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Two-Step Iteration Scheme for Nonexpansive
Mappings in Banach Space

M.R. Yadav

Abstract. In this paper, we introduce a new two-step iteration pro-
cess to approximate common fixed points of two nonexpansive mappings
in Banach spaces and established strong and weak convergence results
of this iterative scheme. We also shows that our iteration process con-
verges faster than of Mann, S-iterative and modified Ishikawa processes.
Our result also illustrated with help of an example with numerical calcu-
lation. The results obtained in this paper is generalizations of Sahu [7].

1. Introduction

LetK be a nonempty, closed, convex subset of a Banach space E. Through-
out this paper, N denotes the set of all positive integers and F (T ) 6= φ i.e.,
F (T ) = {x ∈ K : Tx = x}. A mapping T : K → K is said to be nonexpan-
sive if

‖Tx− Ty‖ ≤ ‖x− y‖,
for all x, y ∈ K. We know that a point x ∈ K is a fixed point of T if Tx = x.

The Mann [5] iteration schemes for a mapping T : K → K are defined by{
u1 = u0 ∈ K,

un+1 = (1− αn)un + αnTun, n ∈ N,(1)

where {αn} is in (0, 1).
In 1986, Das and Debata [2] generalized Mann and Ishikawa iteration

process of two self mappings S and T as follows:
s1 = s0 ∈ K,

sn+1 = (1− αn)sn + αnStn,

tn = (1− βn)sn + βnTsn, n ∈ N,
(2)

where {αn} and {βn} ∈ (0, 1).
They used this iteration process to find common fixed points of quasinon-

expansive mappings in a uniformly convex Banach space. Takahashi and
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Tamura [9] studied it for the case of two nonexpansive mappings under dif-
ferent conditions in a strictly convex Banach space. For the case of two
asymptotically nonexpansive mappings, we refer to Khan and Takahashi [4].

Recently, Sahu [7] introduced the S-iterative process, which has been stud-
ied extensively in connection with fixed points of pseudo-contractive map-
pings as follows.
LetK be a nonempty convex subset of a normed spaceX and let T : K → K
be a mapping. Then, for arbitrary x1 ∈ K, the S−iterative process is defined
by 

v1 = v0 ∈ K,
vn+1 = Twn,

wn = (1− βn)vn + βnTvn, n ∈ N,
(3)

where {βn} ∈ (0, 1).
In this article, motivated and inspired by the work of Sahu [7], we have

introduced a new iterative process (named as Y-iteration). Our iterative
process is given below:

x1 = x0 ∈ K,
xn+1 = Tyn,

yn = (1− βn)Txn + βnSxn, n ≥ 1,

(4)

where {βn} ∈ [0, 1].

2. Preliminaries

Let X = {x ∈ E : ‖x‖ = 1} and E∗ be the dual of E. The space E has :
(i) Gâteaux differentiable norm if

lim
t→0

‖x+ ty‖ − ‖x‖
t

,

exists for each x, y ∈ K;
(ii) Frèchet differentiable norm (see e.g. [9]) for each x in S, the above
limit exists and is attained uniformly for y in S and in this case, it is also
well-known that

〈h, J(x)〉+
1

2
‖x‖2 ≤ 1

2
‖x+ h‖2 ≤ 〈h, J(x)〉+

1

2
‖x‖2 + b(‖h‖)(5)

for all x, h ∈ E, where J is the Frèchet derivative of the function 1
2‖.‖

2 at
x ∈ E, 〈., .〉 is the dual pairing between E and E∗, and b is an increasing
function defined on [0,∞) such that limt→0

b(t)
t = 0;

(iii) Opial’s condition [6] if for any sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,
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for all y ∈ E with y 6= x.

The following definition and lemma which will be useful in proving our
main results.

Definition 1. Let E be a Banach space, K be a nonempty closed, convex
subset of E, and T : K → K be a nonexpansive mapping. Then I − T is
said to be demi-closed at 0, if xn → x converges weakly and xn − Txn → 0
converges strongly, then it is implies that x ∈ K and Tx = x.

Definition 2 ([3]). Suppose two mappings S, T : K → K, where K is a
subset of a normed space E, said to be satisfy condition (A′) if there exists
a nondecreasing function F : [0,∞)→ [0,∞) with F (0) = 0, f(r) > 0 for all
r ∈ (0,∞) such that either ‖x−Sx‖ ≥ f(d(x, F )) or ‖x−Tx‖ ≥ f(d(x, F ))
for all x ∈ K where d(x, F ) = inf{‖x− p‖ : p ∈ F = F (S) ∩ F (T )}.

Definition 3. A self-mapping T of a subset K of a normed linear space is
said to be quasi-nonexpansive provided T has at least one fixed point in K,
and if p ∈ K is any fixed point of T , then

‖Tx− p‖ ≤ ‖x− p‖,

holds for all x ∈ K.

Definition 4 ([1]). Assume that {an}n ∈ N and {bn}n ∈ N are two real
convergent sequences with limits a and b, respectively. Then {an}n ∈ N is
said to converge faster than {bn}n ∈ N if

lim
n→∞

∣∣∣an − a
bn − b

∣∣∣ = 0.(6)

Lemma 1 ([8]). Suppose that E be a Banach space and 0 < p ≤ tn ≤
q < 1 for all n ∈ N. Let {xn} and {yn} be two sequences of E such
that limsupn→∞‖xn‖ ≤ r, limsupn→∞‖yn‖ ≤ r and limn→∞‖(1− tn)xn +
tnyn‖ = r hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

3. Convergence Results

In this section, we prove the approximate common fixed points of two-
nonexpansive mappings for weak and strong convergence results, using a
new type of two-step iteration process. In the consequence, F denotes the
set of common fixed point of the mapping S and T .

Lemma 2. Let K be a nonempty, closed, convex subset of a Banach space
E. Suppose S, T : K → K be an nonexpansive mappings and {xn} be the
sequence as defined by (4), with restrictions

∑∞
n=1 βn <∞. If F (S)∩F (T ) 6=

φ, and

‖x− Sx‖ ≤ ‖Tx− Sx‖, for all x, y ∈ K,(7)
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is satisfied, then

lim
n→∞

‖Txn − xn‖ = 0 = lim
n→∞

‖Sxn − xn‖,

for all p ∈ F (S) ∩ F (T ).

Proof. Suppose p ∈ F (S) ∩ F (T ) and F (S) ∩ F (T ) 6= φ. Since S, T are
nonexpansive mappings, now using (4), we have

(8) ‖xn+1 − p‖ = ‖Tyn − p‖ ≤ ‖yn − p‖,

and,

(9)

‖yn − p‖ = ‖(1− βn)Txn + βnSxn − p‖
≤ (1− βn)‖Txn − p‖+ βn‖Sxn − p‖
≤ (1− βn)‖xn − p‖+ βn‖yn − p‖
≤ ‖xn − p‖.

Combining the estimates in (8) and (9), we have

(10) ‖xn+1 − p‖ ≤ ‖xn − p‖,

Since {‖xn − p‖} is a non-increasing and bounded sequence, we get that
limn→∞‖xn − q‖ exists. Assume that limn→∞ ‖xn − p‖ = r. Then if r = 0,
we are done. Suppose that r > 0. Next, we show that lim

n=to∞
‖Txn−xn‖ = 0.

Now, taking lim sup on both sides of the inequality (9), we have

(11) ‖yn − p‖ ≤ lim sup
n→∞

‖xn − p‖ ≤ r,

Moreover, r = lim
n→∞

‖xn+1 − p‖ means that

r = ‖xn+1 − p‖ = ‖Tyn − p‖ ≤ ‖yn − p‖.

Taking lim inf on both sides of the above inequality, we get

(12) r ≤ lim inf
n→∞

‖yn − p‖.

Combining the estimates in (11) and (12), we have

(13) lim
n→∞

‖yn − p‖ = r.

Next, consider,

r = ‖yn − p‖ = ‖(1− βn)Txn + βnSxn − p‖
≤ (1− βn)‖Txn − p‖+ βn‖Sxn − p‖.

Applying Lemma 1 , we have

(14) lim
n→∞

‖Txn − Sxn‖ = 0.
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Using (7) and (14), it follows then that

(15)

‖Txn − xn‖ = ‖Txn − Sxn‖+ ‖Sxn − xn‖
≤ ‖Txn − Sxn‖+ ‖Txn − Sxn‖
≤ 2‖Txn − Sxn‖
→ 0 as n→∞.

Taking lim as n→∞ on both sides of the above inequality, we obtain

lim
n→∞

‖Txn − xn‖ = 0.

Again, we observe that for each n ∈ N,

(16) ‖Sxn − xn‖ ≤ ‖Sxn − Txn‖+ ‖Txn − xn‖ → 0 as n→∞.

which implies that

lim
n→∞

‖Sxn − xn‖ = 0.

This completes the proof. �

Example 1. Let us define S, T : R→ R define by :

Tx =
3− x

2

and

Sx =
1 + 4x

5

for all x ∈ K. Obviously both S and T are nonexpansive with the common
fixed point 1 for all x ∈ R. Now we check that our condition, ‖x − Sx‖ ≤
‖Tx− Sx‖ for all x ∈ R is true. Then∣∣∣x− Sx∣∣∣ =

∣∣∣x− (1 + 4x)

5

∣∣∣ =
∣∣∣5x− 1− 4x

5

∣∣∣ =
∣∣∣(1− x)

5

∣∣∣ =
1

5

∣∣∣(1− x)
∣∣∣,∣∣∣Tx− Sx∣∣∣ =

∣∣∣3− x
2
− 1 + 4x

5

∣∣∣ =
∣∣∣(15− 5x− 2− 8x)

10

∣∣∣
=
∣∣∣13(1− x)

10

∣∣∣ =
13

10

∣∣∣(1− x)
∣∣∣.

Hence ‖x − Sx‖ ≤ ‖Tx − Sx‖, so we can easily show that S and T are
nonexpansive mappings.

Lemma 3. Let K be a nonempty, closed, convex subset of a Banach space
E. Suppose {xn} be the sequence defined in Theorem (1) with F 6= φ. Then,
for any p1, p2 ∈ F , limn→∞〈xn, J(p1−p2)〉 exist, in particular, 〈p−q, J(p1−
p2)〉 = 0 for all p, q ∈ ωω(xn).
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Proof. Take x = p1 − p2, with p1 6= p2 and h = t(xn − p1) in the inequality
(5) to get:

1

2
‖p1 − p2‖2 + t〈xn − p1, J(p1 − p2)〉 ≤

1

2
‖txn + (1− t)p1 − p2‖2

≤ 1

2
‖p1 − p2‖2 + t〈xn − p1, J(p1 − p2)〉

+ b(t‖xn − p1‖).

As supn≥1‖xn − p1‖ ≤M ′ for some M ′ > 0, it follows that

1

2
‖p1 − p2‖2+t lim sup

n→∞
〈xn − p1, J(p1 − p2)〉

≤ 1

2
lim
n→∞

‖txn + (1− t)p1 − p2‖2

≤ 1

2
‖p1 − p2‖2 + b(tM ′) + t lim inf

n→∞
〈xn − p1, J(p1 − p2)〉.

That is,

lim sup
n→∞

〈xn − p1, J(p1 − p2)〉 ≤ lim inf
n→∞

〈xn − p1, J(p1 − p2)〉+
b(tM ′)

tM ′
M ′.

If t → 0, then limn→∞〈xn − p1, J(p1 − p2)〉 exists for all p1, p2 ∈ F , in
particular, we get

〈p− 1, J(p1 − p2)〉 = 0

for all p, q ∈ ωω(xn). �

Theorem 1. Let E be a Banach space satisfying Opial condition and K,T, S
and {xn} be taken as Lemma 2. If F (S) ∩ F (T ) 6= φ, I − T and I − S are
demiclosded at zero, then {xn} converges weakly to a common fixed point of
S and T .

Proof. Let p ∈ F (S) ∩ F (T ), then as proved in Lemma 2 limn→∞ ‖xn − p‖
exist. Since E is Banach space. Thus there exists subsequences {xnk

} ⊂
{xn} such that {xnk

} converges weakly to z1 ∈ K. From Lemma 2, we have

lim
n→∞

‖Txnk
− xnk

‖ = 0,

and
lim
n→∞

‖Sxnk
− xnk

‖ = 0.

Since I − T and I − S are demiclosed at zero, therefore Sz1 = z1. Similarly
Tz1 = z1. Finally, we prove that {xn} converges weakly to z1. Let on
contrary that there exists a subsequence {xni} ⊂ {xn} and {xnj} ⊂ {xn}
such that {xnj} converges weakly to z2 ∈ K and z1 6= z2. Again in the
same way, we can prove that z2 ∈ F (S) ∩ F (T ). From Lemma 2 the limits
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limn→∞ ‖xn− z1‖ and limn→∞ ‖xn− z2‖ exists. Suppose that z1 6= z2, then
by the Opial’s condition, we get

lim
n→∞

‖xn − z1‖ = lim
ni→∞

‖xni − z1‖ < lim
ni→∞

‖xni − z2‖

= lim
n→∞

‖xn − z2‖ = lim
nj→∞

‖xnj − z2‖

< lim
nj→∞

‖xnj − z1‖ = lim
n→∞

‖xn − z1‖.

This is a contradiction so z1 = z2. Hence {xn} converges weakly to a
common fixed point of T and S. �

Theorem 2. Let E be a Banach space and K,S, T, F, {xn} be as in Lemma
2. Then {xn} converges strongly to a point of F if and only if

lim inf
n→∞

d(xn, F ) = 0.

Proof. Necessity is evident, let lim infn→∞d(xn, F ) = 0. From Lemma 2,

lim
n→∞

‖xn − p‖

exists for all p ∈ F , so that limn→∞ d(xn, F ) exists. Since by hypothesis,

lim inf
n→∞

d(xn, F ) = 0,

so that, we get
lim
n→∞

d(xn, F ) = 0.

But {xn} is Cauchy sequence and therefore converges to p. We know that

lim
n→∞

d(xn, F ) = 0,

we obtained d(p, F ) = 0, therefore p ∈ F .
�

Using Theorem 2, we obtain a strong convergence theorem of the iteration
scheme (4) under the condition (A′) as below:

Theorem 3. Let E be a Banach space and K,S, T, , F, {xn} be as in Lemma
2. Let S, T satisfy the condition (A′) and F 6= φ. Then {xn} converges
strongly to a point of F .

Proof. We proved in Lemma 2, i.e.

lim
n→∞

‖Sxn − xn‖ = 0 = lim
n→∞

‖Txn − xn‖

Then from the definition of condition (A′), we obtain

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖Txn − xn‖ = 0

or
lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖Sxn − xn‖ = 0.
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In above cases, we get

lim
n→∞

f(d(xn, F )) = 0.

But f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) =
0, f(r) > 0 for all r ∈ (0,∞), so that we get limn→∞ d(xn, F ) = 0. �

All the conditions of Theorem 2 are satisfied, therefore by its conclusion
{xn} converges to strongly to a fixed point of F .

The following result is immediate sequel of our strong convergence theo-
rem.

Corollary 1. Let K be a nonempty closed convex subset of a Banach space
E. Suppose T be a nonexpansive mapping of K. Let {xn} be defined by
the iteration (3), where {αn} and {βn} in [0, 1] for all n ∈ N, then {xn}
converges strongly to a fixed point of T .

Example 2. Let K be a nonempty, closed, convex subset of a Banach space
E. Suppose S, T : K → K be an nonexpansive mappings and each of the
iterative processes (1), (2) and (3), converges to the same fixed point p of T
where {αn} and {βn} are such that 0 < δ ≤ αn, βn < 1, for all n ∈ N and
for some δ with lim

n→∞
αn = 0 = lim

n→∞
βn. Then the iterative process given by

(4) converges faster than all the other three processes.
Proof. Suppose p be a fixed point of T . Then from Mann iterative process
(1), we obtain

‖un+1 − p‖ = ‖(1− αn)(un − p) + αn(Tun − p)‖
≤ (1− αn)‖un − p‖+ αn‖Tun − p‖
≤ (1− αn)‖un − p‖+ αnδ‖un − p‖
= [1− αn(1− δ)]‖un − p‖
...
≤ [1− αn(1− δ)]n‖u1 − p‖.

Assume that an = (1− αn(1− δ))n‖u1 − p‖.
Modified Ishikawa iterative process (2) gives

‖sn+1 − p‖ = ‖(1− αn)(sn − p) + αn(Stn − p)‖
≤ (1− αn)‖sn − p‖+ αn‖Stn − p‖
≤ (1− αn)‖sn − p‖+ αnδ‖tn − p‖
≤ (1− αn)‖sn − p‖+ αnδ[‖(1− βn)sn + βnTsn − p‖]
= (1− αn)‖sn − p‖+ αnδ[(1− βn)‖sn − p‖+ βn‖Tsn − p‖]
≤ (1− αn)‖sn − p‖+ αnδ[(1− βn)‖sn − p‖+ βnδ‖sn − p‖]
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= [1− αn(1− δ)(1− βn)]‖sn − p‖
...
≤ [1− αn(1− δ)(1− βn)]n‖s1 − p‖.

Assume that bn = [1− αn(1− δ)(1− βn)]n‖s1 − p‖.
By S-iterative process (3), we have

‖vn+1 − p‖ = ‖Twn − p‖
≤ δ‖wn − p‖
= δ[‖(1− βn)(vn − p) + βn(Tvn − p)‖]
≤ δ[(1− βn)‖vn − p‖+ βn‖Tvn − p‖]
= δ[(1− βn)‖vn − p‖+ βnδ‖vn − p‖]
= δ[(1− βn(1− δ))]‖vn − p‖
...
≤ δn[(1− αn(1− δ))n]‖u1 − p‖.

Let cn = δn[(1− αn(1− δ))n]‖u1 − p‖.
Our process (4) gives

‖xn+1 − p‖ = ‖Tyn − p‖
≤ δ‖yn − p‖
= δ[‖(1− βn)(Txn − p) + βn(Sxn − p)‖]
≤ δ[(1− βn)‖Txn − p‖+ βn‖Sxn − p‖]
≤ δ[(1− βn)δ‖xn − p‖+ βnδ‖xn − p‖]
= δ2‖xn − p‖
...

≤ δ2n‖x1 − p‖.

Let dn = δ2n‖x1 − p‖.
Now lim

n→∞
dn
an

= lim
n→∞

δ2n‖x1−p‖
(1−αn(1−δ))n‖u1−p‖ = lim

n→∞
δ2n

(1−αn(1−δ))n× lim
n→∞

‖x1−p‖
‖u1−p‖ ,

since lim
n→∞

δn = 0 and αn < 1 so that lim
n→∞

dn
an

= 0. Thus {xn} converges
faster than {un} to p. It is not difficult to we prove that for the S-iteration
process, and hence {xn} converges faster than {sn} and {vn} to p. Thus,
Y-iteration process converges faster than the Mann, modified Ishikawa and
S-iteration process.

We support our above analytical proof by a numerical example.

Example 3. Let X = R and K = [1,∞). Let T : K → K be an operator
defined by Tx = 3−x

2 and Sx = 1+4x
5 for all x ∈ K. It is not difficult to
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show that T is a contraction. Choose α = 0.5 and β = 0.33 for all n with
initial value x1 = 30. The comparison given in the following table shows
that Y-iterative process (4) converges faster than all Mann, S-iterative and
modified Ishikawa processes up to the accuracy of fourteen decimal places.

Table 1. A comparison table of our process
with other processes

Steps Y-iteration Mann Iteration S-iteration Modified Ishikawa
1. 1.67450000000000 5.75000000000000 3.79750000000000 6.06350000000000
2. 1.02394475000000 2.18750000000000 2.21136875000000 2.34942275000000
3. 1.00085003862500 1.29687500000000 0.69412939062500 1.35962116287500
4. 1.00003017637119 1.07421875000000 1.07723232886719 1.09583903990619
5. 1.00000107126118 1.01855468750000 0.98049883696104 1.02554110413500
6. 1.00000003802977 1.00463867187500 1.00492404366734 1.00680670425198
7. 1.00000000135006 1.00115966796875 0.99875667897400 1.00181398668315
8. 1.00000000004793 1.00028991699219 1.00031393855907 1.00048342745106
9. 1.00000000000170 1.00007247924805 0.99992073051384 1.00012883341571
10. 1.00000000000006 1.00001811981201 1.00002001554526 1.00003433410529
11. 1.00000000000000 1.00000452995300 0.99999494607482 1.00000915003906
12. 1.00000000000000 1.00000113248825 1.00000127611611 1.00000243848541
13. ........ ................ ............. 1.00000064985636
14. ........ ................ ............ 1.00000017318672
26. ........ 1.00000000000000 ............ ............
27. ........ 1.00000000000000 1.00000000000000 ............
28. ........ 1.00000000000000 1.00000000000000 1.00000000000000

Conclusion

In view of below table Y-iteration procedure converges in 11th steps,
Mann iteration process in 26th steps, S-iteration process converges 27th steps
and modified Ishikawa iteration process converges 28th steps. The above
calculations have been repeated by taking different values of parameters
αn and βn. Hence the Y-iteration process converges faster than Mann, S-
iteration and Modified Ishikawa iteration process to the fixed point 1 of S
and T . The decreasing rate of convergence of iterative process is as follows
: Y-iteration, Mann, S-iteration and modified Ishikawa iterative process.
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