On Decompositions of Continuity and α -Continuity

Zbigniew Duszyński

Abstract. Several results concerning a decomposition of α -continuous, continuous and complete continuous functions are offered.

1. Preliminaries

Throughout the paper, by (X, τ) and (Y, σ) we denote topological spaces (briefly: spaces) on which no separation axioms are assumed. For a subset S of a space (X, τ) , cl (S) and int (S) denote the closure and the interior of S, respectively. A set $S \subset X$ is called *regular open* (resp. *regular closed*) if S = int(cl(S)) (resp. S = cl(int(S))). An $S \subset X$ is said to be α -open [9] (resp. *preopen* [8], *semi-open* [7], *semi-preopen* [1]) if $S \subset \text{int}(\text{cl}(\text{int}(S)))$ (resp. $S \subset \text{int}(\text{cl}(S))$, $S \subset \text{cl}(\text{int}(S))$, $S \subset \text{cl}(\text{int}(\text{cl}(S)))$).

The family τ^{α} of all α -open subsets of a space (X, τ) is always a topology on X [9], such that $\tau^{\alpha} \supset \tau$ (the inclusion is proper, in general). Crossley and Hildebrand [3] investigated *semi-closed* subsets of (X, τ) : Sis semi-closed if $S \supset$ int (cl (S)). They have obtained that S is semiclosed in (X, τ) if and only if int (cl (S)) = int (S). Using this identity, Tong [12] introduced the so-called *t-sets*. He proved that each regular open set is a *t*-set [12, Proposition 2]. The family of all regular open (resp. regular closed, closed, semi-open, semi-closed, preopen, semi-preopen) subsets of (X, τ) is denoted as $\operatorname{RO}(X, \tau)$ (resp. $\operatorname{RC}(X, \tau)$, $\operatorname{c}(X, \tau)$, $\operatorname{SO}(X, \tau)$, $\operatorname{SC}(X, \tau)$, $\operatorname{PO}(X, \tau)$, $\operatorname{SPO}(X, \tau)$). The following inclusions (proper in general) are known:

- $\operatorname{RO}(X,\tau) \subset \tau \subset \tau^{\alpha} \subset \operatorname{PO}(X,\tau) \subset \operatorname{SPO}(X,\tau),$
- $\tau^{\alpha} \subset \mathrm{SO}(X,\tau) \subset \mathrm{SPO}(X,\tau).$

The families $PO(X, \tau)$ and $SO(X, \tau)$ are, in general, independent of each other in the sense of inclusion [10].

²⁰¹⁰ Mathematics Subject Classification. Primary: 54A05.

Key words and phrases. Preopen set, α -open set, semi-open set, α -precontinuity, continuity, complete continuity.

Lemma 1.1 ([10] for "semi-open", [4] for "semi-closed"). If either $S_1 \in$ SO $(X, \tau) \cup$ SC (X, τ) or $S_2 \in$ SO $(X, \tau) \cup$ SC (X, τ) , then

$$\operatorname{int}(\operatorname{cl}(S_1 \cap S_2)) = \operatorname{int}(\operatorname{cl}(S_1)) \cap \operatorname{int}(\operatorname{cl}(S_2)).$$

Lemma 1.2 ([10]). In any space (X, τ) , $\tau^{\alpha} = PO(X, \tau) \cap SO(X, \tau)$.

2. Continuity

We will need the following classes of subsets of a space (X, τ) .

Definition 2.1. ($\tau 0$) $\mathcal{B}^0_{\tau}(X, \tau) := \{ S \subset X : S = U \cap C, U \in \tau, C \in RO(X, \tau) \};$

- ($\tau 1$) $\mathcal{B}^{1}_{\tau}(X,\tau) := \{S \subset X : S = U \cap C, U \in \tau, C \in \mathrm{RC}(X,\tau)\} (= \mathcal{A}(X,\tau)$ [11, Definition 3.1] and [12, p. 31]);
- ($\tau 2$) $\mathcal{B}^2_{\tau}(X,\tau) := \{ S \subset X : S = U \cap C, U \in \tau, C \in c(X,\tau) \} (= \mathrm{LC}(X,\tau)$ [5]);
- $(\tau 3) \ \mathcal{B}^3_{\tau}(X,\tau) := \{ S \subset X : S = U \cap C, U \in \tau, C \in \mathbf{c}(X,\tau^{\alpha}) \};$
- $(\tau 4) \ \mathcal{B}^{4}_{\tau}(X,\tau) := \{ S \subset X : S = U \cap C, U \in \tau, C \in SC(X,\tau) \} (= \mathcal{B}(X,\tau)$ [12, Definition 2]).

The following (obvious) inclusions, proper in general, hold:

$$\mathcal{B}^1_{\tau}(X,\tau) \subset \mathcal{B}^2_{\tau}(X,\tau) \subset \mathcal{B}^3_{\tau}(X,\tau) \subset \mathcal{B}^4_{\tau}(X,\tau).$$

In Theorem 2.1 we recall some results that have been so far obtained.

Theorem 2.1. Let (X, τ) be a topological space.

- (a) $\tau = \operatorname{PO}(X, \tau) \cap \mathcal{A}(X, \tau)$ [6, case (iv), p. 31];
- (b) $\tau = \operatorname{PO}(X, \tau) \cap \operatorname{LC}(X, \tau)$ [6, Theorem 2(3)];
- (c) $\tau = \text{PO}(X, \tau) \cap \mathcal{B}(X, \tau)$ [12, Proposition 9].

We complete these decompositions of τ in the theorem below.

Theorem 2.2. Let (X, τ) be a topological space.

(d) $\tau = \operatorname{PO}(X, \tau) \cap \mathcal{B}^0_{\tau}(X, \tau);$ (e) $\tau = \operatorname{PO}(X, \tau) \cap \mathcal{B}^3_{\tau}(X, \tau).$

Proof. Let $S \in \text{PO}(X, \tau) \cap \mathcal{B}^0_{\tau}(X, \tau)$. Then $S \in \text{PO}(X, \tau)$ and $S \in \mathcal{B}^0_{\tau}(X, \tau) \subset \mathcal{B}(X, \tau)$ since $\text{RO}(X, \tau) \subset \text{SC}(X, \tau)$. By [12, Proposition 9] we have $S \in \tau$. That $S \in \tau$ follows from $S \in \text{PO}(X, \tau) \cap \mathcal{B}^3_{\tau}(X, \tau)$ is analogous because $c(X, \tau^{\alpha}) \subset \text{SC}(X, \tau)$.

Let now $S \in \tau$. Then $S \in \text{PO}(X, \tau)$ and $S = S \cap X$, where $X \in \text{RO}(X, \tau)$. For (e), observe that $X \in c(X, \tau^{\alpha})$.

Definition 2.2. A function $f: (X, \tau) \to (Y, \sigma)$ is called \mathcal{B}^i_{τ} -continuous on $(X, \tau), i = 0, 1, 2, 3, 4$, if $f^{-1}(V) \in \mathcal{B}^i_{\tau}(X, \tau)$ for any $V \in \sigma$.

For i = 1, 2, 4 these types of continuity were introduced earlier: \mathcal{A} continuity ($\equiv \mathcal{B}_{\tau}^{1}$ -continuity) [11], LC-continuity ($\equiv \mathcal{B}_{\tau}^{2}$ -continuity) [6], \mathcal{B} continuity ($\equiv \mathcal{B}_{\tau}^{4}$ -continuity) [12].

By Theorems 2.1 and 2.2 we get the following decomposition results.

Theorem 2.3. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then, for each i = 0, 1, 2, 3, 4,

(a_i) f is continuous if and only if f is precontinuous and \mathcal{B}^i_{τ} -continuous.

Decompositions of continuity for cases (a_1) , (a_2) and (a_4) were known before: [6, Theorem 4(v)], [6, Theorem 4(iv)] and [12, Proposition 11], respectively.

3. Complete continuity

Definition 3.1. Let (X, τ) be a topological space.

 $(r\tau 1) \ \mathcal{B}^{1}_{r\tau}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \operatorname{RO}(X,\tau), \ C \in \operatorname{RC}(X,\tau) \};$ $(r\tau 2) \ \mathcal{B}^{2}_{r\tau}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \operatorname{RO}(X,\tau), \ C \in \operatorname{c}(X,\tau) \};$ $(r\tau 3) \ \mathcal{B}^{3}_{r\tau}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \operatorname{RO}(X,\tau), \ C \in \operatorname{c}(X,\tau^{\alpha}) \};$ $(r\tau 4) \ \mathcal{B}^{4}_{r\tau}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \operatorname{RO}(X,\tau), \ C \in \operatorname{SC}(X,\tau) \}.$

Theorem 3.1. For any topological space (X, τ) ,

(a_{r4}) a set $S \in \operatorname{RO}(X, \tau)$ if and only if $S \in \operatorname{PO}(X, \tau)$ and $S \in \mathcal{B}^4_{r\tau}(X, \tau)$.

Proof. (\Rightarrow) Let $S \in \operatorname{RO}(X, \tau)$. Then $S \in \operatorname{PO}(X, \tau)$ and $S = S \cap X$ where $X \in \operatorname{SC}(X, \tau)$.

(⇐) If $S \in \text{PO}(X, \tau) \cap \mathcal{B}^4_{r\tau}(X, \tau)$, then $S \subset \text{int}(\text{cl}(U \cap C))$ where $U \in \text{RO}(X, \tau)$ and $C \in \text{SC}(X, \tau)$. Using Lemma 1.1 we get

(*)
$$S \subset \operatorname{int}(\operatorname{cl}(U)) \cap \operatorname{int}(\operatorname{cl}(C)) = U \cap \operatorname{int}(C),$$

since $C \in SC(X, \tau)$ (or by $U \in RO(X, \tau)$). Then we have:

$$(**) S = (U \cap C) \cap U \subset (U \cap \operatorname{int}(C)) \cap U = U \cap \operatorname{int}(C).$$

Since $S \supset U \cap \operatorname{int}(C)$, we get $S = U \cap \operatorname{int}(C) = U \cap \operatorname{int}(\operatorname{cl}(C))$. But sets $U, \operatorname{int}(\operatorname{cl}(C)) \in \operatorname{RO}(X, \tau)$. Therefore S is an intersection of two regularly open sets — consequently, $S \in \operatorname{RO}(X, \tau)$.

We introduce now four new types of continuity.

Definition 3.2. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $\mathcal{B}^i_{r\tau}$ -continuous on (X, τ) , i = 1, 2, 3, 4, if $f^{-1}(V) \in \mathcal{B}^i_{r\tau}(X, \tau)$ for every $V \in \sigma$.

Definition 3.3. [2] A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *completely* continuous if $f^{-1}(V) \in \operatorname{RO}(X, \tau)$ for every $V \in \sigma$.

By Theorem 3.1 we obtain the following decomposition result:

Theorem 3.2. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then:

(b_{r4}) f is completely continuous if and only if it is both precontinuous and $\mathbb{B}^4_{r\tau}$ -continuous.

We can get more decompositions of complete continuity. Namely, one easily obtains

Theorem 3.3. Let (X, τ) be an arbitrary space. Then for i = 1, 2, 3,

(a_{ri}) $S \in \operatorname{RO}(X,\tau)$ if and only if $S \in \operatorname{PO}(X,\tau) \cap \mathcal{B}^{i}_{r\tau}(X,\tau)$.

Theorem 3.4. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then, for i = 1, 2, 3, the following hold:

(b_{ri}) f is completely continuous if and only if f is precontinuous and $\mathbb{B}_{r\tau}^{i}$ -continuous.

4. α -continuity

Definition 4.1. Let (X, τ) be a topological space.

- $(\alpha 0) \ \mathcal{B}^0_{\alpha}(X,\tau) := \{ S \subset X : S = U \cap C, U \in \tau^{\alpha}, C \in \mathrm{RO}(X,\tau) \};$
- $(\alpha 1) \ \mathcal{B}^{1}_{\alpha}(X,\tau) := \{ S \subset X : S = U \cap C, U \in \tau^{\alpha}, C \in \mathrm{RC}(X,\tau) \};$
- $(\alpha 2) \ \mathcal{B}^2_{\alpha}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \tau^{\alpha}, \ C \in \mathbf{c}(X,\tau) \};$
- $(\alpha 3) \ \mathcal{B}^3_{\alpha}(X,\tau) := \{ S \subset X : S = U \cap C, U \in \tau^{\alpha}, C \in c(X,\tau^{\alpha}) \};$
- $(\alpha 4) \ \mathcal{B}^4_{\alpha}(X,\tau) := \{ S \subset X : S = U \cap C, U \in \tau^{\alpha}, C \in \mathrm{SC}(X,\tau) \}.$

Theorem 4.1. Let (X, τ) be arbitrary. Then:

(a_{α 4}) $S \in \tau^{\alpha}$ if and only if $S \in PO(X, \tau) \cap \mathcal{B}^{4}_{\alpha}(X, \tau)$.

Proof. (\Rightarrow) Let $S \in \tau^{\alpha}$. Then $S \in PO(X, \tau)$ and $S = S \cap C$, where $C = X \in SC(X, \tau)$.

(\Leftarrow) Suppose $S \in PO(X, \tau) \cap \mathcal{B}^4_{\alpha}(X, \tau)$. Then $S \in PO(X, \tau)$ and $S = U \cap C$, where $U \in \tau^{\alpha}$, $C \in SC(X, \tau)$. Utilizing Lemma 1.1 we obtain

$$(*') \qquad \begin{array}{l} S \subset \operatorname{int}(\operatorname{cl}(U \cap C)) = \operatorname{int}(\operatorname{cl}(U)) \cap \operatorname{int}(\operatorname{cl}(C)) \subset \\ \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(U))))) \cap \operatorname{int}(C) = \operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) \cap \operatorname{int}(C). \end{array}$$

Hence

$$(**') \quad S = (U \cap C) \cap U \subset (\operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) \cap \operatorname{int}(C)) \cap U = U \cap \operatorname{int}(C).$$

On the other hand, $S = U \cap C \supset U \cap \operatorname{int}(C)$. This shows that $S = U \cap \operatorname{int}(C) \in \tau^{\alpha}$.

Observe that $X \in \operatorname{RO}(X,\tau) \cap \operatorname{RC}(X,\tau)$ and $\operatorname{RC}(X,\tau) \subset \operatorname{c}(X,\tau) \subset \operatorname{c}(X,\tau) \subset \operatorname{c}(X,\tau^{\alpha}) \subset \operatorname{SC}(X,\tau)$. Thus, by the proof of sufficiency of Theorem 4.1, one easily deduces the following result.

Theorem 4.2. Let (X, τ) be arbitrary. Then for i = 0, 1, 2, 3 one has: ($a_{\alpha i}$) $S \in \tau^{\alpha}$ if and only if $S \in PO(X, \tau) \cap \mathcal{B}^{i}_{\alpha}(X, \tau)$.

For a function $f: (X, \tau) \to (Y, \sigma)$ we may define the respective notions of \mathcal{B}^i_{α} -continuity — see Definitions 2.2 or 3.2. Theorems 4.1 and 4.2 lead immediately to

Theorem 4.3. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. For i = 0, 1, 2, 3, 4, (b_{αi}) f is α -continuous if and only if f is precontinuous and \mathbb{B}^i_{α} -continuous.

Definition 4.2. Let (X, τ) be a space.

(s0) $\mathcal{B}^{0}_{s}(X,\tau) := \{ S \subset X : S = U \cap C, U \in SO(X,\tau), C \in RO(X,\tau) \};$

- $\begin{array}{l} (s1) \ \ \mathcal{B}^{1}_{s}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \mathrm{SO}\,(X,\tau), \ C \in \mathrm{RC}\,(X,\tau) \}; \\ (s2) \ \ \mathcal{B}^{2}_{s}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \mathrm{SO}\,(X,\tau), \ C \in \mathrm{c}\,(X,\tau) \}; \\ (s3) \ \ \mathcal{B}^{3}_{s}(X,\tau) := \{ S \subset X : S = U \cap C, \ U \in \mathrm{SO}\,(X,\tau), \ C \in \mathrm{c}\,(X,\tau^{\alpha}) \}; \end{array}$
- $(s4) \ \mathcal{B}_s^4(X,\tau) := \{S \subset X : S = U \cap C, U \in \mathrm{SO}(X,\tau), C \in \mathrm{SC}(X,\tau)\}.$

Theorem 4.4. Let (X, τ) be a space. Then

(a_{s4}) $S \in \tau^{\alpha}$ if and only if $S \in PO(X, \tau) \cap \mathcal{B}^4_s(X, \tau)$.

Proof. Let $S \in PO(X, \tau) \cap \mathcal{B}^4_s(X, \tau)$. Hence $S \subset int(cl(S))$ and $S = U \cap C$ for $U \in SO(X, \tau)$ and $C \in SC(X, \tau)$. We have what follows (using Lemma 1.1): (*") $S \subset int(cl(U \cap C)) = int(cl(U)) \cap int(C) \subset cl(int(cl(U))) \cap int(C)$. Since $SO(X, \tau) \subset SPO(X, \tau)$,

 $(**") \qquad S = (U \cap C) \cap U \subset \left(\mathrm{cl}(\mathrm{int}(\mathrm{cl}(U))) \cap \mathrm{int}(C) \right) \cap U = U \cap \mathrm{int}(C).$

But $S = U \cap C \supset U \cap \operatorname{int}(C)$ and hence $S = U \cap \operatorname{int}(C) \in \operatorname{SO}(X, \tau)$, since the intersection of semi-open and open sets is always semi-open [7].

Thus we have proved that $PO(X, \tau) \cap \mathcal{B}^4_s(X, \tau) \subset SO(X, \tau)$. Since $\tau^{\alpha} \subset PO(X, \tau) \cap \mathcal{B}^4_s(X, \tau)$ and, by Lemma 1.2, we have

$$\tau^{\alpha} \cap \mathrm{PO}(X,\tau) \subset \mathrm{PO}(X,\tau) \cap \mathcal{B}_{s}^{4}(X,\tau) \subset \mathrm{PO}(X,\tau) \cap \mathrm{SO}(X,\tau) = \tau^{\alpha}.$$

Therefore $(\tau^{\alpha} \subset \operatorname{PO}(X, \tau))$, one obtains $\tau^{\alpha} = \operatorname{PO}(X, \tau) \cap \mathcal{B}^4_s(X, \tau)$.

Similarly to the observations in the lines preceding Theorem 4.2 one can formulate

Theorem 4.5. Let (X, τ) be a space. Then for i = 0, 1, 2, 3, (a_{si}) $S \in \tau^{\alpha}$ if and only if $S \in PO(X, \tau) \cap \mathcal{B}_{s}^{i}(X, \tau)$.

For a function $f: (X, \tau) \to (Y, \sigma)$ one can define the respective notions of \mathcal{B}_s^i -continuity (i = 0, 1, 2, 3, 4) — we leave it to the reader. The following decomposition results follow from Theorems 4.4 and 4.5.

Theorem 4.6. Let $f: (X, \tau) \to (Y, \sigma)$, be a function. Then for i = 0, 1, 2, 3, 4, (b_{si}) f is α -continuous if and only if f is precontinuous and \mathcal{B}_{s}^{i} -continuous.

References

- [1] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [2] S.P. Arya, R. Gupta, On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131–143.
- [3] C.G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(2-3) (1971), 99–112.
- [4] Z. Duszyński, Optimality of mappings and some separation axioms, Rendiconti del Circolo Matematico di Palermo, 57 (2008), 213–228.
- [5] M. Ganster, I. L. Reilly, Locally closed sets and LC-continuous functions, Internat. J. Math. Math. Sci., 3 (1989), 417–424.
- [6] M. Ganster, I. L. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4) (1990), 299–301.

- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [8] A.S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47–53.
- [9] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [10] T. Noiri, On α-continuous functions, Čas. pěst. mat., **109** (1984), 118–126.
- [11] J. Tong, A decomposition of continuity, Acta Math. Hungar., 48(1-2) (1986), 11-15.
- J. Tong, On decompositions of continuity in topological spaces, Acta Math. Hungar., 51(1-2) (1989), 51–55.

ZBIGNIEW DUSZYŃSKI

CASIMIRUS THE GREAT UNIVERSITY DEPARTMENT OF MATHEMATICS PL. WEYSSENHOFFA 11 85-072 Bydgoszcz Poland *E-mail address*: kayalnabin82@gmail.com