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Stability for Nonlinear Neutral Integro-Differential
Equations with Variable Delay

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. In this paper we use the contraction mapping principle
to obtain asymptotic stability results of a nonlinear neutral integro-
differential equation with variable delay. An asymptotic stability theo-
rem with a necessary and sufficient condition is proved, which improves
and generalizes some previous results due to Burton [7], Becker and
Burton [6] and Jin and Luo [17]. In the end we provide an example to
illustrate our claim.

1. Introduction

Incontestably, Lyapunov’s direct method has been, for more than 100
years, the main tool for investigating the stability properties of a wide vari-
ety of ordinary, functional, partial differential and integro-differential equa-
tions. Nevertheless, the application of this method to problems of stability in
differential and integro-differential equations with delays has encountered se-
rious obstacles if the delays are unbounded or if the equation has unbounded
terms [8]–[10]. In recent years, several investigators have tried stability by
using a new technique. Particularly, Burton, Furumochi, Becker and others
began a study in which they noticed that some of these difficulties vanish
or might be overcome by means of fixed point theory (see [1]–[21], [23]).
The fixed point theory does not only solve the problem on stability but has
other significant advantage over Lyapunov’s. The conditions of the former
are often averages but those of the latter are usually pointwise (see [8]).

In this paper we consider the nonlinear neutral integro-differential equa-
tion with variable delay

(1)
d

d t
x (t) = −

∫ t

t−τ(t)
a (t, s)x (s) d s+

d

d t
Q (t, x (t− τ (t))) ,

with the initial condition

x (t) = ψ (t) for t ∈ [m (0) , 0] ,
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2 Stability for Integro-Differential Equations

where ψ ∈ C ([m (0) , 0] ,R) and m (0) = inf {t− τ (t) , t ≥ 0}.
Here C (S1, S2) denotes the set of all continuous functions ϕ : S1 → S2

with the supremum norm ‖·‖. Throughout this paper we assume that a ∈
C(R+ × [m (0) ,∞) ,R) and τ ∈ C (R+,R+) with t − τ (t) → ∞ as t → ∞.
The function Q (t, x) is globally Lipschitz continuous in x. That is, there is
positive constant L such that

(2) |Q (t, x)−Q (t, y)| ≤ L ‖x− y‖ .

We also assume that

(3) Q (t, 0) = 0.

Special cases of equation (1) have been investigated by many authors. For
example, Burton in [7], Becker and Burton in [6], Jin and Luo in [17] have
studied the equation

(4) x′ (t) = −
∫ t

t−τ(t)
a (t, s)x (s) d s,

and have respectively proved the following theorems.

Theorem 1.1 (Burton [7]). Suppose that τ (t) = r and there exists a con-
stant α < 1 such that

(5) 2

∫ t

t−r
|A (t, s)|d s ≤ αfor all t ≥ 0,

and

(6)
∫ t

0
A (s, s) d s→∞ as t→∞,

where

A (t, s) =

∫ r

t−s
a (u+ s, s) d u with A (t, t) =

∫ r

0
a (u+ t, t) d u.

Then the zero solution of (4) is asymptotically stable.

Theorem 1.2 (Becker and Burton [6]). Suppose that τ is differentiable,
t− τ (t) is strictly increasing, and there exist constants k ≥ 0, α ∈ (0, 1) uch
that for t ≥ 0,

(7) −
∫ t

0
G (s, s) d s ≤ k,

and

(8)

∫ t

t−τ(t)
|G (t, s)|d s

+

∫ t

0
e−

∫ t
s G(u,u) d u |G (s, s)|

(∫ s

s−τ(s)
|G (s, u)|d u

)
d s ≤ α,
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with

G (t, s) =

∫ f(s)

t
a (u, s) d u,

G (t, t) =

∫ f(t)

t
a (u, t) d u,

where f is the inverse function of t − τ (t). Then for each continuous ini-
tial function ψ : [m (0) , 0] → R, there is a unique continuous function
x : [m (0) ,∞) → R with x (t) = ψ (t) on [m (0) , 0] that satisfies (4) on
[0,∞). Moreover, x is bounded on [m (0) ,∞). Furthermore, the zero solu-
tion of (4) is stable at t = 0. If , in addition,

(9)
∫ t

0
G (s, s) d s→∞ as t→∞,

then x (t)→ 0 as t→∞.

Theorem 1.3 (Jin and Luo [17]). Let τ be differentiable. Suppose that there
exist constants k ≥ 0, α ∈ (0, 1) and a function h ∈ C (R+,R) such that for
t ≥ 0,

(10) −
∫ t

0
h (s) d s ≤ k,

and

(11)

∫ t

t−τ(t)
|h (s) +B (t, s)| d s

+

∫ t

0
e−

∫ t
s h(u) d u |h (s)|

(∫ s

s−τ(s)
|h (u) +B (s, u)| d u

)
d s

+

∫ t

0
e−

∫ t
s h(u) d u |h (s− τ (s)) +B (s, s− τ (s))|

∣∣1− τ ′ (s)∣∣ ≤ α,
where

(12)
B (t, s) =

∫ s

t
a (u, s) d u, with

B (t, t− τ (t)) =
∫ t−τ(t)

t
a (u, t− τ (t)) d u.

Then for each continuous initial function ψ : [m (0) , 0] → R, there is an
unique continuous function x : [m (0) ,∞) → R with x (t) = ψ (t) on
[m (0) , 0] that satisfies (4) on [0,∞). Moreover, x is bounded on [m (0) ,∞).
Furthermore, the zero solution of (4) is stable at t = 0. If, in addition,

(13)
∫ t

0
h (s) d s→∞ as t→∞,

then x (t)→ 0 as t→∞.
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In a recent work, we have studied the linear neutral equation

(14) x′ (t) = −
∫ t

t−τ(t)
a (t, s)x (s) d s+ c (t)x′ (t− τ (t)) ,

and have have obtained the following result.

Theorem 1.4 (Ardjouni, Djoudi and Soualhia [5]). Suppose that τ is twice
continuously differentiable with τ ′ (t) 6= 1 for all t ∈ R+, c is continuously
differentiable on R+, and there exist continuous function h : [m (0) ,∞)→ R
and a constant α ∈ (0, 1) such that for t ≥ 0

(15) lim inf
t→∞

∫ t

0
h (s) d s > −∞,

and

(16)

∣∣∣∣ c (t)

1− τ ′ (t)

∣∣∣∣+ ∫ t

t−τ(t)
|h (s) +B (t, s)| d s

+

∫ t

0
e−

∫ t
s h(u) d u

∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)
− r (s)

∣∣∣ d s
+

∫ t

0
e−

∫ t
s h(u) d uh (s)

(∫ s

s−τ(s)
|h (u) +B (s, u)| d u

)
d s ≤ α

where B is given by (12) and

(17) r (t) =
[c (t)h (t) + c′ (t)] (1− τ ′ (t)) + c (t) τ ′′ (t)

(1− τ ′ (t))2
.

Then the zero solution of (14) is asymptotically stable if and only if

(18)
∫ t

0
h (s) d s→∞, as t→∞.

Remark 1.1. The result of Becker and Burton obtained in Theorem 1.2
requires that t − τ (t) is strictly increasing. However, in Theorem 1.3, this
condition is clearly removed. Also, the conditions of stability in Theorem 1.3
are less restrictive than Theorem 1.2. That is, Theorem 1.3 improves Theo-
rems 1.1 and 1.2. Moreover, if we let c = 0 in (14) then the equation reduces
to (4). Consequently, Theorem 1.4 is a generalization of both theorems 1.1,
1.2 and 1.3.

Note that in our consideration the neutral term d
d tQ (t, x (t− τ (t))) of

(1) produces nonlinearity in the derivative term d
d tx (t− τ (t)). The neutral

term d
d tx (t− τ (t)) in [5] enters linearly. So, the analysis made here is

different form that in [5].
Our objective here is to improve Theorem 1.3 and extend it to investigate

a wide class of nonlinear integro-differential equation with variable delay of
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neutral type presented in (1). To do this we define a suitable continuous
function h (see Theorem 2.1 below) and find conditions for h, with no need
of further assumptions on the inverse of the delay t − τ (t), so that for a
given continuous initial function ψ a mapping P for (1) is constructed in
such a way to map a complete metric space Sψ in itself and in which P
possesses a fixed point. This procedure will enable us to establish and prove
an asymptotic stability theorem for the zero solution of (1) with a necessary
and sufficient condition and with less restrictive conditions. The results
obtained in this paper improve and generalize the main results in [6, 7, 17].
We provide an example to illustrate our claim.

2. Main results

For each ψ ∈ C ([m (0) , 0] ,R), a solution of (1) through (0, ψ) is a con-
tinuous function x : [m (0) , σ) → R for some positive constant σ > 0 such
that x satisfies (1) on [0, σ) and x = ψ on [m (0) , 0]. We denote such a so-
lution by x (t) = x (t, 0, ψ). We define ‖ψ‖ = max {|ψ (t)| : m (0) ≤ t ≤ 0}.
Stability definitions may be found in [8], for example.

Our purpose here is to extend Theorem 1.3 by giving a necessary and
sufficient condition for asymptotic stability of the zero solution of equation
(1). But, to reach this end, one crucial step in the investigation of the
stability of an equation using fixed point technic involves the construction of
a suitable fixed point mapping. This can, in so many cases, be an arduous
task. So, to construct our mapping, we begin by transforming (1) to a
more tractable, but equivalent, equation, which we then invert to obtain an
equivalent integral equation from which we derive a fixed point mapping.
After then, we define prudently a suitable complete space, depending on
the initial condition, so that the mapping is a contraction. Using Banach’s
contraction mapping principle, we obtain a solution for this mapping, and
hence a solution for (1), which is asymptotically stable.

First, we have to transform (1) into an equivalent equation that possesses
the same basic structure and properties to which we apply the variation of
parameters to define a fixed point mapping.

Lemma 2.1. Equation (1) is equivalent to

(19)

d

d t
x (t) = B (t, t− τ (t))

(
1− τ ′ (t)

)
x (t− τ (t))

+
d

d t

∫ t

t−τ(t)
B (t, s)x (s) d s+

d

d t
Q (t, x (t− τ (t))) ,

where

B (t, s) =

∫ s

t
a (u, s) d u and B (t, t− τ (t)) =

∫ t−τ(t)

t
a (u, t− τ (t)) d u.
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Proof. Differentiating the integral term in (19), we obtain

d

d t

∫ t

t−τ(t)
B (t, s)x (s) d s = B (t, t)x (t)

−B (t, t− τ (t))
(
1− τ ′ (t)

)
x (t− τ (t)) +

∫ t

t−τ(t)

∂

∂t
B (t, s)x (s) d s.

Substituting this into (19), it follows that (19) is equivalent to (1) provided
B satisfies the following conditions

(20) B (t, t) = 0 and
∂

∂t
B (t, s) = −a (t, s) .

Now (20) implies

(21) B (t, s) = −
∫ t

0
a (u, s) d u+ φ (s) ,

for some function φ and B (t, s) must satisfy

B (t, t) = −
∫ t

0
a (u, t) d u+ φ (t) = 0.

Consequently,

φ (t) =

∫ t

0
a (u, t) d u.

Substituting this into (21), we obtain

B (t, s) = −
∫ t

0
a (u, s) d u+

∫ s

0
a (u, s) d u =

∫ s

t
a (u, s) d u.

This definition ofB satisfies (20). Consequently, (1) is equivalent to (19). �

Now, we have to invert (1) into an integral equation from which a fixed
point mapping can be constructed. We remind that ψ denotes any real-
valued continuous function defined on [m (0) , 0].

Lemma 2.2. If x is a solution of (1) on an interval [0, T ) and satisfies the
initial condition x = ψ on [m (0) , 0], then x is a solution of the integral
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equation

x (t) =
(
ψ (0)−Q (0, ψ (−τ (0)))(22)

−
∫ 0

−τ(0)
[h (s) +B (0, s)]ψ (s) d s

)
e−

∫ t
0 h(u) d u

+Q (t, x (t− τ (t))) +
∫ t

t−τ(t)
[h (s) +B (t, s)]x (s) d s

+

∫ t

0
e−

∫ t
s h(u) d u

{[
h (s− τ (s))

+B (s, s− τ (s))
] (

1− τ ′ (s)
)}
x (s− τ (s)) d s(23)

−
∫ t

0
e−

∫ t
s h(u) d uh (s)Q (s, x (s− τ (s))) d s

−
∫ t

0
e−

∫ t
s h(u) d uh (s)

(∫ s

s−τ(s)
[h (u) +B (s, u)]x (u) d u

)
d s.(24)

on [0, T ), where h : [m (0) ,∞) → R is an arbitrary continuous function.
Conversely, if a continuous function x is equal to ψ on [m (0) , 0] and is a
solution of (24) on an interval [0, σ), then x is a solution of (1) on [0, σ).

Proof. Use Lemma 2.1 to rewrite (1) in the following equivalent form

(25)

d

d t
{x (t)−Q (t, x (t− τ (t)))}

= B (t, t− τ (t))
(
1− τ ′ (t)

)
x (t− τ (t))

+
d

d t

∫ t

t−τ(t)
B (t, s)x (s) d s.

Multiplying both sides of (25) by e
∫ t
0 h(u) d u and integrating with respect to

s from 0 to t, we obtain

x (t) = (ψ (0)−Q (0, ψ (−τ (0)))) e−
∫ t
0 h(u) d u +Q (t, x (t− τ (t)))

+

∫ t

0
e−

∫ t
s h(u) d uh (s)x (s) d s

+

∫ t

0
e−

∫ t
s h(u) d u

d

d s

∫ s

s−τ(s)
B (s, u)x (u) d u

+

∫ t

0
e−

∫ t
s h(u) d uB (s, s− τ (s))

(
1− τ ′ (s)

)
x (s− τ (s)) d s

−
∫ t

0
e−

∫ t
s h(u) d uh (s)Q (s, x (s− τ (s))) d s.
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Performing an integration by parts, we get

x (t) = (ψ (0)−Q (0, ψ (−τ (0)))) e−
∫ t
0 h(u) d u +Q (t, x (t− τ (t)))

+

∫ t

0
e−

∫ t
s h(u) d u d

(∫ s

s−τ(s)
[h (u) +B (s, u)]x (u) d u

)

+

∫ t

0
e−

∫ t
s h(u) d u [h (s− τ (s)) +B (s, s− τ (s))]

(
1− τ ′ (s)

)
x (s− τ (s)) d s

−
∫ t

0
e−

∫ t
s h(u) d uh (s)Q (s, x (s− τ (s))) d s

=

(
ψ (0)−Q (0, ψ (−τ (0)))−

∫ 0

−τ(0)
[h (s) +B (0, s)]ψ (s) d s

)
e−

∫ t
0 h(u) d u

+Q (t, x (t− τ (t))) +
∫ t

t−τ(t)
[h (s) +B (t, s)]x (s) d s

+

∫ t

0
e−

∫ t
s h(u) d u

{
[h (s− τ (s)) +B (s, s− τ (s))]

(
1− τ ′ (s)

)}
x (s− τ (s)) d s

−
∫ t

0
e−

∫ t
s h(u) d uh (s)Q (s, x (s− τ (s))) d s

−
∫ t

0
e−

∫ t
s h(u) d uh (s)

(∫ s

s−τ(s)
[h (u) +B (s, u)]x (u) d u

)
d s,

Conversely, suppose that a continuous function x is equal to ψ on [m (0) , 0]
and satisfies (24) on some interval [0, σ). Then it is differentiable on [0, σ).
Differentiating (24) we obtain (1). �

Theorem 2.1. Suppose (2) and (3) hold. Let τ be differentiable, and sup-
pose that there exist continuous function h : [m (0) ,∞)→ R and a constant
α ∈ (0, 1) such that for t ≥ 0

(26) lim
t→∞

inf

∫ t

0
h (s) d s > −∞,

and

(27)

L+

∫ t

t−τ(t)
|h (s) +B (t, s)| d s

+

∫ t

0
e−

∫ t
s h(u) d u·

·
{∣∣∣[h (s− τ (s)) +B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣+ L |h (s)|
}
d s

+

∫ t

0
e−

∫ t
s h(u) d u |h (s)|

(∫ s

s−τ(s)
|h (u) +B (s, u)|d u

)
d s ≤ α,
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where

B (t, s) =

∫ s

t
a (u, s) d u with B (t, t− τ (t)) =

∫ t−τ(t)

t
a (u, t− τ (t)) d u.

Then the zero solution of (1) is asymptotically stable if and only if

(28)
∫ t

0
h (s) d s→∞ as t→∞.

Proof. First, suppose that (28) holds. We set

(29) K = sup
t≥0

{
e−

∫ t
0 h(s) d s

}
.

The set C ([m (0) ,∞) ,R) of real valued bounded functions on [m (0) ,∞) is
a Banach space when it is endowed with the supremum norm ‖·‖; that is,
for φ ∈ C ([m(0),∞),R),

‖φ‖ := sup {|φ (t)| : t ∈ [m (0) ,∞)} .
Otherwise speaking, we carry out our investigations in the complete metric
space (C ([m (0) ,∞) ,R) , ρ) where ρ is supremum metric

ρ (x, y) := sup
t≥m(0)

|x (t)− y (t)| = ‖x− y‖ , for x, y ∈ C ([m (0) ,∞) ,R) .

Let ψ ∈ C ([m (0) , 0] ,R) be fixed and define

Sψ :=
{
ϕ ∈ C ([m (0) ,∞) ,R) : ϕ (t) = ψ (t)

for t ∈ [m (0) , 0] and ϕ (t)→ 0 as t→∞
}
.

Being closed in C ([m (0) ,∞) ,R) , Sψ is itself a Banach space.
Now, use (24) to define the operator P : Sψ → Sψ by (Pϕ) (t) = ψ (t) if

t ∈ [m (0) , 0] and for t ≥ 0 we let

(Pϕ) (t) =
(
ψ (0)−Q (0, ψ (−τ (0)))

−
∫ 0

−τ(0)
[h (s) +B (0, s)]ψ (s) d s

)
e−

∫ t
0 h(u) d u

+ Q (t, ϕ (t− τ (t))) +
∫ t

t−τ(t)
[h (s) +B (t, s)]ϕ (s) d s

+

∫ t

0
e−

∫ t
s h(u) d u

{[
h (s− τ (s))(30)

+B (s, s− τ (s))
] (

1− τ ′ (s)
)}
ϕ (s− τ (s)) d s

−
∫ t

0
e−

∫ t
s h(u) d uh (s)Q (s, ϕ (s− τ (s))) d s

−
∫ t

0
e−

∫ t
s h(u) d uh (s)

(∫ s

s−τ(s)
[h (u) +B (s, u)]ϕ (u) d u

)
d s.
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It is clear that (Pϕ) ∈ C ([m (0) ,∞) ,R). We will show that (Pϕ) (t) → 0
as t→∞. To this end, denote the five terms on the right hand side of (30)
by I1, I2, . . . , I6, respectively. It is obvious that the first term I1 tends to
zero as t → ∞, by condition (28). Also, due to the conditions (2) and (3)
and the facts that ϕ (t)→ 0 and t− τ (t)→∞ as t→∞, the second term
I2 in (30) tends to zero as t → ∞. What is left to show is that each of the
remaining terms in (30) go to zero at infinity.

Let ϕ ∈ Sψ be fixed. For a given ε > 0, we choose T0 > 0 large enough
such that t − τ (t) ≥ T0, implies |ϕ (s)| < ε if s ≥ t − τ (t). Therefore, the
third term I3 in (30) satisfies

|I3| =

∣∣∣∣∣
∫ t

t−τ(t)
[h (s) +B (t, s)]ϕ (s) d s

∣∣∣∣∣
≤
∫ t

t−τ(t)
|h (s) +B (t, s)| |ϕ (s)|d s

≤ ε
∫ t

t−τ(t)
|h (s) +B (t, s)| d s ≤ αε < ε.

Thus, I3 → 0 as t→∞. Now consider I4. For the given ε > 0, there exists
a T1 > 0 such that s ≥ T1 implies |ϕ (s− τ (s))| < ε. Thus, for t ≥ T1, the
term I4 in (30) satisfies

|I4| =
∣∣∣∣∫ t

0
e−

∫ t
s h(u) d u

{[
h (s− τ (s))

+B (s, s− τ (s))
] (

1− τ ′ (s)
)}
ϕ (s− τ (s)) d s

∣∣∣∣
≤
∫ T1

0
e−

∫ t
s h(u) d u

∣∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣∣ |ϕ (s− τ (s))|d s

+

∫ t

T1

e−
∫ t
s h(u) d u

∣∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣∣ |ϕ (s− τ (s))| d s

≤ sup
σ≥m(0)

|ϕ (σ)|
∫ T1

0
e−

∫ t
s h(u) d u

∣∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′(s)

)∣∣∣∣d s
+ ε

∫ t

T1

e−
∫ t
s h(u) d u

∣∣[h (s− τ (s)) +B (s, s− τ (s))]
(
1− τ ′ (s)

)∣∣d s.
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By (28), we can find T2 > T1 such that t ≥ T2 implies

sup
σ≥m(0)

|ϕ (σ)|
∫ T1

0
e−

∫ t
s h(u) d u

∣∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣∣ d s
= sup

σ≥m(0)
|ϕ (σ)| e−

∫ t
T2
h(u) d u ×

∫ T1

0
e−

∫ T2
s h(u) d u

∣∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣∣ d s
< ε.

Now, apply (27) to have |I4| < ε + αε < 2ε. Thus, I4 → 0 as t → ∞.
Similarly, by using (2), (3) and (27), then, if t ≥ T2 then the terms I5 and
I6 in (30) satisfy

|I5| =
∣∣∣∣∫ t

0
e−

∫ t
s h(u) d uh (s)Q (s, ϕ (s− τ (s))) d s

∣∣∣∣
≤ sup

σ≥m(0)
|ϕ (σ)| e−

∫ t
T2
h(u)du

∫ T1

0
e−

∫ T2
s h(u) d uL |h (s)|d s

+ ε

∫ t

T1

e−
∫ t
s h(u)duL |h (s)| d s

< ε+ αε < 2ε,

and

|I6| =

∣∣∣∣∣
∫ t

0
e−

∫ t
s h(u) d uh (s)

(∫ s

s−τ(s)
[h (u) +B (s, u)]ϕ (u) du

)
d s

∣∣∣∣∣
≤ sup

σ≥m(0)
|ϕ (σ)| e−

∫ t
T2
h(u)du

∫ T1

0
e−

∫ T2
s h(u) d u |h (s)|

×

(∫ s

s−τ(s)
|h (u) +B (s, u)| d u

)
d s

+ ε

∫ t

T1

e−
∫ t
s h(u) d u |h (s)|

(∫ s

s−τ(s)
|h (u) +B (s, u)| d u

)
d s

< ε+ αε < 2ε.

Thus, I5, I6 → 0 as t→∞.
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In conclusion (Pϕ) (t)→ 0 as t→∞, as required. Hence P maps Sψ into
Sψ. Also, by condition (27), P is a contraction mapping with contraction
constant α. Indeed, for φ, η ∈ Sψ and t > 0

|(Pϕ)(t)− (Pη)(t)|

≤ L ‖ϕ− η‖+
∫ t

t−τ(t)
|h (s) +B (t, s)| |ϕ (s)− η (s)| d s

+

∫ t

0
e−

∫ t
s h(u)du

∣∣[h (s− τ (s)) +B (s, s− τ (s))]
(
1− τ ′ (s)

)∣∣
× |ϕ (s− τ (s))− η (s− τ (s))|d s

+

∫ t

0
e−

∫ t
s h(u) d uL |h (s)| ‖ϕ− η‖d s

+

∫ t

0
e−

∫ t
s h(u) d uh (s)

(∫ s

s−τ(s)
|h (u) +B (s, u)| |ϕ (u)− η (u)| d u

)
d s

≤
(
L+

∫ t

t−τ(t)
|h (s) +B (t, s)|d s+

∫ t

0
e−

∫ t
s h(u) d u

{∣∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣∣+ L |h (s)|
}
d s

+

∫ t

0
e−

∫ t
s h(u) d uh (s)

(∫ s

s−τ(s)
|h (u) +B (s, u)|d u

)
d s

)
‖ϕ− η‖ .

By the condition (27), P is a contraction mapping with constant α. By
the contraction mapping principle (Smart [22, p. 2]), P has a unique fixed
point x in Sψ which is a solution of (1) with x (t) = ψ (t) on [m (0) , 0] and
x (t) = x (t, 0, ψ)→ 0 as t→∞.

To obtain the asymptotic stability, we need to show that the zero solution
of (1) is stable. Let ε > 0 be given and choose δ > 0 (δ < ε) satisfying
2δK + αε < ε. If x (t) = x (t, 0, ψ) is a solution of (1) with ‖ψ‖ < δ,
then x (t) = (Px) (t) defined in (30). We claim that |x (t)| < ε for all
t ≥ t0. Notice that |x (s)| < ε on [m (0) , 0]. If there exists t∗ > 0 such that
|x (t∗)| = ε and |x (s)| < ε for m (0) ≤ s < t∗, then it follows from (30) that

|x (t∗)| ≤ ‖ψ‖

(
1 + L+

∫ 0

−τ(0)
|h (s) +B (0, s)| d s

)
e−

∫ t∗
0 h(u) d u

+ εL+ ε

∫ t∗

t∗−τ(t∗)
|h (s) +B (t∗, s)|d s
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+ ε

∫ t∗

t0

e−
∫ t∗
s h(u) d u

{∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣+ L |h (s)|
}
d s

+ ε

∫ t∗

t0

e−
∫ t∗
s h(u) d u |h (s)|

(∫ s

s−τ(s)
|h (u) +B (s, u)|d u

)
d s

≤ 2δK + αε < ε,

which contradicts the definition of t∗. Thus, |x (t)| < ε for all t ≥ 0, and
the zero solution of (1) is stable. This shows that the zero solution of (1) is
asymptotically stable if (28) holds.

Conversely, suppose (28) fails. Then, by (26) there exists a sequence {tn} ,
tn → ∞ as n → ∞ such that limn→∞

∫ tn
0 h (u) d u = l for some l ∈ R. We

may also choose a positive constant J satisfying

−J ≤
∫ tn

0
h (u) d u ≤ J,

for all n ≥ 1. To simplify our expressions, we define

ω (s) =
∣∣[h (s− τ (s)) +B (s, s− τ (s))]

(
1− τ ′ (s)

)∣∣
+ |h (s)|

(
L+

∫ s

s−τ(s)
|h (u) +B (s, u)|d u

)
,

for all s ≥ 0. By (27), we have∫ tn

0
e−

∫ tn
s h(u) d uω (s) d s ≤ α.

This yields ∫ tn

0
e
∫ s
0 h(u) d uω (s) d s ≤ αe

∫ tn
0 h(u) d u ≤ J.

The sequence
{∫ tn

0 e
∫ s
0 h(u) d uω (s) ds

}
is bounded, so there exists a conver-

gent subsequence. For brevity of notation, we may assume that

lim
n→∞

∫ tn

0
e
∫ s
0 h(u) d uω (s) d s = γ,

for some γ ∈ R+ and choose a positive integer m so large that∫ tn

tm

e
∫ s
0 h(u) d uω (s) d s < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies 2δ0KeJ + α ≤ 1.
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By (26), K in (29) is well defined. We now consider the solution x (t) =
x (t, tm, ψ) of (1) with ψ (tm) = δ0 and |ψ (s)| ≤ δ0 for s ≤ tm. We may
choose ψ so that |x (t)| ≤ 1 for t ≥ tm and

ψ (tm)−Q (tm, ψ (tm − τ (tm)))−
∫ tm

tm−τ(tm)
[h (s) +B (tm, s)]ψ (s) d s ≥ 1

2
δ0.

It follows from (30) with x (t) = (Px) (t) that for n ≥ m

(31)

∣∣∣∣∣x (tn)−Q (tn, x (tn − τ (tn)))−
∫ tn

tn−τ(tn)
[h (s) +B (tn, s)]x (s) d s

∣∣∣∣∣
≥ 1

2
δ0e
−

∫ tn
tm

h(u) d u −
∫ tn

tm

e−
∫ tn
s h(u) d uω (s) d s

=
1

2
δ0e
−

∫ tn
tm

h(u) d u − e−
∫ tn
0 h(u) d u

∫ tn

tm

e
∫ s
0 h(u) d uω (s) d s

= e−
∫ tn
tm

h(u) d u

(
1

2
δ0 − e−

∫ tm
0 h(u) d u

∫ tn

tm

e
∫ s
0 h(u) d uω (s) d s

)
≥ e−

∫ tn
tm

h(u) d u

(
1

2
δ0 −K

∫ tn

tm

e
∫ s
0 h(u) d uω (s) d s

)
≥ 1

4
δ0e
−

∫ tn
tm

h(u) d u ≥ 1

4
δ0e
−2J > 0.

On the other hand, if the zero solution of (1) is asymptotically stable, then
x (t) = x (t, tm, ψ) → 0 as t → ∞. Since tn − τ (tn) → ∞ as n → ∞ and
(27) holds, we have

x (tn)−Q (tn, x (tn − τ (tn)))

−
∫ tn

tn−τ(tn)
[h (s) +B (tn, s)]x (s) d s→ 0 as n→∞,

which contradicts (31). Hence condition (28) is necessary for the asymptotic
stability of the zero solution of (1). The proof is complete. �

Remark 2.1. It follows from the first part of the proof of Theorem 2.1 that
the zero solution of (1) is stable under (26) and (27). Moreover, Theorem
2.1 still holds if (27) is satisfied for t ≥ tσ for some tσ ∈ R+.

For the special case Q (t, x) = 0, we can get

Corollary 2.1. Suppose that τ is differentiable and there exist continuous
function h : [m (0) ,∞)→ R and a constant α ∈ (0, 1) such that for t ≥ 0

(32) lim
t→∞

inf

∫ t

0
h (s) d s > −∞,
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and ∫ t

t−τ(t)
|h (s) +B (t, s)|d s

+

∫ t

0
e−

∫ t
s h(u) d u |h (s− τ (s)) +B (s, s− τ (s))|

∣∣1− τ ′ (s)∣∣ d s
+

∫ t

0
e−

∫ t
s h(u) d u |h (s)|

(∫ s

s−τ(s)
|h (u) +B (s, u)| du

)
d s ≤ α.(33)

Then the zero solution of (4) is asymptotically stable if and only if

(34)
∫ t

0
h (s) d s→∞ as t→∞.

Remark 2.2. Obviously, Corollary 2.1 extends Theorem 1.3. Thus, Theo-
rem 2.1 improves and generalizes Theorem 1.3.

3. An example

In this section, we give an example to illustrate the applications of The-
orem 2.1.

Example 3.1. Consider the following linear neutral integro-differential equa-
tion with variable delays

(35)
d

d t
x (t) = −

∫ t

t−τ(t)
a (t, s)x (s) d s+

d

d t
Q (t, x (t− τ (t))) ,

where τ (t) = 0.477t, a (t, s) = 0.45/
(
s2 + 1

)
, Q (t, x) = 0.112 sinx. Then

the zero solution of (35) is asymptotically stable.

Proof. We have

B (t, s) =

∫ s

t

0.45

s2 + 1
d u =

0.45 (s− t)
s2 + 1

.

Choosing h (t) = 0.55t/
(
t2 + 1

)
in Theorem 2.1, we have L = 0.112 and∫ t

t−τ(t)
|h (s) +B (t, s)|d s =

∫ t

0.523t

∣∣∣∣s− 0.45t

s2 + 1

∣∣∣∣d s
=

∫ t

0.523t

s− 0.45t

s2 + 1
d s = 0.45t [arctan 0.523t− arctan t]

+
1

2

[
ln
(
t2 + 1

)
− ln

(
0.5232t2 + 1

)]
= ω (t) .

Since the function ω is increasing in [0,∞) and

lim
t→∞

ω (t) = 0.45− 0.45/0.523− ln (0.523) ' 0.238,
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then ∫ t

t−τ(t)
|h (s) +B (t, s)|d s < 0.238,

∫ t

0
e−

∫ t
s h(u) d u |h (s)|

(∫ s

s−τ(s)
|h (u) +B (s, u)| d u

)
d s < 0.238,

and ∫ t

0
e−

∫ t
s h(u) d u

{∣∣∣∣[h (s− τ (s))
+B (s, s− τ (s))

] (
1− τ ′ (s)

)∣∣∣∣+ L |h (s)|
}
d s

=

∫ t

0
e
−

∫ t
s

0.55u
u2+1

d u
{∣∣∣∣0.523(0.55× 0.523s

0.5232s2 + 1
− 0.45× 0.477s

0.5232s2 + 1

)∣∣∣∣
+

0.112× 0.55s

s2 + 1

}
d s

≤ 0.073

0.523× 0.55

∫ t

0
e
−

∫ t
s

0.55u
u2+1

d u 0.55s

s2 + 1/0.5232
d s

+ 0.112

∫ t

0
e
−

∫ t
s

0.55u
u2+1

du 0.55s

s2 + 1
d s

<
0.073

0.523× 0.55
+ 0.112 < 0.366.

It is easy to see that all the conditions of Theorem 2.1 hold for α = 0.112+
0.238+ 0.366+ 0.238 = 0.954 < 1. Thus, Theorem 2.1 implies that the zero
solution of (35) is asymptotically stable. �
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