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Inequalities of Jensen Type for
h-Convex Functions on Linear Spaces

Silvestru Sever Dragomir

Abstract. Some inequalities of Jensen type for h-convex functions
defined on convex subsets in real or complex linear spaces are given.
Applications for norm inequalities are provided as well.

1. Introduction

We recall here some concepts of convexity that are well known in the
literature.

Let I be an interval in R.

Definition 1 ( [38]). We say that f : I → R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I
and t ∈ (0, 1) we have

(1.1) f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) .

Some further properties of this class of functions can be found in [28, 29,
31,44,47,48]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

The above concept can be extended for functions f : C ⊆ X → [0,∞)
where C is a convex subset of the real or complex linear space X and the
inequality (1.1) is satisfied for any vectors x, y ∈ C and t ∈ (0, 1). If the
function f : C ⊆ X → R is non-negative and convex, then is of Godunova-
Levin type.

Definition 2 ( [31]). We say that a function f : I → R belongs to the class
P (I) if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

(1.2) f (tx+ (1− t) y) ≤ f (x) + f (y) .

Obviously Q (I) contains P (I) and for applications it is important to note
that also P (I) contain all nonnegative monotone, convex and quasi convex
functions, i. e. nonnegative functions satisfying
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(1.3) f (tx+ (1− t) y) ≤ max {f (x) , f (y)}

for all x, y ∈ I and t ∈ [0, 1].
For some results on P -functions see [31] and [45] while for quasi convex

functions, the reader can consult [30].
If f : C ⊆ X → [0,∞), where C is a convex subset of the real or complex

linear space X, then we say that it is of P -type (or quasi-convex) if the
inequality (1.2) (or (1.3)) holds true for x, y ∈ C and t ∈ [0, 1].

Definition 3 ( [7]). Let s be a real number, s ∈ (0, 1]. A function f :
[0,∞) → [0,∞) is said to be s-convex (in the second sense) or Breckner
s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1].

For some properties of this class of functions see [1,2,7,8,26,27,39,41,50].
The concept of Breckner s-convexity can be similarly extended for func-

tions defined on convex subsets of linear spaces.
It is well known that if (X, ‖·‖) is a normed linear space, then the function

f (x) = ‖x‖p , p ≥ 1 is convex on X.
Utilising the elementary inequality (a+ b)s ≤ as + bs that holds for any

a, b ≥ 0 and s ∈ (0, 1], we have for the function g (x) = ‖x‖s that

g (tx+ (1− t) y) = ‖tx+ (1− t) y‖s ≤ (t ‖x‖+ (1− t) ‖y‖)s

≤ (t ‖x‖)s + [(1− t) ‖y‖]s

= tsg (x) + (1− t)s g (y)

for any x, y ∈ X and t ∈ [0, 1] , which shows that g is Breckner s-convex on
X.

In order to unify the above concepts for functions of real variable,
S. Varošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and f
are real non-negative functions defined in J and I, respectively.

Definition 4 ( [53]). Let h : J → [0,∞) with h not identical to 0. We say
that f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

(1.4) f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y)

for all t ∈ (0, 1).

For some results concerning this class of functions see [6, 42,49,51–53].
This concept can be extended for functions defined on convex subsets

of linear spaces in the same way as above replacing the interval I be the
corresponding convex subset C of the linear space X.

We can introduce now another class of functions.
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Definition 5. We say that the function f : C ⊆ X → [0,∞) is of s-
Godunova-Levin type, with s ∈ [0, 1] , if

(1.5) f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) ,

for all t ∈ (0, 1) and x, y ∈ C.

We observe that for s = 0 we obtain the class of P -functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (C) the
class of s-Godunova-Levin functions defined on C, then we obviously have

P (C) = Q0 (C) ⊆ Qs1 (C) ⊆ Qs2 (C) ⊆ Q1 (C) = Q (C)

for 0 ≤ s1 ≤ s2 ≤ 1.
For different inequalities related to these classes of functions, see [1–4, 6,

9–37,40–42,45–52].
A function h : J → R is said to be supermultiplicative if

(1.6) h (ts) ≥ h (t)h (s) for any t, s ∈ J.
If the inequality (1.6) is reversed, then h is said to be submultiplicative. If
the equality holds in (1.6) then h is said to be a multiplicative function on
J .

In [53] it has been noted that if h : [0,∞)→ [0,∞) with h (t) = (x+ c)p−1 ,
then for c = 0 the function h is multiplicative. If c ≥ 1, then for p ∈ (0, 1)
the function h is supermultiplicative and for p > 1 the function is submulti-
plicative.

We observe that, if h, g are nonnegative and supermultiplicative, the same
is their product. In particular, if h is supermultiplicative then its product
with a power function `r (t) = tr is also supermultiplicative.

The case of h-convex function with h supermultiplicative is of interest due
to several Jensen type inequalities one can derive.

The following results were obtained in [53] for functions of a real variable.
However, with similar proofs they can be extended to h-convex function
defined on convex subsets in linear spaces.

Theorem 1. Let h : J → [0,∞) be a supermultiplicative function on J.
If the function f : C ⊆ X → [0,∞) is h-convex on the convex subset C
of the linear space X, then for any wi ≥ 0, i ∈ {1, ..., n}, n ≥ 2 with
Wn :=

∑n
i=1wi > 0 we have

(1.7) f

(
1

Wn

n∑
i=1

wixi

)
≤

n∑
i=1

h

(
wi

Wn

)
f (xi) .

In particular, we have the unweighted inequality

(1.8) f

(
1

n

n∑
i=1

xi

)
≤ h

(
1

n

) n∑
i=1

f (xi) .
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Corollary 1 ( [27]). If the function f : C ⊆ X → [0,∞) is Breckner s-
convex on the convex subset C of the linear space X with s ∈ (0, 1) , then for
any xi ∈ C, wi ≥ 0, i ∈ {1, ..., n} , n ≥ 2 with Wn :=

∑n
i=1wi > 0 we have

(1.9) f

(
1

Wn

n∑
i=1

wixi

)
≤ 1

W s
n

n∑
i=1

ws
i f (xi) .

If (X, ‖·‖) is a normed linear space, then for s ∈ (0, 1), xi ∈ X, wi ≥ 0,
i ∈ {1, ..., n} , n ≥ 2 with Wn :=

∑n
i=1wi > 0 we have the norm inequality

(1.10)

∥∥∥∥∥
n∑

i=1

wixi

∥∥∥∥∥
s

≤
n∑

i=1

ws
i ‖xi‖

s .

Corollary 2. If the function f : C ⊆ X → [0,∞) is of s-Godunova-Levin
type, with s ∈ [0, 1] , on the convex subset C of the linear space X, then for
any xi ∈ C, wi > 0, i ∈ {1, ..., n}, n ≥ 2 we have

(1.11) f

(
1

Wn

n∑
i=1

wixi

)
≤W s

n

n∑
i=1

1

ws
i

f (xi) .

This result generalizes the Jensen type inequality obtained in [44] for
s = 1.

Let K be a finite non-empty set of positive integers. We can define the
index set function, see also [53]

(1.12) J (K) :=
∑
i∈K

h (wi) f (xi)− h (WK) f

(
1

WK

∑
i∈K

wixi

)
,

where WK :=
∑

i∈K wi > 0, xi ∈ C, i ∈ K.
We notice that if h : [0,∞) → [0,∞) is a supermultiplicative function

on [0,∞) and the function f : C ⊆ X → [0,∞) is h-convex on the convex
subset C of the linear space X, then

(1.13) J (K) ≥ h (WK)

[∑
i∈K

h

(
wi

WK

)
f (xi)− f

(
1

WK

∑
i∈K

wixi

)]
≥ 0.

Theorem 2. Assume that h : [0,∞)→ [0,∞) is a supermultiplicative func-
tion on [0,∞) and the function f : C ⊆ X → [0,∞) is h-convex on the
convex subset C of the linear space X. Let M and K be finite non-empty
sets of positive integers, wi > 0, xi ∈ C, i ∈ K ∪M. Then

(1.14) J (K ∪M) ≥ J (K) + J (M) ≥ 0,

i.e., J is a superadditive index set functional.

This results was proved in an equivalent form in [53] for functions of a
real variable. The proof is similar for functions defined on convex sets in
linear spaces.
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Corollary 3. With the assumptions of Theorem 2 and if we note Mk :=
{1, ..., k} , then

(1.15) J (Mn) ≥ J (Mn−1) ≥ ... ≥ J (M2) ≥ 0

and

(1.16)

J (Mn) ≥ max
1≤i<j≤n

{
h (wi) f (xi) + h (wj) f (xj)

− h (wi + wj) f

(
wixi + wjxj
wi + wj

)}
≥ 0.

If we consider the functional

Js (K) :=
∑
i∈K

ws
i ‖xi‖

s −

∥∥∥∥∥∑
i∈K

wixi

∥∥∥∥∥
s

for s ∈ (0, 1) , then we have the norm inequalities

(1.17)

n∑
i=1

ws
i ‖xi‖

s −

∥∥∥∥∥
n∑

i=1

wixi

∥∥∥∥∥
s

≥
n−1∑
i=1

ws
i ‖xi‖

s −

∥∥∥∥∥
n−1∑
i=1

wixi

∥∥∥∥∥
s

≥ ... ≥
2∑

i=1

ws
i ‖xi‖

s −

∥∥∥∥∥
2∑

i=1

wixi

∥∥∥∥∥
s

≥ 0

and

(1.18)

n∑
i=1

ws
i ‖xi‖

s −

∥∥∥∥∥
n∑

i=1

wixi

∥∥∥∥∥
s

≥ max
1≤i<j≤n

{
ws
i ‖xi‖

s + ws
j ‖xj‖

s − ‖wixi + wjxj‖s
}
≥ 0

where wi ≥ 0, xi ∈ X, i ∈ {1, ..., n} , n ≥ 2.

2. More Jensen Type Results

Let h (z) =
∑∞

n=0 anz
n be a power series with complex coefficients and

convergent on the open disk D (0, R) ⊂ C, R > 0. We have the following
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examples

(2.1)

h (z) =
∞∑
n=1

1

n
zn = ln

1

1− z
, z ∈ D (0, 1) ;

h (z) =

∞∑
n=0

1

(2n)!
z2n = cosh z, z ∈ C;

h (z) =
∞∑
n=0

1

(2n+ 1)!
z2n+1 = sinh z, z ∈ C;

h (z) =

∞∑
n=0

zn =
1

1− z
, z ∈ D (0, 1) .

Other important examples of functions as power series representations with
nonnegative coefficients are:

(2.2)

h (z) =
∞∑
n=0

1

n!
zn = exp (z) , z ∈ C,

h (z) =
∞∑
n=1

1

2n− 1
z2n−1 =

1

2
ln

(
1 + z

1− z

)
, z ∈ D (0, 1) ;

h (z) =

∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1 = sin−1 (z) , z ∈ D (0, 1) ;

h (z) =
∞∑
n=1

1

2n− 1
z2n−1 = tanh−1 (z) , z ∈ D (0, 1)

h (z) =2 F1 (α, β, γ, z) =

∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
zn, α, β, γ > 0,

z ∈ D (0, 1) ;

where Γ is Gamma function.
The following result may provide many examples of supemultiplicative

functions.

Theorem 3. Let h (z) =
∑∞

n=0 anz
n be a power series with complex co-

efficients and convergent on the open disk D (0, R) ⊂ C, R > 0. Assume
that 0 < r < R and define hr : [0, 1] → [0,∞), hr (t) := h(rt)

h(r) . Then hr is
supemultiplicative on [0, 1] .

Proof. We use the Čebyšev inequality for synchronous (the same monotonic-
ity) sequences (ci)i∈N , (bi)i∈N and nonnegative weights (pi)i∈N :

(2.3)
n∑

i=0

pi

n∑
i=0

picibi ≥
n∑

i=0

pici

n∑
i=0

pibi,
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for any n ∈ N.
Let t, s ∈ (0, 1) and define the sequences ci := ti, bi := si. These sequences

are decreasing and if we apply Čebyšev’s inequality for these sequences and
the weights pi := air

i ≥ 0 we get

(2.4)
n∑

i=0

air
i

n∑
i=0

ai (rts)i ≥
n∑

i=0

ai (rt)i
n∑

i=0

ai (rs)i

for any n ∈ N.
Since the series

∞∑
i=0

air
i,

∞∑
i=0

ai (rts)i ,

∞∑
i=0

ai (rt)i and
∞∑
i=0

ai (rs)i

are convergent, then by letting n→∞ in (2.4) we get

h (r)h (rts) ≥ h (rt)h (rs)

i.e.
hr (ts) ≥ hr (t)hr (s) .

This inequality is also obviously satisfied at the end points of the interval
[0, 1] and the proof is completed.

Remark 1. Utilising the above theorem, we then conclude that the functions

hr : [0, 1]→ [0,∞), hr (t) :=
1− r
1− rt

, r ∈ (0, 1)

and
hr : [0, 1]→ [0,∞), hr (t) := exp [−r (1− t)] , r > 0

are supermultiplicative.
We say that the function f : C ⊆ X → [0,∞) is r-resolvent convex with

r fixed in (0, 1) , if f is h-convex with h (t) = 1−r
1−rt , i.e.

(2.5) f (tx+ (1− t) y) ≤ (1− r)
[

1

1− rt
f (x) +

1

1− r + rt
f (y)

]
for any x, y ∈ C and t ∈ [0, 1] .

In particular, for r = 1
2 we have 1

2 -resolvent convex functions defined by
the condition

(2.6) f (tx+ (1− t) y) ≤ 1

2− t
f (x) +

1

1 + t
f (y)

for any t ∈ [0, 1] and x, y ∈ C.
Since

t <
1

2− t
<

1

t
and 1− t < 1

1 + t
<

1

1− t
for t ∈ (0, 1)

it follows that any nonnegative convex function is 1
2 -resolvent convex which,

in its turn, is of Godunova-Levin type.
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We say that the function f : C ⊆ X → [0,∞) is r-exponential convex with
r fixed in (0,∞) , if f is h-convex with h (t) = exp [−r (1− t)] , i.e.

(2.7) f (tx+ (1− t) y) ≤ exp [−r (1− t)] f (x) + exp (−rt) f (y)

for any t ∈ [0, 1] and x, y ∈ C.
Since

t ≤ exp [−r (1− t)] and 1− t ≤ exp (−rt) for t ∈ [0, 1]

it follows that any nonnegative convex function is r-exponential convex with
r ∈ (0,∞) .

Corollary 4. Let h (z) =
∑∞

n=0 anz
n be a power series with complex coef-

ficients and convergent on the open disk D (0, R) ⊂ C, R > 0. Assume that
0 < r < R and define hr : [0, 1] → [0,∞), hr (t) := h(rt)

h(r) . If the function
f : C ⊆ X → [0,∞) is hr-convex on the convex subset C of the linear space
X, namely

(2.8) f (tx+ (1− t) y) ≤ 1

h (r)
[h (rt) f (x) + h (r (1− t)) f (y)]

for any t ∈ [0, 1] and x, y ∈ C, then for any xi ∈ C, wi ≥ 0, i ∈ {1, ..., n} ,
n ≥ 2 with Wn :=

∑n
i=1wi > 0 we have

(2.9) f

(
1

Wn

n∑
i=1

wixi

)
≤ 1

h (r)

n∑
i=1

h

(
r
wi

Wn

)
f (xi) .

Remark 2. If the function f : C ⊆ X → [0,∞) is 1
2 -resolvent convex on C,

then for any xi ∈ C, wi ≥ 0, i ∈ {1, ..., n} , n ≥ 2 with Wn :=
∑n

i=1wi > 0
we have

f

(
1

Wn

n∑
i=1

wixi

)
≤Wn

n∑
i=1

1

2Wn − wi
f (xi) .

If the function f : C ⊆ X → [0,∞) is r-exponential convex with r fixed
in (0,∞) , then for any xi ∈ C, wi ≥ 0, i ∈ {1, ..., n} , n ≥ 2 with Wn :=∑n

i=1wi > 0 we have

f

(
1

Wn

n∑
i=1

wixi

)
≤

n∑
i=1

exp

[
−r
(

1− wi

Wn

)]
f (xi) .

3. Some Related Functionals

Let us fix K ∈ Pf (N) (the class of finite parts of N) and xi ∈ C (i ∈ K) .
Now consider the functional JK : S+ (K)→ R given by

(3.1) JK (p) := h (PK) f

(
1

PK

∑
i∈K

pixi

)
≥ 0
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where S+ (K) :=
{
p = (pi)i∈I

∣∣ pi ≥ 0, i ∈ K and PK > 0
}
with h : (0,∞)→

(0,∞) and f is nonnegative on C.

Theorem 4. Let h : (0,∞) → (0,∞) be a supermultiplicative (submulti-
plicative) function on J. If the function f : C ⊆ X → [0,∞) is h-convex
(h-concave) on the convex subset C of the linear space X, then for any
p,q ∈S+ (K) we have

(3.2) JK (p + q) ≤ (≥) JK (p) + JK (q) ,

i.e., JK is a subadditive (superadditive) functional on S+ (K) .

Proof. If the function f : C ⊆ X → [0,∞) is h -convex, then we have for
any p,q ∈S+ (K)

(3.3)

JK (p + q)

= h (PK +QK) f

(
1

PK + PK

∑
i∈K

(pi + qi)xi

)

= h (PK +QK) f

(
PK · 1

PK

∑
i∈K pixi +QK · 1

QK

∑
i∈K qixi

PK + PK

)

≤ h (PK +QK)

[
h

(
PK

PK + PK

)
f

(
1

PK

∑
i∈K

pixi

)

+ h

(
QK

PK + PK

)
f

(
1

QK

∑
i∈K

qixi

)]
:= A.

Since h is supermultiplicative, then

h (PK +QK)h

(
PK

PK + PK

)
≤ h (PK)

and

h (PK +QK)h

(
QK

PK + PK

)
≤ h (QK)

which imply that

(3.4)
A ≤ h (PK) f

(
1

PK

∑
i∈K

pixi

)
+ h (QK) f

(
1

QK

∑
i∈K

qixi

)
= JK (p) + JK (q) .

Making use of (3.3) and (3.4) we deduce the desired result (3.2).
The case when h is submultiplicative and f : C ⊆ X → [0,∞) is h-concave

goes likewise and the details are omitted.
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Corollary 5. Let h : (0,∞)→ (0,∞) be a submultiplicative function on J.
If the function f : C ⊆ X → [0,∞) is h-concave on the convex subset C of
the linear space X, then for any p,q ∈S+ (K) with p ≥ q, i.e. pi ≥ qi for
any i ∈ K, we have

(3.5) JK (p) ≥ JK (q) ≥ 0,

i.e., JK is monotonic nondecreasing on S+ (K) .

The proof is obvious from (3.2) on noticing that

JK (p) = JK (p− q + q) ≥ JK (p− q) + JK (q) ≥ JK (q) .

We also have:

Corollary 6. Let h : (0,∞)→ (0,∞) be a submultiplicative function on J.
If the function f : C ⊆ X → [0,∞) is h-concave on the convex subset C of
the linear space X, then for any p,q ∈S+ (K) with Mp ≥ q ≥mp, for some
M > m > 0, we have

(3.6)
h (MPK)

h (PK)
JK (p) ≥ JK (q) ≥ h (mPK)

h (PK)
JK (p) .

Proof. From the inequality (3.5) we have

JK (Mp) ≥ JK (q) .

However

JK (Mp) = h (MPK) f

(
1

MPK

∑
i∈K

Mpixi

)

= h (MPK) f

(
1

PK

∑
i∈K

pixi

)
=
h (MPK)

h (PK)
JK (p) ,

which proves the first inequality in (3.6).
The second inequality can be proved similarly and the details are omit-

ted.

Further, consider the functional LK : S+ (K)→ R given by

(3.7) LK (p) := h (PK)
∑
i∈K

h

(
pi
PK

)
f (xi) ≥ 0,

where S+ (K) :=
{
p = (pi)i∈I

∣∣ pi ≥ 0, i ∈ K and PK > 0
}
with h : (0,∞)→

(0,∞) and f is nonnegative on C.

Theorem 5. Let h : (0,∞) → (0,∞) and f : C ⊆ X → [0,∞). If h is
convex (concave) on (0,∞) and g : (0,∞) → (0,∞) defined by g (t) = h(t)

t
is decreasing (increasing), then for any p,q ∈S+ (K) we have

(3.8) LK (p + q) ≤ (≥)LK (p) + LK (q) .
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Proof. If h is convex on (0,∞) , then we have for any p,q ∈S+ (K)

(3.9)

LK (p + q) = h (PK +QK)
∑
i∈K

h

(
pi + qi

PK +QK

)
f (xi)

= h (PK +QK)
∑
i∈K

h

(
PK

pi
PK

+QK
qi
QK

PK +QK

)
f (xi)

≤ h (PK +QK)×
∑
i∈K

[
PK

PK +QK
h

(
pi
PK

)

+
QK

PK +QK
h

(
qi
QK

)]
f (xi)

=
h (PK +QK)PK

PK +QK

∑
i∈K

h

(
pi
PK

)
f (xi)

+
h (PK +QK)QK

PK +QK

∑
i∈K

h

(
qi
QK

)
f (xi)

:= B.

Since g (t) = h(t)
t is decreasing, then

h (PK +QK)

PK +QK
≤ h (PK)

PK

and
h (PK +QK)

PK +QK
≤ h (QK)

QK
.

Therefore

(3.10)
B ≤ h (PK)

∑
i∈K

h

(
pi
PK

)
f (xi) + h (QK)

∑
i∈K

h

(
qi
QK

)
f (xi)

= LK (p) + LK (q) .

Making use of (3.9) and (3.10) we deduce the desired result (3.8).
The case when h is concave and g is increasing goes likewise and the

details are omitted.

Corollary 7. Let h : (0,∞) → (0,∞) and f : C ⊆ X → [0,∞). If h
is concave on (0,∞) and g : (0,∞) → (0,∞) defined by g (t) = h(t)

t is
increasing, then for any p,q ∈S+ (K) with p ≥ q we have

(3.11) LK (p) ≥ LK (q) ≥ 0.

Also, for any p,q ∈S+ (K) with Mp ≥ q ≥mp, for some M > m > 0, we
have

(3.12)
h (MPK)

h (PK)
LK (p) ≥ LK (q) ≥ h (mPK)

h (PK)
LK (p) .
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We define the difference functional

SK (p) := LK (p)− JK (p)

= h (PK)

[∑
i∈K

h

(
pi
PK

)
f (xi)− f

(
1

PK

∑
i∈K

pixi

)]
.

We observe that, if h is supermultiplicative and f : C ⊆ X → [0,∞) is
h-convex, then by Jensen’s type inequality (1.7) we have

SK (p) ≥ 0 for any p ∈S+ (K) .

Proposition 1. Let h : (0,∞) → (0,∞) be supermultiplicative and f :
C ⊆ X → [0,∞) a h-convex function on C. If h is concave on (0,∞)

and g : (0,∞) → (0,∞) defined by g (t) = h(t)
t is increasing, then for any

p,q ∈S+ (K)

(3.13) SK (p + q) ≥ SK (p) + SK (q) ≥ 0.

If p,q ∈S+ (K) with p ≥ q, then we have

(3.14) SK (p) ≥ SK (q) ≥ 0.

Also, for any p,q ∈S+ (K) with Mp ≥ q ≥mp, for some M > m > 0, we
have

(3.15)
h (MPK)

h (PK)
SK (p) ≥ SK (q) ≥ h (mPK)

h (PK)
SK (p) .

The proof follows by Theorem 4 and Theorem 5 and we omit the details.
If we take h (t) = t, i.e. in the case of convex functions we obtain from

Proposition 1 the superadditivity and monotonicity properties of the func-
tional

JeK (p) :=
∑
i∈K

pif (xi)− PKf

(
1

PK

∑
i∈K

pixi

)
established in ( [32]).

From (3.15) we get

(3.16) MJeK (p) ≥ JeK (q) ≥ mJeK (p)

that has been obtained in [24].
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