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Curves of Restricted Type in Euclidean Spaces

Bengü (Kılıç) Bayram and Nergiz Önen

Abstract. Submanifolds of restricted type were introduced in [7]. In
the present study we consider restricted type of curves in Em. We give
some special examples. We also show that spherical curve in S2(r) ⊂ E3

is of restricted type if and only if either f(s) is constant or a linear
function of s of the form f(s) = ±s+ b and every closed W − curve of
rank k and of length 2πr in E2k is of restricted type.

1. Introduction

Let Mn be an n−dimensional submanifold of a Euclidean space Em. Let
x,H and ∆ respectively be the position vector field, the mean curvature
vector field and the Laplace operator of the induced metric on Mn. Then,
as is well known (see e.g. [2])

(1) ∆x = −nH,

which shows, in particular, that Mn is a minimal submanifold in Em if and
only if its coordinate functions are harmonic (i.e. they are eigenfunctions of
∆ with eigenvalue 0).

As a generalization of T. Takahashi’s condition and following an idea of
O. Garay [13], some of the authors together with J. Pas [10] initiated the
study of submanifolds Mn in Em such that

(2) ∆x = Ax+B

for some fixed vector B ∈ Em and a given matrix A ∈ Rm×m. This study
was continued by the first author together with M . Petrovic [5] and inde-
pendently by T. Hasanis and T. Vlachos [14].

During the study of submanifolds of Rm satisfying (2), it was observed
that all these matrices Ap are equal for all p ∈M , or equivalently there exists
a fixed matrix A ∈ Em×m (determining, of course, a linear endomorphism
of Em) such that for all p ∈M and for all X ∈ TpM ,

(3) AHX = (AX)T .
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As the relation (3) expresses a strong relationship between differential
geometry and linear algebra, we do think it would be worthwhile to study
submanifolds satisfying this condition; such submanifolds are said to be of
restricted type.

Submanifolds of restricted type were introduced in [7] by the author B.Y.
Chen, F. Dillen, L. Verstraelen and L. Vrancken. The class of submani-
folds of restricted type is large which includes 1−type submanifolds, pseudo-
umbilical submanifolds with constant mean curvature, submanifolds satisfy-
ing either Gray’s condition or Dillen Pas Verstraelen’s condition, all k−type
curves lying fully in E2k, all null k−type curves lying fully in E2k−1, the
products of submanifolds of restricted type, the diagonal immersions of re-
stricted type submanifolds and equivariant isometric immersions of compact
homogeneous spaces. In [7], it is shown that a hypersurface of restricted
type is either minimal, or a part of the product of a sphere and a linear
subspace, or a cylinder on a plane curve of restricted type, and all planar
curves of restricted type are classified.

2. Basic Concepts

In the present section we recall definitions and results of [1]. Let x :
M → Em be an immersion from an n−dimensional connected Riemannian
manifold M into an m−dimensional Euclidean space Em. We denote by g
the metric tensor of Em as well as the induced metric on M . Let ∇̃ be the
Levi-Civita connection of Em and ∇ the induced connection on M . Then
the Gaussian and Weingarten formulas are given, respectively, by

(4) ∇̃XY = ∇XY + h(X,Y ),

(5) ∇̃Xξ = −AξX +DXξ,

where X,Y are vector fields tangent to M and ξ normal to M . Moreover,
h is the second fundamental form, D is the linear connection induced in the
normal bundle T⊥M , called normal connection and Aξ the shape operator
in the direction of ξ that is related with h by

(6) 〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 .

For an n−dimensional submanifoldM in Em. The mean curvature vector
~H is given by

~H =
1
n
traceh.

A submanifold M is said to be minimal (respectively, totally geodesic) if
~H ≡ 0 (respectively, h ≡ 0).
Consider an n−dimensional Riemannian manifold M and denote by (gij)

the local components of its metric. Put G = det(gij) and (gij) = (gij)−1.
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Then the Laplacian ∆ of the metric g can be locally defined by

(7) ∆u = − 1√
G

n∑
i,j=1

∂

∂xi

(√
Ggij

∂u

∂xj

)
,

for any function u on M , where x1, x2, ..., xn are local coordinates [11].
M is said to be of finite type if each component of the position vector x

has a finite spectral decomposition [2]

(8) x = x0 + x1 + x2 + · · ·+ xk,

where x0 is a constant vector in Em and x1, x2, . . . , xk are non-constant maps
which satisfy ∆xi = λixi, 1 ≤ i ≤ k, λ1 < λ2 < · · · < λk.

If all eigenvalues λ1, λ2, . . . , λk are mutually distinct, then the immersion
x (or the submanifold M) is said to be of k−type [2].

3. W-curves in Em

Let γ = γ(t) : I → Em be a regular curve in Em (i.e. ‖γ′‖ is nowhere zero),
where I is interval in R. γ is called a Frenet curve of rank r (r ∈ N0, r ≤ m) if
γ′(t), γ′′(t), . . . , γ(r)(t) are linearly independent and γ′(t), γ′′(t), . . . , γ(r+1)(t)
are no longer linearly independent for all t in I. In this case, Im(γ) lies in
an r-dimensional Euclidean subspace of Em. To each Frenet curve of rank r
there can be associated orthonormal r−frame {V1, V2, . . . , Vr} along γ, the
Frenet r−frame and r − 1 functions κ1, κ2, . . . , κr−1 : I → R, the Frenet
curvatures, such that

(9)



V ′1
V ′2
V ′3
...

V ′r−1

V ′r


= v



0 κ1 0 · · · 0 0
−κ1 0 κ2 · · · 0 0

0 −κ2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 · · · · · · 0 κr−1

0 0 · · · · · · −κr−1 0


·



V1

V2

V3
...

Vr−1

Vr


,

where v is the speed of the curve.
In fact, to obtain V1, V2, . . . , Vr it is sufficient to apply the Gram-Schmidt

orthonormalization process to γ′(t), γ′(t), . . . , γ(r)(t). Moreover, the func-
tions κ1, κ2, . . . , κr−1 are easily obtained as by-product during this calcula-
tion. More precisely, V1, V2, . . . , Vr and κ1, κ2, . . . , κr−1 are determined by
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the following formulas:

(10)

E1(t) := γ′(t); V1 :=
E1(t)
‖E1(t)‖

Ek(t) := γ(k)(t)−
k−1∑
i=1

〈
γ(k)(t), Ei(t)

〉 Ei(t)
‖Ei(t)‖

κk−1(t) :=
Ek(t)

‖Ek−1(t)E1(t)‖

Vk :=
Ek(t)
‖Ek(t)‖

where k ∈ {2, 3, . . . , r}. It is natural and convenient to define Frenet cur-
vatures κr = κr+1 = · · · = κm−1 = 0. It is clear that V1, V2, . . . , Vr and
κ1, κ2, . . . , κr−1 can be defined for any regular curve (not necessary a Frenet
curve) in the neighborhood of a point t0 for which γ′(t0), γ′′(t0), . . . , γ(r)(t0)
are linearly independent.

Definition 1. Frenet curve of rank r for which κ1, κ2, . . . , κr−1 are constant
is called (generalized) screw line or helix [6]. Since these curves are trajecto-
ries of the 1-parameter group of the Euclidean transformations, so, F. Klein
and S. Lie [9] called them W − curves.

A unit speed W−curve of rank 2k has the parametrization form

(11) γ(s) = a0 +
k∑
i=1

(ai cosµis+ bi sinµis),

and a unit speed W−curve of rank (2k + 1) has the parametrization form

(12) γ(s) = a0 + b0s+
k∑
i=1

(ai cosµis+ bi sinµis),

where a0, b0, a1, . . . , ak, b1, . . . , bk are constant vectors in Em and µ1 < µ2 <
· · · < µk are positive real numbers.

So, a W−curve of rank 1 is a straight line, a W−curve of rank 2 is a
circle and a W−curve of rank 3 is a right circular helix [6].

A W−curve is closed if and only if its rank is even and all µi are rational
multiples of a real number. Therefore, up to rigid motions of a Euclidean
space, a closed W−curve of rank 2k and of length 2πr in E2k has an arc
length parameterization of the form:
(13)

γ(s) =
r√
k

(
1
t1

cos
(
t1s

r

)
,

1
t1

sin
(
t1s

r

)
, . . . ,

1
tk

cos
(
tks

r

)
,

1
tk

sin
(
tks

r

))
where t1 < · · · < tk are positive integers [8].
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4. Curves of restricted type

Definition 2. A submanifold Mn in Em is said to be restricted type if the
shape operator AH is the restriction of a fixed endomorphism A of Em on
the tangent space of Mn at every point of Mn, i.e.

(14) AHX = (AX)T

for any vector X, tangent to Mn, where (AX)T denotes the tangential com-
ponent of AX [7].

Remark 1. Equation (14) is equivalent to 〈AHX,Y 〉 = 〈AX,Y 〉 for all
tangent vectors X,Y [7].

Proposition 1. Every submanifold Mn in Em whose position vector field
satisfies ∆x = Ãx + B, where ∆ is the Laplacian of Mn, Ã ∈ Rm×m and
B ∈ Em, is of restricted type. The endomorphism A is given by 1

nÃ in this
case [7].

Let γ be a regular curve in Em. The Laplacian of γ can be expressed as

(15) ∆γ(t) = −d
2γ(t)
dt2

= −γ′′(t).

By the using of (1) and (15),

(16) H = −∆γ(t) = γ′′(t)

where H is the mean curvature of γ.

Proposition 2. Let γ be a curve in Em. If γ has the equation

(17) −γ′′(t) = ∆γ(t) = Aγ(t) +B

such that B is a fixed vector in Em and A a symmetric matrix in Rm×m,
then γ is of restricted type.

Proof. From Preposition 1 we have the equation

(18) ∆γ(t) = Aγ(t) +B.

Thus using (16) and (18), we get (17). �

Corollary 1. Let γ be a curve in Em. γ is of restricted type if and only if

(19) −γ′′′(t) = Aγ′(t),

where A is a symmetric matrix in Rm×m.

Example 1. S1(a) ⊂ E2 is of restricted type.
S1(a) is given by the parametrization γ(t) = (a cos t, a sin t). From higher

order derivatives of γ we get

(20) γ′′′(t) = −I2γ′(t).
Thus S1(a) ⊂ E2 is of restricted type.
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Example 2. A helix which is given by the parametrization

γ(t) = (r cos(ct+ d), r sin(ct+ d), at+ b)

is of restricted type.
From higher order derivatives of γ we get γ′′′(t) = −Aγ′(t) where

A =

c2 0 0
0 c2 0
0 0 0

 .
Thus helix is of restricted type.

Example 3. Every k−type curve which lies fully in E2k is of restricted type
[7].

Example 4. Every 2−type curve in Em is of restricted type [7].

Example 5. Although every 2−type curve in Em and every k−type curve
which lies fully in E2k are curves of restricted type, not every curve of finite
type (in the sense of [2,4]) is of restricted type. For instance the following
6−type curve in E3 is not of restricted type [7]

γ(s) =
(
−2

3
cos

12
17
s+

3
4

cos
16
17
s+

3
10

cos
20
17
s+

1
8

cos
24
17
s+

1
14

cos
28
17
s,

− 2
3

sin
12
17
s+

3
4

sin
16
17
s+

3
10

sin
20
17
s+

1
8

sin
24
17
s+

1
14

sin
28
17
s, sin

8
17
s
)
.

Proposition 3. Let γ be a spherical space curve given with

(21) γ(s) = (r cos s sin(f(s)), r sin s sin(f(s)), r cos(f(s)) ,

where f(s) is polynomial function. Then γ is of restricted type if and only if
f(s) is either constant or a linear function of s of the form f(s) = ±s+ b.

Proof. Suppose that γ is of restricted type, then by the use of (19) the
equality

(22)

γ′′′1 (s)
γ′′′2 (s)
γ′′′3 (s)

 =

−c11 0 0
0 −c22 0
0 0 −c33

 ·
γ′1(s)
γ′2(s)
γ′3(s)


holds. Here γ′i, γ

′′′
i (s) are the first and the third derivatives of ith component

of γ and cii is the entry of the matrix A.
From higher order derivatives of γ we get

(23)
γ′(s) =

(
−r sin s sin(f(s)) + r cos s cos(f(s))f ′(s), r cos s sin(f(s))

+ r sin s cos(f(s))f ′(s),−r sin(f(s))f ′(s)
)
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(24)
γ′′′(s) =

(
r cos s cos(f(s))(f ′′′(s)− (f ′(s))3 − 3f ′(s))

+ r sin s sin(f(s))(1 + 3(f ′(s))2) + r cos s sin(f(s))(−3f ′(s)f ′′(s))

+ r sin s cos(f(s))(−3f ′′(s)), r cos s cos(f(s))(3f ′′(s))

+ r sin s sin(f(s))(−3f ′(s)f ′′(s)) + r cos s sin(f(s))(−1− 3(f ′(s))2)

+ r sin s cos(f(s))(f ′′′(s)− (f ′(s))3 − 3f ′(s)),

r sin(f(s))(−f ′′′(s) + (f ′(s))3) + r cos(f(s))(−3f ′(s)f ′′(s))
)
.

Using (22), (23) and (24) we have

f ′′′(s)− (f ′(s))3 − 3f ′(s) + c11f
′(s) = 0,(25)

1 + 3(f ′(s))2 − c11 = 0,(26)

−3f ′(s)f ′′(s) = 0,(27)

−3f ′′(s) = 0,(28)

−1− 3(f ′(s))2 + c22 = 0,(29)

f ′′′(s)− (f ′(s))3 − 3f ′(s) + c22f
′(s) = 0,(30)

−f ′′′(s) + (f ′(s))3 − c33f
′(s) = 0.(31)

From (27) and (28) it can be seen that either f(s) is constant or a linear
function of s of the form f(s) = as+b where a, b ∈ R. If f(s) is constant, then
f(s) is a circle which is of restricted type. If f(s) is a linear function of s of
the form f(s) = as+b, then using (25) and (26) we get c11 = 1+3a2 = a2+3.
Then a = ±1 and c11 = 4. Similarly, from (29), (30) and (31) we get c22 = 4
and c33 = 1. So we obtain

(32) A =

4 0 0
0 4 0
0 0 1

 .
Conversely, if f(s) = const. or f(s) = ±s+ b then it is easy to show that

the curve given with the parametrization (21) is of restricted type. �

We also get the following result.

Proposition 4. Let γ be closed W−curve of rank k and of length 2πr in
E2k given by the parametrization (13). Then γ is of restricted type.
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Proof. From higher order derivatives of γ we get

γ′(s) =
1√
k

(
− sin

(
t1s

r

)
, cos

(
t1s

r

)
, . . . ,

− sin
(
tks

r

)
, cos

(
tks

r

))

γ′′(s) =
−1√
k

(
t1
r

cos
(
t1s

r

)
,
t1
r

sin
(
t1s

r

)
, . . . ,

tk
r

cos
(
tks

r

)
,
tk
r

sin
(
tks

r

))

γ′′′(s) =
1√
k

(
t21
r2

sin
(
t1s

r

)
,− t

2
1

r2
cos
(
t1s

r

)
, . . . ,

t2k
r2

sin
(
tks

r

)
,−

t2k
r2

cos
(
tks

r

))
.

So, we have γ′′′(t) = −Aγ′(t) where

(33) A =



t21
r2

0 · · · 0 0
0 t21

r2
· · · 0 0

...
...

. . .
...

...
0 0 · · · t2k

r2
0

0 0 · · · 0 t2k
r2


.

Thus W−curve is of restricted type. �

Example 6. A closed W−curve of rank 4 and of length 2π given by the
parametrization

γ(s) = (cosms, sinms, cosns, sinns)

is of restricted type, where m,n are positive integers. From higher order
derivatives of γ we get γ′′′(t) = −Aγ′(t) where

A =


m2 0 0 0
0 m2 0 0
0 0 n2 0
0 0 0 n2

 .
Thus γ is of restricted type.

Theorem 1 ([7]). Up to rigid motions of E2, a curve in E2 is of restricted
type if and only if it is an open portion of one of the following plane curves:

(1) a circle,
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(2) a line,
(3) a curve with equation : cos(cx) = e−cy, where c 6= 0,
(4) a curve with equation : a sin2(

√
cx) + b sinh2(

√
cx) = c, where a >

b > 0, c = a− b,
(5) a curve with equation : a sin2(

√
cx) − b cosh2(

√
cx) = c, where a >

0 > b, c = a− b.

Proposition 5 ([7]). Let γ be a planar curve. γ is of restricted type if and
only if the curvature κ of γ satisfies the following differential equation

(34) κκ′′′ − κ′κ′′ + 4κ3κ′ = 0

where the derivatives are taken with respect to the arc length parameter.
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