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Generalized Open
Sets of Minkowski Space

Soley Ersoy, Merve Bilgin, and İbrahim İnce

Abstract. We consider the Euclidean topology and s−topology on
n−dimensional Minkowski space and investigate the interior and clo-
sure of the space cone and perforated space cone with respect to these
topologies. In these regards, we determine that whether the space cone
and perforated space cone are generalized open set or not. Moreover,
we compare the generalized Euclidean topologies with the generalized
s−topologies.

1. Introduction

In 1963, Zeeman explained that considering Euclidean topology, which
is locally homogenous, on Minkowski space is not good enough since the
null cone separates the spacelike vectors from the timelike ones in this space
[25]. Zeeman suggested a new topology on Minkowski space M and intro-
duced the finest topology on 4-dimensional Minkowski space that induces
1-dimensional Euclidean topology on any timelike line and 3-dimensional
Euclidean topology on any spacelike hyperplane with their homeomorphisms
groups generated by inhomogenous Lorentz group, translations and dilata-
tions [25, 26]. These topologies were called, respectively, time topology and
space topology by [16]. Also, Nanda defined t−topology and s−topology
which are, respectively, weaker than the Zeemans’ time and space topol-
ogy [16, 17]. The order topology (Whiston called it Zeeman-order topology
[24]) and A−topology on the Minkowski space were studied in [18, 19], re-
spectively. Dossena obtained the results that the Zeemans’ topology as the
finest topology on n−dimensional Minkowski space is separable, Hausdorff,
non-normal, non-locally compact, non-Lindeloff and the first countable and
moreover, he investigated 2−dimensional case [12]. The topological proper-
ties of t−topology and s−topology were studied and the characterizations
of the compact sets of Minkowski space with these topologies were obtained
by [2, 3].
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To the best of authors’ knowledge generalized topology of the Minkowski
space is not studied yet. In the last century the theory of generalized topol-
ogy has been widely studied in the literature. The classes of subsets of a
topological space which are more and less nearly open sets have been rep-
resented throughout the past few decades in the field of topology. In 1963,
Levine defined semi-open sets and gave some properties of the class of these
open-like sets, [14]. Then a large number of studies have been devoted to
investigate the properties of α−open, β−open, semi-open, pre-open, regular-
open and b−open sets [14, 20, 15, 1, 4, 22, 23, 5]. Let (X, τ) be a topological
space and A be a subset of X. The closure and the interior of A are de-
noted by clτ (A) and intτ (A), respectively. The subset A of (X, τ) is called
a regular-open set, if A = intτ (clτ (A)) [22]. The finite union of regular
open sets is said to be π−open in (X, τ). The family of all regular open
sets is denoted by RO (X), and RO (X) ⊂ τ . Also, a subset A of (X, τ) is
called α−open [20] (resp., β−open [1, 4], semi-open [14], pre-open[15], and
b−open [5]) set if A ⊂ intτ (clτ (intτ (A))) (resp., A ⊂ clτ (intτ (clτ (A))), A ⊂
clτ (intτ (A)), A ⊂ intτ (clτ (A)), and A ⊂ clτ (intτ (A)) ∪ intτ (clτ (A))). The
family of all α−open (resp., β−open, semi-open, pre-open, and b−open) sets
in (X, τ) is denoted by αO (X) (βO (X) , SO (X) , PO (X) , and BO (X))
and there are the relations τ ⊂ αO (X) ⊂ SO (X) ⊂ BO (X) ⊂ βO (X) and
τ ⊂ αO (X) ⊂ PO (X) [8, 13].

Some common properties of these well-known sets were considered and
more general definitions were given by Császár in 1997, [6]. The remarkable
class of studies on generalized open sets was given by Császár, [7, 9, 10, 11].
The collection ζ of subsets of a non-empty X was called generalized topology
by Császár such that, ∅ ∈ ζ, and arbitrary unions of elements of ζ belong
to ζ. The collection of the generalized open sets defined in [6] constitutes a
generalized topology. A set X with a generalized topology ζ was called as a
generalized topological space, [7].

In these regards, we study generalized open subsets of Minkowski space
endowed with the Euclidean topology and s−topology, respectively.

2. Preliminaries

The Lorentzian inner product of the vectors x = (x0, x1, ..., xn−1) and y =

(y0, y1, ..., yn−1) is defined to be g(x, y) = −x0y0 +
n−1∑
i=1

xiyi. The real vector

space Rn provided with the Lorentzian inner product g, which is symmetric,
non-degenerate bilinear form, is called n−dimensional Minkowski space and
denoted by M . Since g is an indefinite form, recall that x ∈ M can have
three Lorentzian casual character as; it can be spacelike if g(x, x) > 0 or
x = 0, timelike if g(x, x) < 0, and null (lightlike) if g(x, x) = 0 and x 6= 0,
[21]. The group of linear operators T on M which leaves Lorentzian inner
product g invariant as g(x, x) = g(T (x), T (x)) for all x ∈M is called Lorentz
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group. The sets

CS(x) = {y ∈M : y = x or g(y − x, y − x) > 0} ,
CL(x) = {y ∈M : g(y − x, y − x) = 0} , and

CT (x) = {y ∈M : y = x or g(y − x, y − x) < 0}
are space cone, null (lightlike) cone, and time cone of x ∈ M , respectively.
The Euclidean topology on n−dimensional Minkowski spaceM is the topol-
ogy generated by the basis B =

{
NE
ε (x) : ε > 0, x ∈M

}
which will be called

e−topology. M with the Euclidean topology will be denoted byME and the
elements of Euclidean topology on Minkowski space will be called e−open
sets.

The s−topology on the n−dimensional Minkowski space M is defined by
specifying the local base of neighborhoods at each point x ∈M given by the
collection N(x) =

{
NS
ε (x) : ε > 0

}
, where NS

ε (x) = NE
ε (x) ∩ CS(x). We

call NS
ε (x) the s−neighborhhood of radius ε. M endowed with s−topology

is denoted by MS and the elements of s−topology on the Minkowski space
will be called s−open sets.

Hence U ⊆ M is s−open with respect to s−topology if and only if there
exists some NS

ε (x) such that NS
ε (x) ⊆ U for each x ∈ U .

Let us recall characters of cones in Minkowski space with respect to
s−topology and e−topology from the following Lemmas given by [3].

Lemma 2.1. Let M be n−dimensional Minkowski space and x ∈M . Then
CT (x)− {x} and CS(x)− {x} are open in ME and CL(x) is closed in ME

[3].

Lemma 2.2. LetM be n−dimensional Minkowski space and x ∈M . NS
ε (x),

ε > 0, is open in MS [3].

Lemma 2.3. Let M be n−dimensional Minkowski space and x ∈M . Then
i. CS(x) is not open in ME,
ii. CS(x) is open in MS [3].

Lemma 2.4. The s−topology on M is strictly finer than the Euclidean topol-
ogy on M [3].

Similar definitions and theorems are also available for t−topology on the
n−dimensional Minkowski space M .

3. Some Generalized Open Sets of Minkowski Space

In this section, we introduce the interior and closure of some important
subsets of Minkowski space with respect to the s−topology and e−topology.
Then, we investigate that, whether these sets are generalized open set or not
with respect to these topologies.
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Lemma 3.1. Let M be n−dimensional Minkowski space and x ∈M . Then
CS (x) ∪ CL (x) is closed in ME.

Proof. CT (x) − {x} is open in ME . So M −
(
CT (x)− {x}

)
is closed in

ME .
M−

(
CT (x)− {x}

)
=
((
CS (x) ∪ CL (x)

)
− {x}

)
∪{x} = CS (x)∪CL (x)

completes the proof. �

Lemma 3.2. Let ME be n−dimensional Minkowski space endowed with
e−topology and x ∈M . Then

i. inte
(
CS (x)

)
= CS (x)− {x},

ii. cle
(
CS (x)

)
= CS (x) ∪ CL (x),

iii. inte
(
CS (x)− {x}

)
= CS (x)− {x},

iv. cle
(
CS (x)− {x}

)
= CS (x) ∪ CL (x),

v. inte
(
CS (x) ∪ CL (x)

)
= CS (x)− {x},

vi. cle
(
CS (x) ∪ CL (x)

)
= CS (x) ∪ CL (x).

Proof. i. From the Lemma 2.1 and Lemma 2.3 (i) the proof is trivial.
ii. CS (x) ∪ CL (x) is an e−closed set in ME and CS (x) ⊂ (CS (x) ∪
CL (x)). Since cle

(
CS (x)

)
is the smallest e−closed set contain-

ing CS (x), cle
(
CS (x)

)
is smaller than CS (x) ∪ CL (x), that is

cle
(
CS (x)

)
⊂ (CS (x) ∪ CL (x)).

Conversely, let y ∈ (CS (x) ∪ CL (x)). Then y ∈ CS (x) or y ∈
CL (x). If y ∈ CS (x) then it is obvious that y ∈ cle

(
CS (x)

)
. On the

other case, if y ∈ CL (x) then there exists ∃z ∈ NE
ε (y) for ∀ε > 0,

such that z ∈ CS (x). Thus for ∀ε > 0, NE
ε (y) ∩ CS (x) 6= ∅. This

gives us y ∈ cle
(
CS (x)

)
and (CS (x) ∪CL (x)) ⊂ cle

(
CS (x)

)
. This

proves the assertion.
iii. Since CS (x)− {x} is an e−open set, this case is obvious.
iv. (CS (x)−{x}) ⊂ CS (x). This requires cle

(
CS (x)− {x}

)
⊂ cle

(
CS (x)

)
.

From (ii) it is easily seen that cle
(
CS (x)− {x}

)
⊂ (CS (x)∪CL (x)).

Conversely, let y ∈ (CS (x) ∪ CL (x)). From (ii) y ∈ cle
(
CS (x)

)
.

If y 6= x then y ∈ cle
(
CS (x)− {x}

)
or if y = x, then for ∀ε > 0,

NE
ε (y) ∩

(
CS (x)− {x}

)
6= ∅, that is, y ∈ cle

(
CS (x)− {x}

)
. In ei-

ther case (CS (x)∪CL (x)) ⊂ cle
(
CS (x)− {x}

)
. Finally, we obtain

cle
(
CS (x)− {x}

)
= CS (x) ∪ CL (x).

v. CS (x) ⊂ (CS (x)∪CL (x)) requires inte
(
CS (x)

)
⊂ inte

(
CS (x) ∪ CL (x)

)
and from (i) (CS (x)−{x}) ⊂ inte

(
CS (x) ∪ CL (x)

)
. Conversely, let

y ∈ inte
(
CS (x) ∪ CL (x)

)
. Since inte

(
CS (x) ∪ CL (x)

)
⊂ (CS (x)∪

CL (x)), y ∈ (CS (x) ∪ CL (x)). Hence either y ∈ (CL (x) − {x}),
y = x or y ∈ (CS (x) − {x}). But it is easy to see that y is not an
interior point when y ∈ (CL (x)−{x}) or y = x since there isn’t any
Euclidean neighborhood NE

δ (y) with radius δ such that NE
δ (y) ⊂
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(CS (x) ∪ CL (x)). Thus, inte
(
CS (x) ∪ CL (x)

)
⊂ (CS (x) − {x}).

This completes the proof.
vi. This assertion is obvious since CS (x)∪CL (x) is an e−closed set in

ME . �

Lemma 3.3. Let MS be n−dimensional Minkowski space endowed with
s−topology and x ∈M . Then

i. ints
(
CS (x)

)
= CS (x),

ii. cls
(
CS (x)

)
= CS (x) ∪ CL (x),

iii. ints
(
CS (x)− {x}

)
= CS (x)− {x},

iv. cls
(
CS (x)− {x}

)
= CS (x) ∪ CL (x),

v. ints
(
CS (x) ∪ CL (x)

)
= CS (x),

vi. cls
(
CS (x) ∪ CL (x)

)
= CS (x) ∪ CL (x).

Proof. By considering the definitions of s−open and s−closed sets in MS

the proofs can be done by similar a manner of proofs of Lemma 3.2. �

Lemma 3.4. Let ME be n−dimensional Minkowski space endowed with
e−topology. Then the space cone CS (x) is

i. σ − e−open,
ii. b− e−open,
iii. β − e−open set in ME,

although CS (x) is not
iv. α− e−open,
v. pre −e−open,
vi. r − e−open set in ME.

Proof. i. From the Lemma 3.2 (i) and (iv), one can see CS (x) ⊂
cle
(
inte

(
CS (x)

))
and hence CS (x) is σ − e−open set in ME .

ii. By considering the above assertion and Lemma 3.2 (ii) and (v), we
get CS (x) ⊂ cle

(
inte

(
CS (x)

))
∪ inte

(
cle
(
CS (x)

))
. Hence CS (x)

is b− e−open set in ME .
iii. From the Lemma 3.2 (ii), (v) and (iv), CS (x) ⊂ cle

(
inte

(
cle
(
CS (x)

)))
is obtained and hence CS (x) is β − e−open set in ME .

iv. From the Lemma 3.2 (i), (iv) and (v), CS (x) 6⊂ inte
(
cle
(
inte

(
CS (x)

)))
that is, CS (x) is not α− e−open set in ME .

v. From the Lemma 3.2 (ii) and (v), CS (x) 6⊂ inte
(
cle
(
CS (x)

))
and

this means that CS (x) is not pre−e−open set in ME .
vi. From the Lemma 3.2 (ii) and (v), inte

(
cle
(
CS (x)

))
6= CS (x) that

is, CS (x) is not r − e−open set in ME . �

Lemma 3.5. Let MS be n−dimensional Minkowski space endowed with
s−topology. Then the space cone CS (x) is α − s−open, β − s−open, σ −
s−open, pre−s−open, b− s−open, and r − s−open set in MS.
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Proof. CS (x) is a s−open set in MS from the Lemma 2.3. Since s ⊂
αO

(
MS

)
⊂ SO

(
MS

)
⊂ BO

(
MS

)
⊂ βO

(
MS

)
and s ⊂ αO

(
MS

)
⊂

PO
(
MS

)
it is easily seen that CS (x) is α−s−open, β−s−open, σ−s−open,

pre−s−open, and b − s−open set in MS . But we need to show whether
CS (x) is r − s−open set or not in MS since RO

(
MS

)
⊂ s. From the

Lemma 3.3 (ii) and (v) one can see ints
(
cls
(
CS (x)

))
= CS (x) and hence

CS (x) is r − s−open set in MS . �

Lemma 3.6. Let ME be n−dimensional Minkowski space endowed with
e−topology. Then the perforated space cone CS (x) − {x} is α − e−open,
β − e−open, σ − e−open, pre−e−open, and b− e−open and r− e−open set
in ME.

Proof. CS (x) − {x} is an e−open set in ME from the Lemma 2.1. Also,
e ⊂ αO

(
ME

)
⊂ SO

(
ME

)
⊂ BO

(
ME

)
⊂ βO

(
ME

)
and e ⊂ αO

(
ME

)
⊂

PO
(
ME

)
. So CS (x) − {x} is α − e−open, β − e−open, σ − e−open,

pre−e−open, and b − e−open set in ME . Since RO
(
ME

)
⊂ e we need

to prove whether CS (x) − {x} is r − e−open set or not in ME . From the
Lemma 3.2 (iv) and (v) inte

(
cle
(
CS (x)− {x}

))
= CS (x)−{x} is seen and

hence CS (x)− {x} is r − e−open set in ME . �

Lemma 3.7. Let MS be n−dimensional Minkowski space endowed with
s−topology. Then the perforated space cone CS (x) − {x} is α − s−open,
β − s−open, σ − s−open, pre−s−open, and b − s−open set in MS. But
CS (x)− {x} is not r − s−open set in MS.

Proof. CS (x) − {x} is e−open set in ME from the Lemma 2.1 and also
CS (x) − {x} is s−open set in MS from Lemma 2.4. From the relations
s ⊂ αO

(
MS

)
⊂ SO

(
MS

)
⊂ BO

(
MS

)
⊂ βO

(
MS

)
and s ⊂ αO

(
MS

)
⊂

PO
(
MS

)
we see that CS (x)−{x} is α−s−open, β−s−open, σ−s−open,

pre−s−open, and b−s−open set inMS . Let us investigate whether CS (x)−
{x} is r − s−open set or not in MS . From the Lemma 3.3 (iv) and (v) one
can see ints

(
cls
(
CS (x)− {x}

))
6= CS (x)− {x} and hence CS (x)− {x} is

not r − s−open set in MS . �

Lemma 3.8. If G is any e−open set in ME. Then G is α, σ, b, β, and
pre−s−open set in MS.

Proof. G is arbitrary e−open set in ME . From the Lemma 2.4, it follows
that G is s−open set in MS . G is an α, σ, b, β, and pre−s−open set in
MS since s ⊂ αO

(
MS

)
⊂ SO

(
MS

)
⊂ BO

(
MS

)
⊂ βO

(
MS

)
and s ⊂

αO
(
MS

)
⊂ PO

(
MS

)
. �

Lemma 3.9. Let M be n−dimensional Minkowski space. Then the collec-
tion of α−s−open set α(s) is strictly finer than the collection of α−e−open
sets α(e).
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Proof. Suppose that G is arbitrary α − e−open set in ME . Then G ⊂
inte(cle(inte(G))). From the Lemma 2.4, it follows that;

inte (G) ⊂ ints (G)

⇒ cle (inte (G)) ⊃ cls (ints (G))
⇒ inte (cle (inte (G))) ⊂ ints (cls (ints (G)))

⇒ G ⊂ inte (cle (inte (G))) ⊂ ints (cls (ints (G)))

⇒ G ⊂ ints (cls (ints (G)))

⇒ G is α− s− open set inMS .

Hence the collection of α−s−open sets αO
(
MS

)
is finer than the collection

of α − e−open sets αO
(
ME

)
. Also, from Lemma 3.4 and Lemma 3.5, the

collection of α − s−open sets αO
(
MS

)
is strictly finer than the collection

of α− e−open sets αO
(
ME

)
. �

Lemma 3.10. Let M be n−dimensional Minkowski space. Then the col-
lection of pre−s−open sets PO

(
MS

)
is strictly finer than the collection of

pre−e−open sets PO
(
ME

)
.

Proof. LetG be an arbitrary pre−e−open set inME . ThenG ⊂ inte(cle(G)).
From the Lemma 2.4, it follows that;

cle (G) ⊃ cls (G)
⇒ inte (cle (G)) ⊂ ints (cls (G))

⇒ G ⊂ inte (cle (G)) ⊂ ints (cls (G))

⇒ G ⊂ ints (cls (G))

⇒ G is pre− s− open set inME .

Hence the collection of pre−s− open sets PO
(
MS

)
is finer than the collec-

tion of pre−e− open sets PO
(
ME

)
. Also, from the Lemma 3.4 and Lemma

3.5, the collection of pre−s−open sets PO
(
MS

)
is strictly finer than the

collection of pre−e− open sets PO
(
ME

)
. �

Also, the collections of β, σ, r, b − e−open and s−open sets are not com-
parable.
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