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Curves of Restricted Type in Euclidean Spaces

BENGU (KILIG) BAYRAM AND NERGIZ ONEN

ABSTRACT. Submanifolds of restricted type were introduced in [7]. In
the present study we consider restricted type of curves in E™. We give
some special examples. We also show that spherical curve in S2 (r) C E3
is of restricted type if and only if either f(s) is constant or a linear
function of s of the form f(s) = £s + b and every closed W — curve of
rank k and of length 277 in E?* is of restricted type.

1. INTRODUCTION

Let M™ be an n—dimensional submanifold of a Euclidean space E™. Let
x,H and A respectively be the position vector field, the mean curvature
vector field and the Laplace operator of the induced metric on M™. Then,
as is well known (see e.g. [2])

(1) Ax = —nH,

which shows, in particular, that M™ is a minimal submanifold in E™ if and
only if its coordinate functions are harmonic (i.e. they are eigenfunctions of
A with eigenvalue 0).

As a generalization of T. Takahashi’s condition and following an idea of
O. Garay [13], some of the authors together with J. Pas [10] initiated the
study of submanifolds M™ in E™ such that

(2) Az = Az + B

for some fixed vector B € E™ and a given matrix A € R™*". This study
was continued by the first author together with M. Petrovic [5] and inde-
pendently by T. Hasanis and T. Vlachos [14].

During the study of submanifolds of R™ satisfying (2), it was observed
that all these matrices A, are equal for all p € M, or equivalently there exists
a fixed matrix A € E™*™ (determining, of course, a linear endomorphism
of E™) such that for all p € M and for all X € T,M,

(3) AgX = (AX)T.
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90 CURVES OF RESTRICTED TYPE IN EUCLIDEAN SPACES

As the relation (3) expresses a strong relationship between differential
geometry and linear algebra, we do think it would be worthwhile to study
submanifolds satisfying this condition; such submanifolds are said to be of
restricted type.

Submanifolds of restricted type were introduced in 7] by the author B.Y.
Chen, F. Dillen, L. Verstraelen and L. Vrancken. The class of submani-
folds of restricted type is large which includes 1—type submanifolds, pseudo-
umbilical submanifolds with constant mean curvature, submanifolds satisfy-
ing either Gray’s condition or Dillen Pas Verstraelen’s condition, all k—type
curves lying fully in E2*, all null k—type curves lying fully in E?*~1 the
products of submanifolds of restricted type, the diagonal immersions of re-
stricted type submanifolds and equivariant isometric immersions of compact
homogeneous spaces. In [7], it is shown that a hypersurface of restricted
type is either minimal, or a part of the product of a sphere and a linear
subspace, or a cylinder on a plane curve of restricted type, and all planar
curves of restricted type are classified.

2. Basic CONCEPTS

In the present section we recall definitions and results of [1]. Let x :
M — E™ be an immersion from an n—dimensional connected Riemannian
manifold M into an m—dimensional Euclidean space E™. We denote by g
the metric tensor of E™ as well as the induced metric on M. Let V be the
Levi-Civita connection of E™ and V the induced connection on M. Then
the Gaussian and Weingarten formulas are given, respectively, by

(4) VxY =VxY +h(X,Y),

(5) Vx€&=—AeX + Dx¢,

where X,Y are vector fields tangent to M and £ normal to M. Moreover,
h is the second fundamental form, D is the linear connection induced in the
normal bundle T+ M, called normal connection and Ag¢ the shape operator
in the direction of £ that is related with h by

(6) (M(X,Y),§) = (AeX,Y).
. For an n—dimensional submanifold M in E™. The mean curvature vector
H is given by
|
H = —traceh.
n

A submanifold M is said to be minimal (respectively, totally geodesic) if
H=0 (respectively, h = 0).

Consider an n—dimensional Riemannian manifold M and denote by (gi;)
the local components of its metric. Put G = det(g;;) and (¢%) = (gi;) "
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Then the Laplacian A of the metric g can be locally defined by

<\/59” o ) :

Au = el
(7) u o,

1 <« 0

for any function u on M, where 1, 9, ..., z, are local coordinates [11].
M is said to be of finite type if each component of the position vector x
has a finite spectral decomposition [2]

(8) r=x0+ 21 +2x2+ -+ Ty,

where z is a constant vector in E™ and 1, z2, . . ., £} are non-constant maps
which satisfy Ax; = Nxg, 1 <i <k, A1 <X < -+ < A,

If all eigenvalues A1, Ag, ..., Ax are mutually distinct, then the immersion
x (or the submanifold M) is said to be of k—type [2].

3. W-CURVES IN E™

Let v = 4(t) : I — E™ be aregular curve in E™ (i.e. ||7/|| is nowhere zero),
where I is interval in R. + is called a Frenet curve of rank r (r € No, r < m) if
A (t),7"(t), ..., (t) are linearly independent and ~/(t), 7" (t), ...,y (¢)
are no longer linearly independent for all ¢ in . In this case, Im(7) lies in
an r-dimensional Euclidean subspace of E™. To each Frenet curve of rank r
there can be associated orthonormal r—frame {V;,V5,...,V,} along ~, the
Frenet r—frame and r — 1 functions k1, k2,...,kr—1 : I — R, the Frenet
curvatures, such that

BZ8 [0 Kk 0O -~ 0 o] [wv]
VQI —K1 0 ) 0 0 VQ
174 0 —ky 0 - 0 0 Vs
(9) Pl=v| . 7] . I A
7{71 0 0 0 Kr_1 Vi 1
_W_ _0 0 cee e —Rpq 0 | _Vr_

where v is the speed of the curve.

In fact, to obtain Vi, Vs, ..., V, it is sufficient to apply the Gram-Schmidt
orthonormalization process to +'(t),7(t),...,7")(t). Moreover, the func-
tions K1, K2, ..., kr—1 are easily obtained as by-product during this calcula-
tion. More precisely, Vi, Vs, ...,V and k1, ka,...,Kkr—1 are determined by
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the following formulas:

Eq (1)
Ei(t) :=~'(t); 1
IEL(8)]
k-1
E;i(t
Eg(t) == ’Y(k)(t) - <'7(k) (t), Ez(t)> HElEt;H
(10) i=1 '
E(1)
/ik,1<t) :
[Ex—1(t) Ex ()]
CE(t)
Vi =
[1E: (0]
where k € {2,3,...,7r}. It is natural and convenient to define Frenet cur-
vatures K, = Kpp1 = -+ = Km—1 = 0. It is clear that Vi, Va,...,V, and
K1,K2, ..., kr—1 can be defined for any regular curve (not necessary a Frenet

curve) in the neighborhood of a point ¢ for which +/(to),¥" (to), - .., ¥ (to)
are linearly independent.

Definition 1. Frenet curve of rank r for which x1, ko, ..., k-_1 are constant
is called (generalized) screw line or helix [6]. Since these curves are trajecto-
ries of the 1-parameter group of the Euclidean transformations, so, F. Klein
and S. Lie [9] called them W — curves.

A unit speed W—curve of rank 2k has the parametrization form

k

(11) Y(s) = ag + > (as cos s + b sin pgs),
=1

and a unit speed W—curve of rank (2k + 1) has the parametrization form

k
(12) v(s) = ap + bps + Z(ai oS [13S + b; sin 1),
i=1
where ag, by, a1, ...,a;,b1,...,br are constant vectors in E™ and p; < pg <

- < g are positive real numbers.

So, a W—curve of rank 1 is a straight line, a W —curve of rank 2 is a
circle and a W—curve of rank 3 is a right circular helix [6].

A W —curve is closed if and only if its rank is even and all y; are rational
multiples of a real number. Therefore, up to rigid motions of a Euclidean
space, a closed W—-curve of rank 2k and of length 277 in E2* has an arc
length parameterization of the form:

(13)

( ) T 1 t18 1 . t18 1 tks 1 . tkS
S)=—F7=| —COS | — — S | — ce.y,— COS | — — S | —
v \/E t1 r ’ t1 r ’ ’ tr T ’ tr T

where ¢; < -+ <t} are positive integers [8].
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4. CURVES OF RESTRICTED TYPE

Definition 2. A submanifold M™ in E™ is said to be restricted type if the
shape operator Ay is the restriction of a fixed endomorphism A of E™ on
the tangent space of M™ at every point of M, i.e.

(14) ApX = (AX)T

for any vector X, tangent to M"™, where (AX )T denotes the tangential com-
ponent of AX [7].

Remark 1. Equation (14) is equivalent to (AgX,Y) = (AX,Y) for all
tangent vectors X, Y [7].

Proposition 1. Every submanifold M™ in E™ whose position vector field
satisfies Az = Ax + B, where A is the Laplacian of M™, A € R™™ gnd
B e E™, is of restmcted type. The endomorphism A is given by nA mn this
case [17].

Let v be a reqular curve in E™. The Laplacian of v can be expressed as

2
(15) aq(e) =~ T~ )
By the using of (1) and (15),
(16) H = —-Ax(t) =9"(t)

where H is the mean curvature of ~y.
Proposition 2. Let v be a curve in E™. If v has the equation
(17) —7"(t) = Ay(t) = Ay(t) + B

such that B is a fixed vector in E™ and A a symmetric matrixz in R™*™,
then 7y s of restricted type.

Proof. From Preposition 1 we have the equation

(18) A~v(t) = Ay(t) + B.

Thus using (16) and (18), we get (17). O
Corollary 1. Let v be a curve in E™. v is of restricted type if and only if
(19) =" (t) = Ay'(1),

where A is a symmetric matriz in R™>*™,

Example 1. S'(a) C E? is of restricted type.
S'(a) is given by the parametrization v(t) = (acost, asint). From higher
order derivatives of v we get
(20) V(t) = —I/(t).
Thus S'(a) C E? is of restricted type.
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Example 2. A helix which is given by the parametrization
y(t) = (rcos(ct + d), rsin(ct + d), at + b)

is of restricted type.
From higher order derivatives of v we get 7"/ (t) = —A+/(t) where

2 0 0
A=10 2 0
0 0 0

Thus helix is of restricted type.

Example 3. Every k—type curve which lies fully in E%* is of restricted type

[7].
Example 4. Every 2—type curve in E™ is of restricted type [7].

Example 5. Although every 2—type curve in E™ and every k—type curve
which lies fully in E?* are curves of restricted type, not every curve of finite
type (in the sense of [2,4]) is of restricted type. For instance the following
6—type curve in E3 is not of restricted type [7]

2 12 3 16 3 20 1 24 1 28
~v(s) = (—fcos—s+ —cos—s+ —cos—s—i——cos—s—l——cos S,

3 17 17 10 17 8 17 177
2 12 n 3 16 + 3 20 + 1 24 + 1 28 8 )
35111 175 sm 175 sm 175 sin 175 sm 173 sin 175

Proposition 3. Let v be a spherical space curve given with

(21) v(s) = (rcosssin(f(s)), rsinssin(f(s)),rcos(f(s)),

where f(s) is polynomial function. Then v is of restricted type if and only if
f(s) is either constant or a linear function of s of the form f(s) = +s+b.

Proof. Suppose that 7 is of restricted type, then by the use of (19) the
equality

71 (s) —ci1 0 0 71(s)
(22) W) =1 0 —co2 0 |- [4(s)
75 (s) 0 0 —c33] [75(s)

holds. Here 7/, (s) are the first and the third derivatives of i*" component
of v and ¢;; is the entry of the matrix A.
From higher order derivatives of v we get

7 (s) = (—r sin ssin(f(s)) + 7 cos scos(f(s))f'(s),rcos ssin(f(s))

(23) : ) : )
+7sin s cos(f(s)) f'(s), —rsin(f(s)) f'(s))
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(24)

7"(s) = (rcosscos(f(5))(f"(s) = (f'(5))* = 3/(s))
+ rsinssin(f(s))(1 + 3(f'(s))?) 4+ rcos ssin(f(s))(=3f"(s) f"(s))
+ rsinscos(f(s))(=3f"(s)),r cosscos(f(s))(3f"(s))
+rsinssin(f(s))(=3f'(s)f" (s )+rcosssm(f(s))( 1-3(f'(s)%
+rsins cos(f(s))(f"(s) = (f'(s))® = 3f'(s)),
rsin(f(s)(—f"(s) + (f'(5))%) + 7 cos(f(5))(=3f'(s).f"(5)))-

Using (22), (23) and (24) we have

(25) F"(s) = (f'())° = 3f'(s) + ennf'(s) = 0,
(26) 1+3(f/(5))* — e11 =0,
(27) —3f'(s)f"(s) =0,
(28) =3f"(s) =0,
(29) ~1=3(f(s)* + ez =0,
(30) F"(s) = (f'(5))* = 3f'(s) + e f'(5) = 0,
(31) —f"(s) + (f'(5))* = essf'(s) = 0.

From (27) and (28) it can be seen that either f(s) is constant or a linear
function of s of the form f(s) = as+bwhere a,b € R. If f(s) is constant, then
f(s) is a circle which is of restricted type. If f(s) is a linear function of s of
the form f(s) = as+b, then using (25) and (26) we get c11 = 1+3a? = a®+3.
Then a = +1 and ¢1; = 4. Similarly, from (29), (30) and (31) we get cgo = 4
and ¢33 = 1. So we obtain

40
(32) A=10 4
0 0

Conversely, if f(s) = const. or f(s) = £s+ b then it is easy to show that
the curve given with the parametrization (21) is of restricted type. O

We also get the following result.

Proposition 4. Let v be closed W —curve of rank k and of length 2mr in
E2F given by the parametrization (13). Then ~y is of restricted type.
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Proof. From higher order derivatives of v we get

So, we have v"(t) = —Av/(t) where

_% . . -
t2
0
(33) A= b
2
0 0 - % 0
2
o0 0 d
Thus W —curve is of restricted type. O

Example 6. A closed W—curve of rank 4 and of length 27 given by the
parametrization

~v(s) = (cosms, sinms, cosns, sin n.s)

is of restricted type, where m,n are positive integers. From higher order
derivatives of v we get v (t) = —A~'(t) where

m2 0 0 0

0 m2 0 0

A= 0 0 n2 0
0 0 0 n?

Thus v is of restricted type.

Theorem 1 ([7]). Up to rigid motions of E2, a curve in E? is of restricted
type if and only if it is an open portion of one of the following plane curves:

(1) a circle,
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(2) a line,

(3) a curve with equation : cos(cx) = e~Y, where ¢ # 0,

(4) a curve with equation : asin®(y/cx) 4 bsinh?(y/cx) = ¢, where a >
b>0,c=a-0,

(5) a curve with equation : asin®(y/cx) — bcosh?(y/ex) = ¢, where a >
0>b,c=a-—b.

Proposition 5 ([7]). Let v be a planar curve. 7y is of restricted type if and
only if the curvature k of v satisfies the following differential equation

(34) k" — k'K 4 4k3K =0

where the derivatives are taken with respect to the arc length parameter.

REFERENCES

[1] B.Y. CHEN, Geometry of Submanifolds and Its Applications, Science University of
Tokyo, Tokyo, 1981.

[2] B.Y. CHEN, Total mean curvature and submanifolds of finite type, World Scientific,
Singapore, 1984.

[3] B.Y. CHEN, A report on submanifolds of finite type, Soochow J. Math., 22 (1996),
117-337.

[4] B.Y. CHEN, J. DEPREZ, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN,
Curves of finite type, Geometry and Topology of Submanifolds, II, World Scientific,
Singapore, 1990, 76-110.

[5] B.Y. CHEN, M. PETROVIC, On spectral decomposition of immersions of finite type,
Bull. Austr. Math. Soc. 44 (1991), 117-129.

[6] B.Y. CHEN, J. DEPREZ, P. VERHEYEN, Immersions with geodesics of 2-type, In:
Geometry and Topology of Submanifolds IV, Belgium, 1992.

[7] B.Y. CHEN, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN, Submanifolds
of restricted type, Journal of Geometry, 46 (1993), 20-32.

[8] B.Y. CHEN, A report on submanifolds of finite type, Soochow J. Math., 22 (1996),
117-337.

[9] F. KLEIN, S. LIE, Uber diejenigen ebenenen kurven welche durch ein geschlossenes
system von einfach unendlich vielen vartauschbaren linearen Transformationen in
sich ibergehen, Math. Ann., 4 (1871), 50-84.

[10] F. DILLEN, J. PAS, L. VERSTRAELEN, On surfaces of finite type in Euclidean
3-space, Kodai Math. J., 13 (1990), 10-21.

[11] G. ZAFINDRATAFA, Hypersurfaces whose mean curvature function is of finite type,
J. Geom., 55 (1996), 182-191.

[12] H. GLUCK, Higher curvatures of curves in Euclidean space, Am. Math. Month., 73
(1966), 699-704.



98 CURVES OF RESTRICTED TYPE IN EUCLIDEAN SPACES

[13] O.J. GARAY, An extension of Takahashi’s theorem, Geom. Dedicate, 34 (1990),
105-112.

[14] T. HASANIS, T. VLACHOS, Hypersurfaces of E"*' satisfying Ax = Az + B, Jour.
Austr. Math. Soc. 53 (1992), 377-384.

BeNGU (KiLig) BAYRAM
DEPARTMENT OF MATHEMATICS
BALIKESIR UNIVERSITY

BALIKESIR

TURKEY

E-mail address: benguk@balikesir.edu.tr

NEerGIz ONEN

DEPARTMENT OF MATHEMATICS
CUKUROVA UNIVERSITY

ADANA

TURKEY

FE-mail address: nonen@cu.edu.tr



