and Sumit Chandok 111

[5] M. Berzig and E. Karapınar, Fixed point results for (αψ, βφ)-contractive mappings
for a generalized altering distance, Fixed Point Theory Appl. 2013, 2013:205.

[6] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered
metric spaces and applications, Nonlinear Anal. 65 (2006), 1379–1393.

[7] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. American Math.
Soc. 20(1969), 458–464.

[8] S. Chandok, Some common fixed point theorems for generalized nonlinear contractive
mappings, Computers Math. Appl. 62 (10)(2011), 3692–3699.

[9] S. Chandok, On common fixed points for generalized contractive type mappings in
ordered metric spaces, Proc. Jangjeon Math. Soc. 16(2013), 327–333.

[10] S. Chandok, B. S. Choudhury and N. Metiya, Some fixed point results in ordered
metric spaces for rational type expressions with auxiliary functions, J. Egyptian Math
Soc. 23(1)(2015), 95-101 doi 10.1016/j.joems.2014.02.002.

[11] S. Chandok and S. Dinu, Common fixed points for weak ψ-contractive mappings
in ordered metric spaces with applications, Abs. Appl. Anal. 2013(2013) Article ID
879084.

[12] S. Chandok, E. Karapinar and M.S. Khan, Existence and uniqueness of common
coupled fixed point results via auxiliary functions, Bull. Iranian Math. Soc. 40(1)
(2014), 199–215.

[13] S. Chandok, T.D. Narang and M.A. Taoudi, Some common fixed point results in
partially ordered metric spaces for generalized rational type contraction mappings,
Veitnam J. Math. 41(3) (2013), 323–331.

[14] S. Chandok and M. Postolache, Fixed point theorem for weakly Chatterjea type cyclic
contractions, Fixed Point Theory Appl. 2013(2013):28.

[15] P. N. Dutta and B. S. Choudhury, A generalisation of contraction principle in metric
spaces, Fixed Point Theory Appl. vol. 2008 (2008) Article ID 406368.

[16] D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with
applications, Nonlinear Anal. 11(5)(1987), 623-632.

[17] E. Karapınar, Fixed point theory for cyclic weak φ-contraction, Appl. Math. Lett. 24
(2011), 822–825.

[18] E. Karapınar and K. Sadarangani, Fixed point theory for cyclic (φ-ψ)-contractions,
Fixed Point Theory Appl. 2011, 69:2011.

[19] M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances
between the points, Bull. Australian Math. Soc. 30(1984), 1–9.

[20] J. K. Kim and S. Chandok, Coupled common fixed point theorems for generalized
nonlinear contraction mappings with the mixed monotone property in partially ordered
metric spaces, Fixed Point Theory Appl. 2013, 2013:307.

[21] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying
cyclical contractive conditions, Fixed Point Theory 4(1) (2003), 79–89.

[22] J. J. Nieto and R. R. Lopez, Contractive mapping theorems in partially ordered sets
and applications to ordinary differential equations, Order 22 (2005), 223–239.



112 Some Fixed Point Theorems. . .

[23] J. J. Nieto and R. R. Lopez, Existence and uniqueness of fixed point in partially or-
dered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl.
Ser.) 23 (2007), 2205–2212.

[24] D. O’ Regan and A. Petrusel, Fixed point theorems for generalized contractions in
ordered metric spaces, J. Math. Anal. Appl. 341 (2008), 1241–1252.

[25] A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered
sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004),
1435–1443.

[26] B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an
arbitrary binary relation and applications, Commun. Math. Anal. 13(2)(2012), 82–97.

[27] B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α-ψ-contractive type map-
pings, Nonlinear Anal. 75(2012), 2154–2165.

[28] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47(2001),
2683–2693.

[29] M. Turinici, Contractive maps in locally transitive relational metric spaces, The Sci-
entific World Journal, 2014 (2014), Article ID 169358, 10 pages.

Arslan Hojat Ansari
Department of Mathematics
College of Basic Sciences
Karaj Branch, Islamic Azad University
Alborz
Iran
E-mail address: aminansari7@yahoo.com

Maher Berzig
Department of Mathematics
Tunis College of Sciences and Techniques
5 Avenue Taha Hussein
Tunis University
Tunisia
E-mail address: maher.berzig@gmail.com

Sumit Chandok
School of Mathematics
Thapar University
Patiala-147004
India
E-mail address: chansok.s@gmail.com

sumit.chandok@thapar.edu


	1. Introduction and Preliminaries
	2. Main Results
	3. Consequences
	3.1. Coupled fixed point results in complete metric spaces
	3.2. Fixed point results on metric spaces endowed with N-transitive binary relation
	3.3. Fixed point results for cyclic contractive mappings

	4. Some related results
	Competing interests
	References

