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On a General Class of q-Rational Type Operators

Nurhayat İspir

Abstract. In this study, we define a general class of rational type op-
erators based on q-calculus and investigate the weighted approximation
properties of these operators by using A-statistical convergence. We
also estimate the rates of A-statistical convergence of these operators
by modulus of continuity and Petree’s K-functional. The operators to
be introduced, include some well known q-operators so our results are
true in a large spectrum of these operators.

1. Introduction

K. Balazs [3] introduced the Bernstein type rational functions and proved
the convergence theorems for them. Later, K.Balazs and J.Szabados [4]
improved some estimates on the order of approximation for the Bernstein
type rational operators.

The generalization of the Bernstein type rational operators are introduced
by C. Atakut and N. Ispir [16] as follows

(1) Ln (f) (x) =
1

ψn(anx)

∞∑
k=0

f

(
k

bn

)
ψ
(k)
n (0)

k!
(anx)k, n ∈ N, x ≥ 0,

where an and bn are suitably chosen real numbers, independent of x. Here
{ψn} is a sequence of functions ψn : C → C satisfying the following condi-
tions:

a) ψn (n = 1, 2, . . . ) is analytic on a domain D containing the disk

B =
{
z ∈ C : |z − b| ≤ b

}
;

b) ψn(0) = 1, (n = 1, 2, . . . );
c) For any x ≥ 0, ψn(x) > 0 and ψ

(k)
n (0) ≥ 0 for any n = 1, 2, . . . ,

k = 1, 2, . . .
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d) For every n = 1, 2, . . . , it is

(2) lim
n

(
ψ
(ν)
n (anx)

nνψn(anx)
− 1

)
= 0; ν = 1, 2,

where an → 0, as n→∞.
In [16] the authors estimated the order of approximation for the oper-

ators defined by (1) and proved a Voronovskaja type asymptotic formula
and pointwise convergence in simultaneous approximation. In [13, 14, 18]
the approximation properties for different variants of the operators (1) were
investigated in various function spaces . In [17], the approximation proper-
ties of the Kantorovich variant of the operators (1) were given by the aid of
A-statistical convergence. Notice that A -statistical convergence is stronger
than usual convergence.

It is known that the applications of q-calculus in the area of approximation
theory have been an active area of research. In the recent years, the sta-
tistical approximation properties of some positive linear operators based on
q-integers have been studied intensively by many authors (e.g.[5, 15, 17, 21]).

The aim of this study is to introduce q-type generalization of the oper-
ators (1) and investigate the A-statistical approximation properties of the
constructed operators in weighted spaces. Using A-statistical convergence,
we obtain weighted Korovkin type theorem and weighted order of approxima-
tion by the constructed operators based q-calculus. Moreover, we estimate
the rate of A-statistical convergence by usual modulus of continuity and by
Petree’s K-functional in the different normed spaces for q-extension of the
operators (1).

Now, let us give a few basic definitions and notations in q-integers shortly.
Details on q-calculus can be found in [7]. Throughout the present paper, we
consider q as a real number such that 0 < q < 1, and for each nonnegative
integer i, the q-integer [i]q is defined by [i]q =

(
1− qi

)
/ (1− q) , [0]q := 0;

and q-factorial [i]q! is defined by [i]q! = [1]q [2]q . . . [i]q , [0]! := 1.
For fixed 0 < q < 1, the q-derivative of a function f : R→ R with respect

to x is defined byDqf (x) = f(qx)−f(x)
(q−1)x , x 6= 0 andDqf (0) = limx→0Dqf (x).

The chain rule for ordinary derivatives is similar for q-derivative.
At this point, we recall the q-Taylor theorem in the following.

Theorem A([7], p. 103.) If a function f(x) possess convergence series
expansion then

f (x) =

∞∑
n=0

(x− a)nq
[n]q!

Dn
q [f (a)]

where (x− a)nq =
n−1∏
s=0

(x− qsa) =
n∑
k=0

[
n
k

]
q

qk(k−1)xn−k (−a)k.

Now let us recall some concepts of the A-statistical convergence. Sup-
pose that A is non-negative summability matrix and let K be subset of N
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the set of natural numbers. The A−density of K is defined by δA(K) :=

lim
j

1
n

∞∑
n=1

ajnχK(n) provided limit exists, where χK characteristic function

of K. A sequence x = (xn) is called A−statistically convergent to L if
for every ε > 0 lim

j

∑
n: |xn−L|≥ε ajn = 0 or equivalently for every ε > 0,

δA {k ∈ N: |xk − L| ≥ ε} = 0. In this case we write stA − limx = L [8, 9].
The case in which A = C1, the Cesáro matrix of order one, A -statistical

convergence reduces to the statistical convergence [9, 19]. Also if A = I, the
identity matrix, then it reduces to the ordinary convergence. We note that,
if A = (ajn) is a non-negative regular matrix such that lim

j
max
n
{ajn} = 0,

then A-statistical convergence is stronger than convergence [19]. It should
be noted that the concept of A -statistical convergence may also be given
in normed spaces: Assume (X, ‖.‖) is a normed space and u = (uk) is a
X-valued sequence. Then (uk) is said to be A-statistically convergent

to u0 ∈ X if, for every ε > 0, δA {k ∈ N : ‖uk − u0‖ ≥ ε} = 0 [19].

2. Construction of operators and auxiliary results

Now we would like to introduce q-generalization of the operators (1 ).
Let (ϕn) be a sequence of real functions on R+ which are continuously

infinitely q−differentiable on R+ satisfying the following conditions
1. ϕn (0) = 1, for each n ∈ N
2. Dk

q ϕn (0) ≥ 0, for every n, k ∈ N, x ≥ 0

3. For every n ∈ N, with an = [n]β−1q , bn = [n]βq , q ∈ (0, 1] , 0 < β ≤ 2
3

(3) stA − lim
n

(
Dν
qϕn([n]β−1q x)

qν−1 [n]νq ϕn([n]β−1q x)
− 1

)
= 0 ; ν = 1, 2.

For fixed x ∈ R+, taking account to Theorem A we get

(4) ϕn

(
[n]β−1q x

)
=

∞∑
k=0

(
[n]β−1q x

)k
q

[k]q!
Dk
q ϕn (0) .

Using the formula (a+ b)nq =
n−1∏
s=0

(a+ qsb) =
∑n

k=0 q
k(k−1)/2

[
n
k

]
q

bkan−k

and taking a = 0, b = [n]β−1q x we write
(

[n]β−1q x
)k
q

= qk(k−1)/2
(

[n]β−1q x
)k

.

Choosing an = [n]β−1q , bn = [n]βq , 0 < β ≤ 2
3 , n ∈ N, we introduce q-

generalization of the operator (1) as follows

(5)

Ln,q (f) (x) =
1

ϕn([n]β−1q x)

∞∑
k=0

f

(
[k]q

[n]βq q
k−1

)
qk(k−1)/2

([n]β−1q x)k

[k]q!
Dk
qϕn(0),
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for each n ∈ N, x ≥ 0.
Note that:
• It is easily verified that the operators Ln,q are linear positive opera-
tors.
• The order of convergence is the best possible estimate for β ∈ (0, 2/3]
(see [4]).
• The present condition (3) is weaker than the present one given by
(2) for q = 1. Indeed, we can construct a sequence such that it is
statistically convergent to 1 but not convergent in the ordinary sense.
A well known example is defined as; αn =

√
n if n = m2 (m ∈ N),

and αn = 1 otherwise. Same result also works to A−statistical
convergence.

Lemma 2.1. For all n ∈ N, x ≥ 0 and 0 < q < 1 we get

(6) Ln,q (e0) (x) = 1,

(7) Ln,q (e1) (x) =
Dqϕn

(
[n]β−1q x

)
[n]q ϕn([n]β−1q x)

x,

(8) Ln,q (e2) (x) =
D2
qϕn

(
[n]β−1q x

)
q [n]2q ϕn([n]β−1q x)

x2 +
1

[n]βq

Dqϕn

(
[n]β−1q x

)
[n]q ϕn([n]β−1q x)

x

where (ei) (x) = xi, i = 0, 1, 2.

Proof. From (4) and definition of Ln,q (f) it is clear that Ln,q (e0) (x) = 1.
Considering (4 ), we can write the q-derivative of ϕn with respect to x as

(9) [n]β−1q Dqϕn

(
[n]β−1q x

)
=

∞∑
k=1

[k]q
[k]q!

[n]β−1q ([n]β−1q x)k−1q Dk
qϕn(0)

=

∞∑
k=1

[k]q
[k]q!

[n]β−1q q(k−1)(k−2)/2([n]β−1q x)k−1Dk
qϕn(0)

where used the equation (anx)kq = qk(k−1) (anx)k. Hence multiplying both

sides by x and dividing by [n]βq ϕn

(
[n]β−1q x

)
we obtain

(10)

Dqϕn

(
[n]β−1q x

)
[n]q ϕn

(
[n]β−1q x

)x =

=
1

ϕn

(
[n]β−1q x

) ∞∑
k=1

[k]q

[n]βq q
k−1

qk(k−1)/2
([n]β−1q x)k

[k]q!
Dk
qϕn(0)
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which gives the (7). We use a similar technique to get (8). Again differenti-
ating (9) with respect to x we have

(11)
(

[n]β−1q

)2
D2
qϕn

(
[n]β−1q x

)
=
∞∑
k=2

[k]q [k − 1]q
[k]q!

(
[n]β−1q

)2
q(k−2)(k−3)/2([n]β−1q x)k−2Dk

qϕn(0).

Using the equality [k − 1]q =
(

[k]q − qk−1
)
and multiplying both sides by

x2 we have (
[n]β−1q x

)2
D2
qϕn

(
[n]β−1q x

)
=
∞∑
k=1

[k]2q
[k]q!

q(k−2)(k−3)/2([n]β−1q x)kDk
qϕn(0)

−
∞∑
k=1

[k]q
[k]q!

qk−1 q(k−1)(k−2)/2([n]β−1q x)kDk
qϕn(0)

= q
∞∑
k=1

(
[k]q
qk−1

)2

qk(k−1)/2([n]β−1q x)k
Dk
qϕn(0)

[k]q!

− q
∞∑
k=1

[k]q
qk−1

qk(k−1)/2([n]β−1q x)k
Dk
qϕn(0)

[k]q!
.

Dividing by [n]2βq ϕn

(
[n]β−1q x

)
we write(

[n]β−1q x
)2
D2
qϕn

(
[n]β−1q x

)
[n]2βq ϕn

(
[n]β−1q x

)
=

q

ϕn

(
[n]β−1q x

) ∞∑
k=1

(
[k]q

[n]βq q
k−1

)2

qk(k−1)/2([n]β−1q x)k
Dk
qϕn(0)

[k]q!

− q

[n]βq ϕn

(
[n]β−1q x

) ∞∑
k=1

[k]q

[n]βq q
k−1

qk(k−1)/2([n]β−1q x)k
Dk
qϕn(0)

[k]q!

which gives the (8) by using formulas (5) and (10). �

3. A-Statistical convergence in weighted spaces

Let ρ denotes a continuous weight function with ρ(x) ≥ 1, x ∈ [0,∞)
and ρ (x) → ∞ as x → ∞. Let Bρ be the weighted space of all functions
f defined on the R+ satisfying the condition |f(x)| ≤ Mfρ(x) with some
constant Mf , depending only on f . By Cρ, let us denote the subspace of
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all continuous functions belong to Bρ. Also, let C0
ρ be the subspace of all

functions f ∈ Cρ for which lim
|x|→∞

f(x)/ρ(x) = 0. Endowed with the norm

‖f‖ρ = supx≥0 (|f (x)| /ρ (x)) these spaces are Banach spaces. Note that
the weighted Korovkin type theorem were proved by A.D. Gadjiev [10, 11].
Using A-statistical convergence, the weighted Korovkin type theorem was
given in [6].

Let {Ln,q} be the sequence of linear positive operators defined by (5).
Then it is easily seen that Ln,q : Cρ → Bρ.

Let q = {qn} be a sequence satisfying the following conditions

(12) stA − lim
n
qn = 1 and stA − lim

n
qnn = a, (0 ≤ a < 1) .

The condition (12) guaranties that stA − limn

(
[n]−1q

)
= 0.

Now we are ready to prove our first result which is related to the A -
statistical convergence the sequence of {Ln,qn (f)} to f .

Theorem 3.1. Let A = (ajn) be non-negative regular summability matrix,
the sequence q = {qn} satisfies (12) with qn ∈ (0, 1] for all n ∈ N. Then for
every f ∈ C0

ρ [0,∞), stA − lim
n
‖Ln,qn (f)− f‖ρ = 0 where ρ (x) = 1 + x2.

Proof. From Lemma1, it is obvious that stA − lim
n
‖Ln,q (e0)− e0‖ρ = 0.

Using the (6), we get

|Ln,qn (e1) (x)− e1 (x)|
1 + x2

=
x

1 + x2

∣∣∣∣∣∣
Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

∣∣∣∣∣∣
≤ ‖e1‖ρ

∣∣∣∣∣∣
Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

∣∣∣∣∣∣ = Bn,qn (ϕn, x) .

Now, for a given ε > 0, we define the sets U =
{
n : ‖Ln,qn (e1)− e1‖ρ ≥ ε

}
and U1 = {n : Bn,qn (ϕn, x) ≥ ε} . It is clear that U ⊂ U1 and hence

δA

{
n ∈ N : ‖Ln,qn (e1)− e1‖ρ ≥ ε

}
≤ δA {n ∈ N : Bn,qn (ϕn, x) ≥ ε} .

From the condition (3) we get stA − limBn,qn (ϕn, x) = 0. Therefore, it is
clear that

δA {n ∈ N : Bn,qn (ϕn, x) ≥ ε} = 0

and hence we have

δA

{
n ∈ N : ‖Ln,qn (e1)− e1‖ρ ≥ ε

}
= 0,
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which implies
stA − lim ‖Ln,qn (e1)− e1‖ρ = 0.

Similarly from (8) we can write

|Ln,qn (e2)− e2| =

 D2
qnϕn

(
[n]β−1qn

x
)

qn [n]2qn ϕn([n]β−1qn
x)
− 1

x2

+
1

[n]βqn

Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

x+
1

[n]βqn
x

and hence we get

|Ln,qn (e2)− e2|
1 + x2

≤ ‖e2‖ρ

∣∣∣∣∣∣
D2
qnϕn

(
[n]β−1qn

x
)

qn [n]2qn ϕn([n]β−1qn
x)
− 1

∣∣∣∣∣∣
+

1

[n]βqn
‖e1‖ρ

∣∣∣∣∣∣
Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

∣∣∣∣∣∣+
1

[n]βqn
‖e1‖ρ

≤ Bn,qn (ϕn, x) +
1

[n]βqn
Cn,q (ϕn, x) +

1

[n]βqn
,

Now for given ε > 0, let us define the following sets

V =
{
n : ‖Ln,qn (e2)− e2‖ρ ≥ ε

}
,

V1 =
{
n : Bn,qn (ϕn, x) ≥ ε/3

}
,

V2 =
{
n : Cn,qn (ϕn, x) ≥ ε/3

}
,

V3 =
{
n : [n]−βqn ≥ ε/3

}
.

It is obviously that V ⊂ V1 ∪ V2 ∪ V3. From the condition (12) we get

(13) stA − lim
1

[n]βqn
= stA − lim

n→∞
((1− qn) / (1− qnn))β = 0

with 0 < β ≤ 2/3. Hence by the condition (3) we have stA−limBn,qn (ϕn, x) =
0 and stA − limCn,qn (ϕn, x) = 0. Then we obtain δA (Vk) = 0, k =
1, 2, 3. Since δA (V ) ≤ δA (V1) + δA (V2) + δA (V3) we find that stA −
lim ‖Ln,qn (e2)− e2‖ρ = 0.

Consequently we obtain that stA − lim ‖Ln,qn (ei)− ei‖ρ = 0, i = 0, 1, 2

which completes the proof of the Theorem according to the weighted Ko-
rovkin type Theorem [12, 6, 10]. �

As a consequence, for all n ∈ N, x ≥ 0 and 0 < qn < 1, we have

(14) stA − lim
n
‖Ln,qn ((e1 − e0x)ν)‖ρ = 0, ν = 1, 2
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where

(15) Ln,qn ((e1 − e0x)) (x) =

Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

x,

(16)

Ln,qn

(
(e1 − e0x)2

)
(x)

=

 D2
qnϕn

(
[n]β−1qn

x
)

qn [n]2qn ϕn([n]β−1qn
x)
− 2

Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)

+ 1

x2

+
1

[n]βqn

Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

x+
1

[n]βqn
x.

Theorem 3.2. Let A = (ajn) be non-negative regular summability matrix,
the sequence q = {qn} satisfies (12) with qn ∈ (0, 1] for all n ∈ N. If any
function f ∈ Cρ, satisfies the Lipschitz condition that is

|f (t)− f (x)| ≤M |t− x|α , 0 ≤ α < 1, x, t ≥ 0

then

stA − lim
n

sup
x≥0

|Ln,qn (f) (x)− f (x)|
1 + xα

= 0

where M is a constant.

Proof. Since Ln,qn is a linear positive operator and f satisfies the Lipschitz
condition we can write,

|Ln,qn (f) (x)− f (x)| ≤ Ln,qn (|f (t)− f (x)|) (x)

≤ M

ϕn([n]β−1qn
x)

∞∑
k=0

∣∣∣∣∣ [k]q

[n]βqn q
k−1
n

− x

∣∣∣∣∣
α

([n]β−1qn
x)kn

[k]qn !
Dk
qnϕn(0).

Applying the Holder inequality with p = 2/α, s = 2/ (2− α) and saying

Bn,qn,k (ϕn;x) := ϕ−1n ([n]β−1qn
x)

([n]β−1qn
x)kn

[k]qn !
Dk
qnϕn(0), from Lemma 1 we get

|Ln,qn (f) (x)− f (x)| ≤M

 ∞∑
k=0

(
[k]qn

[n]βqn q
k−1
n

− x

)2

Bn,qn,k (ϕn;x)

α/2

×

( ∞∑
k=0

Bn,qn,k (ϕn;x)

)(2−α)/2

= M
(
Ln,qn

(
(e1 − e0x)2

)
(x)
)α/2

.
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Taking account to (16) and using the conditions (3) and (12),similarly
with the proof of the Theorem1, we obtain the desired result. �

Now, we concern with the order of approximation of a function f ∈ C0
ρ

by the linear positive operator Ln,q. We will use the weighted modulus of
continuity defined by

Ωm(f ; δ) = sup
x∈[0,∞), |h|≤δ

|f(x+ h)− f(x)|
1 + (x+ h)m

,

for each f ∈ C0
ρ , ρ(x) = 1 + xm, x ∈ [0,∞), m ∈ N.

The weighted modulus of continuity has the following properties (see [14]):

(i) lim
δ→0

Ωm(f ; δ) = 0 for each f ∈ C0
ρ

(ii) Ωm(f ;λδ) ≤ (λ+1) Ωm(f ; δ) for each positive real number λ, m ∈ N
(iii) |f(t)− f(x)| ≤ (1 + (x+ |t− x|)m)

(
|t−x|
δ + 1

)
Ωm(f ; δ) for every

x, t ∈ [0,∞),m ∈ N.
Notice that, if f is not uniformly continuous on the interval [0,∞); then

the usual first modulus of continuity ω(f ; δ) does not tend to zero, as δ → 0.
It is seen that Ωm(f ; δ)→ 0,as δ → 0 for all f ∈ C0

ρ due to the property (i).
We now give second our main result. The following theorem is given an

estimate for the approximation error with the operators Ln,qn (f), by means
of Ω1(f ; δ) with ρ(x) = 1 + x.

Theorem 3.3. Let {qn} be a sequence satisfying the condition (12) with
qn ∈ (0, 1] for all n ∈ N. Suppose that the condition(

Dν
qnϕn([n]β−1qn

x)

qν−1n [n]νqn ϕn([n]β−1qn
x)
− 1

)
= O

(
1/ [n]βqn

)
holds instead of (3). If f ∈ C0

ρ with ρ(x) = 1 + x then the inequality

(17) ‖Ln,qn (f) (x)− f (x)‖ρ2 ≤ C Ω1

(
f ; 1/

√
[n]βqn

)(
1 + 1/ [n]βqn

)
holds where ρ2 (x) = 1 + x2 and C is a constant independent of f and n.

Proof. Considering the definition of Ω1(f ; δ) and by using the property (iii)
of Ω1(f ; δ) we can write

|f(t)− f(x)| ≤ (1 + x+ |t− x|)
(
|t− x|
δ

+ 1

)
Ω1(f ; δ)

≤ (1 + 2x+ t)

(
|t− x|
δ

+ 1

)
Ω1(f ; δ).
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Since Ln,qn is a linear and positive operator we get

(18)

|Ln,qn (f) (x)− f (x)| ≤ Ln,qn (|f(t)− f(x)|) (x)

≤ Ω1(f ; δ)

[
Ln,qn (1 + 2x+ t) (x)

+ Ln,qn

(
(1 + 2x+ t)

|t− x|
δ

)
(x)

]
.

To estimate the first term, considering (6) and (7), we can write

(19)

(Ln,qn ((1 + 2x+ t)) (x))

= (1 + 2x)Ln,qn (e0) (x) + Ln,qn (e1) (x)

= (1 + 3x) +

 1

[n]βqn

Dqnϕn

(
[n]β−1qn

x
)

[n]qn ϕn([n]β−1qn
x)
− 1

x

≤ 3 (1 + x)
[
1 +O

(
1/ [n]βqn

)]
.

Applying the Cauchy-Schwarz inequality to the second term in (18), since
Ln,qn is a linear and positive, we get

(20)
Ln,qn

(
(1 + 2x+ t) |t−x|δ

)
(x)

≤
(
Ln,qn

(
(1 + 2x+ t)2

)
(x)
)1/2

×
(
Ln,qn

(
(t−x)2
δ2

)
(x)
)1/2

.

We now estimate the first term. By using (6),(7) and (8) and by simple
calculations ,we get

(21)
(
Ln,qn

(
(1 + 2x+ t)2

)
(x)
)1/2

≤ 4 (1 + x)

[
1 +O

(
1

[n]βqn

)]1/2
.

Taking into account (16), if we estimate the second term then we get

(22)

(
Ln,qn

(
|t− x|
δ2

2
)

(x)

)1/2

=
1

δ

(
Ln,qn

(
(e1 − e0x)2

)
(x)
)1/2

=
1

δ

(
O

(
1

[n]βqn

)(
x2 + x

))1/2

≤ 1

δ

(
O

(
1

[n]βqn

)
(1 + x)2

)1/2

≤ 1

δ
(1 + x)

√
C1

[n]βqn
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with C1 is a constant independent of n. Combining (19), (20), (21) and
(22) with (18) we have

|Ln,qn (f) (x)− f (x)|

≤ Ω1(f ; δ)× C2 (1 + x)2
[
1 +O

(
1/ [n]βqn

)](
1 +

1

δ

√
1

[n]βqn

)
,

where C2 = max {3, 4C1}. Taking δ := δn =
(

1/ [n]βqn

)1/2
we obtain

|Ln,qn (f) (x)− f (x)| ≤ 2C2Ω1(f ; δn)
(
1 + x2

) [
C3 +O

(
1/ [n]βqn

)]
≤ CΩ1(f ; δn)

(
1 + x2

) [
1 +O

(
1/ [n]βqn

)]
,

with C3 = supx≥0
(1+x)2

1+x2
, C = max {2C2, C3, C3C1} which gives that the

(17).
We notice that, from (13), it is clear that stA − limn δn → 0 as n → ∞.

Therefore stA− limn Ω1(f ; δn)→ 0 due to the property (i) of Ω1(f ; δ). Con-
sequently, order of A-statistical convergence of the sequence of {Ln,qn (f)}

to f is
(

1/ [n]βqn

)1/2
in the ρ2-norm. �

4. Local Approximation

Theorem 4.1. Let {qn} be a sequence satisfying the condition (12) with
qn ∈ (0, 1] for all n ∈ N. We have

1) For any f ∈ Cρ we have

|Ln,qn (f) (x)− f (x)| ≤ 2ω(f ;
√
δn,x)

where ω (f, δ) is the usual first modulus of continuity of f and

(23) δn,x = Ln,qn

(
(e1 − e0x)2

)
(x)

and stA − limn δn,x = 0, for all fixed x ∈ [0,∞).
2) If f ∈ Cρ satisfies the Lipschitz condition then |Ln,qn (f) (x)− f (x)| ≤

Mδ
α/2
n,x , 0 ≤ α < 1.

Proof. 1) Using the linearity and positivity of the operator Ln,qn and the
known properties of ω (f, δ) and applying Cauchy -Schwarz inequality we
obtain

|Ln,qn (f) (x)− f (x)| ≤ Ln,qn (|f (t)− f (x)|) (x)

≤ ω(f ; δ)

[
Ln,qn (e0) (x) +

1

δ

(
Ln,qn (e1 − e0x)2 (x)

)1/2]
.

By choosing δ =
√
δn,x as in (23), we reach the desired result. Notice

that, taking into account (14), we get stA − limn δn,x = 0 for all fixed x.
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Hence we have stA − limn ω(f ; δn,x) = 0. This gives the pointwise rate of
A-statistical convergence of the operator Ln,qn (f) to the function f .

2) Considering the proof of Theorem 2 and formula (23) we obtain that

|Ln,qn (f) (x)− f (x)| ≤M
(
Ln,qn

(
(e1 − e0x)2

)
(x)
)α/2

= Mδα/2n,x . �

Now we give the rate of A−statistical convergence for the operators
Ln;qn (f) by using the Peetre’s K−functional in the space C2

B [0,∞).
Let CB [0,∞) be the space of all real valued uniformly continuous and

bounded functions f on the interval [0,∞) with the norm

‖f‖CB = sup
x∈[0,∞)

|f(x)| .

The Peetre’s K-functional of function f ∈ CB [0,∞) is defined by

K(f ; δ) = inf
g∈C2

B

{
‖f − g‖CB + δ ‖g‖C2

B

}
where δ > 0 and C2

B [0,∞) = {f ∈ CB : f ′, f ′′ ∈ CB [0,∞)} endowed with
the norm

(24) ‖f‖C2
B

= ‖f‖CB +
∥∥∥f ′∥∥∥

CB
+
∥∥∥f ′ ′∥∥∥

CB
.

Theorem 4.2. For each f ∈ C2
B [0,∞) we have

stA − lim
n
‖Ln,qnf − f‖CB = 0.

Proof. Applying the Taylor expansion to the function f ∈ C2
B [0,∞), we

can write

Ln,qn (f) (x)− f(x) = f ′′(x)Ln,qn ((e1 − e0x)) (x)

+
1

2
f ′′ (ζ)Ln,qn

(
(e1−e0x)2

)
(x) , ζ ∈ (t, x),

where Ln,qn ((e1−e0x)) (x) , Ln,qn

(
(e1−e0x)2

)
(x) are given by (15) and (16)

respectively.
Hence

(25)
‖Ln,qn (f)− f‖CB ≤

∥∥f ′∥∥
CB
‖Ln,qn ((e1 − e0x))‖C[0,A]

+
∥∥f ′′∥∥

CB

∥∥∥Ln,qn ((e1 − e0x)2
)∥∥∥

C[0,α]
.

Now for given ε > 0, let us define U =
{
n ∈ N : ‖Ln,qn (f)− f‖C[0,α] ≥ ε

}
,

U1 =
{
n ∈ N :

∥∥f ′∥∥
CB
‖Ln,qn ((e1 − e0x))‖

C[0,α]
≥ ε/2

}
,
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U2 =

{
n ∈ N :

∥∥f ′′∥∥
CB

∥∥∥Ln,qn ((e1 − e0x)2
)∥∥∥

C[0,α]
≥ ε/2

}
.

It is obvious that U ⊂ U1∪U2 and hence δAU ≤ δAU1+δAU2. By using (14)
we get stA − lim

n
‖Ln,qn ((e1 − e0x)ν)‖C[0,α] = 0, ν = 1, 2 with [0, α] ⊂ [0,∞)

and ‖, ‖C[0,α] is maximum norm. Therefore we obtain δAU1 = 0, δAU2 = 0

so δAU = 0 which completes the proof. �

Theorem 4.3. For each f ∈ CB [0,∞)

‖Ln,qn (f)− f‖CB ≤ K (f ; δn,x)

where {K (f ; δn,x)}is the sequence of Peetre’s K-functional and

δn,x = ‖Ln,qn (e1 − e0x)‖
C[0,α]

+
∥∥∥Ln (e1 − e0x)2

∥∥∥
C[0,α]

and stA − lim
n
δn,x = 0 for each fixed x ∈ [0,∞).

Proof. For each g ∈ C2
B [0,∞) ,by using (24) and ( 25), we get

‖Ln,qg − g‖C2
B
≤
(
‖Ln,qn (e1 − e0x)‖C[0,α]

+
∥∥∥Ln,qn (e1 − e0x)2

∥∥∥
C[0,α]

)
‖g‖C2

B

= δn,x ‖g‖C2
B

say.

For each f ∈ CB [0,∞) and g ∈ C2
B [0,∞), we obtain

‖Ln,qnf − f‖C2
B
≤ ‖Ln,qnf − Ln,qng‖CB + ‖Ln,qng − g‖C2

B
+ ‖g − f‖CB

≤ 2 ‖g − f‖CB + ‖Ln,qng − g‖C2
B

≤ 2 ‖g − f‖CB + δn,x ‖g‖C2
B

≤ 2
(
‖g − f‖CB + δn,x ‖g‖C2

B

)
.

Taking the infimum on the right hand side over all g ∈ C2
B [0,∞) we get

‖Ln,qnf − f‖C2
B
≤ K (f ; δn,x) .

By (14), we get stA− lim
n
δn,x = 0 so stA− lim

n
K (f ; δn,x) = 0. Therefore we

obtain the rate of A−statistical convergence of the sequence of the operators
Ln,qn (f) to f in the space CB [0,∞). �

5. Concluding Remarks

Some particular cases of the operators Ln,q are defined as follows:
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a) If we take ϕn (x) = (1 + x)nq then we obtain q-Balazs-Szabados
operators which are studied by O. Dogru [5]. In [5], the function f
has been taken as f

(
[k]q / [n]βq

)
instead of f

(
[k]q /q

k−1 [n]βq

)
which

is a natural generalization of q-Balazs-Szabados operators.
b) Taking into account the q-analogues of the exponential function

given by Eq

(
[n]q x

)
=
∑∞

k=0 q
k(k−1)/2 ([n]βq x)

k

[k]q !
and eq

(
[n]q x

)
=∑∞

k=0
([n]qx)

k

[k]q !
choosing ϕn (x) = Eq

(
− [n]q x

)
or ϕn (x) = eq

(
− [n]q x

)
,

with β = 1, we obtain q-Szasz-Mirakjan operators studied in differ-
ent spaces in [1] and [20], respectively.

c) Taking ϕn (x) =
(
1 + qn−1x

)−n
q

we obtain the q-analogue of classical
Baskakov operators studied in [2].

Consequently theA−statistical approximation properties are valid in large
spectrum of the operators (5).

If we take A = I, identity matrix, we have the ordinary rate of conver-
gence for the operators (5) (see, [14, 16]).
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