Curves of Restricted Type in Euclidean Spaces

BENGÜ (KILIÇ) BAYRAM AND NERGIZ ÖNEN

ABSTRACT. Submanifolds of restricted type were introduced in [7]. In the present study we consider restricted type of curves in \mathbb{E}^m . We give some special examples. We also show that spherical curve in $S^2(r) \subset \mathbb{E}^3$ is of restricted type if and only if either f(s) is constant or a linear function of s of the form $f(s) = \pm s + b$ and every closed W - curve of rank k and of length $2\pi r$ in \mathbb{E}^{2k} is of restricted type.

1. INTRODUCTION

Let M^n be an *n*-dimensional submanifold of a Euclidean space \mathbb{E}^m . Let x, H and Δ respectively be the position vector field, the mean curvature vector field and the Laplace operator of the induced metric on M^n . Then, as is well known (see e.g. [2])

(1)
$$\Delta x = -nH,$$

which shows, in particular, that M^n is a minimal submanifold in \mathbb{E}^m if and only if its coordinate functions are harmonic (i.e. they are eigenfunctions of Δ with eigenvalue 0).

As a generalization of T. Takahashi's condition and following an idea of O. Garay [13], some of the authors together with J. Pas [10] initiated the study of submanifolds M^n in \mathbb{E}^m such that

(2)
$$\Delta x = Ax + B$$

for some fixed vector $B \in \mathbb{E}^m$ and a given matrix $A \in \mathbb{R}^{m \times m}$. This study was continued by the first author together with M. Petrovic [5] and independently by T. Hasanis and T. Vlachos [14].

During the study of submanifolds of \mathbb{R}^m satisfying (2), it was observed that all these matrices A_p are equal for all $p \in M$, or equivalently there exists a fixed matrix $A \in \mathbb{E}^{m \times m}$ (determining, of course, a linear endomorphism of \mathbb{E}^m) such that for all $p \in M$ and for all $X \in T_pM$,

²⁰¹⁰ Mathematics Subject Classification. Primary: 53A04.

Key words and phrases. Curves of restricted type.

As the relation (3) expresses a strong relationship between differential geometry and linear algebra, we do think it would be worthwhile to study submanifolds satisfying this condition; such submanifolds are said to be *of restricted type*.

Submanifolds of restricted type were introduced in [7] by the author B.Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken. The class of submanifolds of restricted type is large which includes 1-type submanifolds, pseudoumbilical submanifolds with constant mean curvature, submanifolds satisfying either Gray's condition or Dillen Pas Verstraelen's condition, all k-type curves lying fully in \mathbb{E}^{2k} , all null k-type curves lying fully in \mathbb{E}^{2k-1} , the products of submanifolds of restricted type, the diagonal immersions of restricted type submanifolds and equivariant isometric immersions of compact homogeneous spaces. In [7], it is shown that a hypersurface of restricted type is either minimal, or a part of the product of a sphere and a linear subspace, or a cylinder on a plane curve of restricted type, and all planar curves of restricted type are classified.

2. BASIC CONCEPTS

In the present section we recall definitions and results of [1]. Let $x : M \to \mathbb{E}^m$ be an immersion from an n-dimensional connected Riemannian manifold M into an m-dimensional Euclidean space \mathbb{E}^m . We denote by g the metric tensor of \mathbb{E}^m as well as the induced metric on M. Let $\tilde{\nabla}$ be the Levi-Civita connection of \mathbb{E}^m and ∇ the induced connection on M. Then the Gaussian and Weingarten formulas are given, respectively, by

(4)
$$\nabla_X Y = \nabla_X Y + h(X, Y),$$

(5)
$$\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi,$$

where X, Y are vector fields tangent to M and ξ normal to M. Moreover, h is the second fundamental form, D is the linear connection induced in the normal bundle $T^{\perp}M$, called normal connection and A_{ξ} the shape operator in the direction of ξ that is related with h by

(6)
$$\langle h(X,Y),\xi\rangle = \langle A_{\xi}X,Y\rangle.$$

For an n-dimensional submanifold M in \mathbb{E}^m . The mean curvature vector \vec{H} is given by

$$\vec{H} = \frac{1}{n} traceh.$$

A submanifold M is said to be minimal (respectively, totally geodesic) if $\vec{H} \equiv 0$ (respectively, $h \equiv 0$).

Consider an *n*-dimensional Riemannian manifold M and denote by (g_{ij}) the local components of its metric. Put $G = \det(g_{ij})$ and $(g^{ij}) = (g_{ij})^{-1}$.

Then the Laplacian Δ of the metric g can be locally defined by

(7)
$$\Delta u = -\frac{1}{\sqrt{G}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(\sqrt{G} g^{ij} \frac{\partial u}{\partial x_j} \right),$$

for any function u on M, where $x_1, x_2, ..., x_n$ are local coordinates [11].

M is said to be of finite type if each component of the position vector x has a finite spectral decomposition [2]

(8)
$$x = x_0 + x_1 + x_2 + \dots + x_k,$$

where x_0 is a constant vector in \mathbb{E}^m and x_1, x_2, \ldots, x_k are non-constant maps which satisfy $\Delta x_i = \lambda_i x_i, 1 \le i \le k, \lambda_1 < \lambda_2 < \cdots < \lambda_k$.

If all eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ are mutually distinct, then the immersion x (or the submanifold M) is said to be of k-type [2].

3. W-curves in \mathbb{E}^m

Let $\gamma = \gamma(t) : I \to \mathbb{E}^m$ be a regular curve in \mathbb{E}^m (i.e. $\|\gamma'\|$ is nowhere zero), where I is interval in \mathbb{R} . γ is called a *Frenet curve of rank* r ($r \in \mathbb{N}_0, r \leq m$) if $\gamma'(t), \gamma''(t), \ldots, \gamma^{(r)}(t)$ are linearly independent and $\gamma'(t), \gamma''(t), \ldots, \gamma^{(r+1)}(t)$ are no longer linearly independent for all t in I. In this case, $Im(\gamma)$ lies in an r-dimensional Euclidean subspace of \mathbb{E}^m . To each Frenet curve of rank rthere can be associated orthonormal r-frame $\{V_1, V_2, \ldots, V_r\}$ along γ , the Frenet r-frame and r - 1 functions $\kappa_1, \kappa_2, \ldots, \kappa_{r-1} : I \to \mathbb{R}$, the Frenet curvatures, such that

$$(9) \qquad \begin{bmatrix} V_1' \\ V_2' \\ V_3' \\ \vdots \\ V_{r-1}' \\ V_r' \end{bmatrix} = v \begin{bmatrix} 0 & \kappa_1 & 0 & \cdots & 0 & 0 \\ -\kappa_1 & 0 & \kappa_2 & \cdots & 0 & 0 \\ 0 & -\kappa_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & \kappa_{r-1} \\ 0 & 0 & \cdots & \cdots & -\kappa_{r-1} & 0 \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ \vdots \\ V_{r-1} \\ V_r \end{bmatrix},$$

where v is the speed of the curve.

In fact, to obtain V_1, V_2, \ldots, V_r it is sufficient to apply the Gram-Schmidt orthonormalization process to $\gamma'(t), \gamma'(t), \ldots, \gamma^{(r)}(t)$. Moreover, the functions $\kappa_1, \kappa_2, \ldots, \kappa_{r-1}$ are easily obtained as by-product during this calculation. More precisely, V_1, V_2, \ldots, V_r and $\kappa_1, \kappa_2, \ldots, \kappa_{r-1}$ are determined by the following formulas:

(10)

$$E_{1}(t) := \gamma'(t); \qquad V_{1} := \frac{E_{1}(t)}{\|E_{1}(t)\|}$$

$$E_{k}(t) := \gamma^{(k)}(t) - \sum_{i=1}^{k-1} \left\langle \gamma^{(k)}(t), E_{i}(t) \right\rangle \frac{E_{i}(t)}{\|E_{i}(t)\|}$$

$$\kappa_{k-1}(t) := \frac{E_{k}(t)}{\|E_{k-1}(t)E_{1}(t)\|}$$

$$V_{k} := \frac{E_{k}(t)}{\|E_{k}(t)\|}$$

where $k \in \{2, 3, ..., r\}$. It is natural and convenient to define Frenet curvatures $\kappa_r = \kappa_{r+1} = \cdots = \kappa_{m-1} = 0$. It is clear that $V_1, V_2, ..., V_r$ and $\kappa_1, \kappa_2, ..., \kappa_{r-1}$ can be defined for any regular curve (not necessary a Frenet curve) in the neighborhood of a point t_0 for which $\gamma'(t_0), \gamma''(t_0), \ldots, \gamma^{(r)}(t_0)$ are linearly independent.

Definition 1. Frenet curve of rank r for which $\kappa_1, \kappa_2, \ldots, \kappa_{r-1}$ are constant is called (generalized) screw line or helix [6]. Since these curves are trajectories of the 1-parameter group of the Euclidean transformations, so, F. Klein and S. Lie [9] called them W - curves.

A unit speed W-curve of rank 2k has the parametrization form

(11)
$$\gamma(s) = a_0 + \sum_{i=1}^k (a_i \cos \mu_i s + b_i \sin \mu_i s),$$

and a unit speed W-curve of rank (2k + 1) has the parametrization form

(12)
$$\gamma(s) = a_0 + b_0 s + \sum_{i=1}^k (a_i \cos \mu_i s + b_i \sin \mu_i s),$$

where $a_0, b_0, a_1, \ldots, a_k, b_1, \ldots, b_k$ are constant vectors in \mathbb{E}^m and $\mu_1 < \mu_2 < \cdots < \mu_k$ are positive real numbers.

So, a W-curve of rank 1 is a straight line, a W-curve of rank 2 is a circle and a W-curve of rank 3 is a right circular helix [6].

A W-curve is closed if and only if its rank is even and all μ_i are rational multiples of a real number. Therefore, up to rigid motions of a Euclidean space, a closed W-curve of rank 2k and of length $2\pi r$ in \mathbb{E}^{2k} has an arc length parameterization of the form: (13)

$$\gamma(s) = \frac{r}{\sqrt{k}} \left(\frac{1}{t_1} \cos\left(\frac{t_1 s}{r}\right), \frac{1}{t_1} \sin\left(\frac{t_1 s}{r}\right), \dots, \frac{1}{t_k} \cos\left(\frac{t_k s}{r}\right), \frac{1}{t_k} \sin\left(\frac{t_k s}{r}\right) \right)$$

where $t_1 < \cdots < t_k$ are positive integers [8].

4. Curves of restricted type

Definition 2. A submanifold M^n in \mathbb{E}^m is said to be restricted type if the shape operator A_H is the restriction of a fixed endomorphism A of \mathbb{E}^m on the tangent space of M^n at every point of M^n , i.e.

(14)
$$A_H X = (AX)^T$$

for any vector X, tangent to M^n , where $(AX)^T$ denotes the tangential component of AX [7].

Remark 1. Equation (14) is equivalent to $\langle A_H X, Y \rangle = \langle A X, Y \rangle$ for all tangent vectors X, Y [7].

Proposition 1. Every submanifold M^n in \mathbb{E}^m whose position vector field satisfies $\Delta x = \tilde{A}x + B$, where Δ is the Laplacian of M^n , $\tilde{A} \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{E}^m$, is of restricted type. The endomorphism A is given by $\frac{1}{n}\tilde{A}$ in this case [7].

Let γ be a regular curve in \mathbb{E}^m . The Laplacian of γ can be expressed as

(15)
$$\Delta\gamma(t) = -\frac{d^2\gamma(t)}{dt^2} = -\gamma''(t).$$

By the using of (1) and (15),

(16)
$$H = -\Delta\gamma(t) = \gamma''(t)$$

where H is the mean curvature of γ .

Proposition 2. Let γ be a curve in \mathbb{E}^m . If γ has the equation

(17)
$$-\gamma''(t) = \Delta\gamma(t) = A\gamma(t) + B$$

such that B is a fixed vector in \mathbb{E}^m and A a symmetric matrix in $\mathbb{R}^{m \times m}$, then γ is of restricted type.

Proof. From Preposition 1 we have the equation

(18)
$$\Delta\gamma(t) = A\gamma(t) + B$$

Thus using (16) and (18), we get (17).

Corollary 1. Let γ be a curve in \mathbb{E}^m . γ is of restricted type if and only if

(19)
$$-\gamma'''(t) = A\gamma'(t),$$

where A is a symmetric matrix in $\mathbb{R}^{m \times m}$.

Example 1. $S^1(a) \subset \mathbb{E}^2$ is of restricted type.

 $S^1(a)$ is given by the parametrization $\gamma(t) = (a \cos t, a \sin t)$. From higher order derivatives of γ we get

(20)
$$\gamma^{\prime\prime\prime}(t) = -I_2 \gamma^{\prime}(t).$$

Thus $S^1(a) \subset \mathbb{E}^2$ is of restricted type.

Example 2. A helix which is given by the parametrization

$$\gamma(t) = (r\cos(ct+d), r\sin(ct+d), at+b)$$

is of restricted type.

From higher order derivatives of γ we get $\gamma'''(t) = -A\gamma'(t)$ where

$$A = \begin{bmatrix} c^2 & 0 & 0\\ 0 & c^2 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Thus helix is of restricted type.

Example 3. Every k-type curve which lies fully in \mathbb{E}^{2k} is of restricted type [7].

Example 4. Every 2-type curve in \mathbb{E}^m is of restricted type [7].

Example 5. Although every 2-type curve in \mathbb{E}^m and every k-type curve which lies fully in \mathbb{E}^{2k} are curves of restricted type, not every curve of finite type (in the sense of [2,4]) is of restricted type. For instance the following 6-type curve in \mathbb{E}^3 is not of restricted type [7]

$$\gamma(s) = \left(-\frac{2}{3}\cos\frac{12}{17}s + \frac{3}{4}\cos\frac{16}{17}s + \frac{3}{10}\cos\frac{20}{17}s + \frac{1}{8}\cos\frac{24}{17}s + \frac{1}{14}\cos\frac{28}{17}s, -\frac{2}{3}\sin\frac{12}{17}s + \frac{3}{4}\sin\frac{16}{17}s + \frac{3}{10}\sin\frac{20}{17}s + \frac{1}{8}\sin\frac{24}{17}s + \frac{1}{14}\sin\frac{28}{17}s, \sin\frac{8}{17}s\right).$$

Proposition 3. Let γ be a spherical space curve given with

(21)
$$\gamma(s) = (r\cos s\sin(f(s)), r\sin s\sin(f(s)), r\cos(f(s))),$$

where f(s) is polynomial function. Then γ is of restricted type if and only if f(s) is either constant or a linear function of s of the form $f(s) = \pm s + b$.

Proof. Suppose that γ is of restricted type, then by the use of (19) the equality

(22)
$$\begin{bmatrix} \gamma_1'''(s) \\ \gamma_2'''(s) \\ \gamma_3'''(s) \end{bmatrix} = \begin{bmatrix} -c_{11} & 0 & 0 \\ 0 & -c_{22} & 0 \\ 0 & 0 & -c_{33} \end{bmatrix} \cdot \begin{bmatrix} \gamma_1'(s) \\ \gamma_2'(s) \\ \gamma_3'(s) \end{bmatrix}$$

holds. Here $\gamma'_i, \gamma'''_i(s)$ are the first and the third derivatives of i^{th} component of γ and c_{ii} is the entry of the matrix A.

From higher order derivatives of γ we get

(23)
$$\gamma'(s) = \left(-r\sin s\sin(f(s)) + r\cos s\cos(f(s))f'(s), r\cos s\sin(f(s)) + r\sin s\cos(f(s))f'(s), -r\sin(f(s))f'(s)\right)$$

$$\begin{aligned} &(24)\\ &\gamma'''(s) = \left(r\cos s\cos(f(s))(f'''(s) - (f'(s))^3 - 3f'(s))\right) \\ &+ r\sin s\sin(f(s))(1 + 3(f'(s))^2) + r\cos s\sin(f(s))(-3f'(s)f''(s)) \\ &+ r\sin s\cos(f(s))(-3f''(s)), r\cos s\cos(f(s))(3f''(s)) \\ &+ r\sin s\sin(f(s))(-3f'(s)f''(s)) + r\cos s\sin(f(s))(-1 - 3(f'(s))^2) \\ &+ r\sin s\cos(f(s))(f'''(s) - (f'(s))^3 - 3f'(s)), \\ &r\sin(f(s))(-f'''(s) + (f'(s))^3) + r\cos(f(s))(-3f'(s)f''(s))). \end{aligned}$$

Using (22), (23) and (24) we have

(25)
$$f'''(s) - (f'(s))^3 - 3f'(s) + c_{11}f'(s) = 0,$$

(20)
$$1 + 3(f(s)) - c_{11} = 0,$$

(27)
$$-3f'(s)f''(s) = 0,$$

(28)
$$-3f''(s) = 0,$$

(29)
$$-1 - 3(f'(s))^2 + c_{22} = 0,$$

(30)
$$f'''(s) - (f'(s))^3 - 3f'(s) + c_{22}f'(s) = 0,$$

(31)
$$-f'''(s) + (f'(s))^3 - c_{33}f'(s) = 0.$$

From (27) and (28) it can be seen that either f(s) is constant or a linear function of s of the form f(s) = as+b where $a, b \in \mathbb{R}$. If f(s) is constant, then f(s) is a circle which is of restricted type. If f(s) is a linear function of s of the form f(s) = as+b, then using (25) and (26) we get $c_{11} = 1+3a^2 = a^2+3$. Then $a = \pm 1$ and $c_{11} = 4$. Similarly, from (29), (30) and (31) we get $c_{22} = 4$ and $c_{33} = 1$. So we obtain

(32)
$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Conversely, if f(s) = const. or $f(s) = \pm s + b$ then it is easy to show that the curve given with the parametrization (21) is of restricted type.

We also get the following result.

Proposition 4. Let γ be closed W-curve of rank k and of length $2\pi r$ in \mathbb{E}^{2k} given by the parametrization (13). Then γ is of restricted type.

Proof. From higher order derivatives of γ we get

$$\gamma'(s) = \frac{1}{\sqrt{k}} \left(-\sin\left(\frac{t_1s}{r}\right), \cos\left(\frac{t_1s}{r}\right), \dots, -\sin\left(\frac{t_ks}{r}\right), \cos\left(\frac{t_ks}{r}\right) \right)$$
$$\gamma''(s) = \frac{-1}{\sqrt{k}} \left(\frac{t_1}{r} \cos\left(\frac{t_1s}{r}\right), \frac{t_1}{r} \sin\left(\frac{t_1s}{r}\right), \dots, \frac{t_k}{r} \cos\left(\frac{t_ks}{r}\right), \frac{t_k}{r} \sin\left(\frac{t_ks}{r}\right) \right)$$
$$\gamma'''(s) = \frac{1}{\sqrt{k}} \left(\frac{t_1^2}{r^2} \sin\left(\frac{t_1s}{r}\right), -\frac{t_1^2}{r^2} \cos\left(\frac{t_1s}{r}\right), \dots, \frac{t_k^2}{r^2} \sin\left(\frac{t_ks}{r}\right), -\frac{t_k^2}{r^2} \cos\left(\frac{t_ks}{r}\right) \right)$$

So, we have $\gamma^{\prime\prime\prime}(t) = -A\gamma^\prime(t)$ where

(33)
$$A = \begin{bmatrix} \frac{t_1^2}{r^2} & 0 & \cdots & 0 & 0\\ 0 & \frac{t_1^2}{r^2} & \cdots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & \frac{t_k^2}{r^2} & 0\\ 0 & 0 & \cdots & 0 & \frac{t_k^2}{r^2} \end{bmatrix}$$

Thus W-curve is of restricted type.

Example 6. A closed W-curve of rank 4 and of length 2π given by the parametrization

 $\gamma(s) = (\cos ms, \sin ms, \cos ns, \sin ns)$

is of restricted type, where m, n are positive integers. From higher order derivatives of γ we get $\gamma'''(t) = -A\gamma'(t)$ where

$$A = \begin{bmatrix} m^2 & 0 & 0 & 0 \\ 0 & m^2 & 0 & 0 \\ 0 & 0 & n^2 & 0 \\ 0 & 0 & 0 & n^2 \end{bmatrix}.$$

Thus γ is of restricted type.

Theorem 1 ([7]). Up to rigid motions of \mathbb{E}^2 , a curve in \mathbb{E}^2 is of restricted type if and only if it is an open portion of one of the following plane curves:

(1) a circle,

- (2) a line,
- (3) a curve with equation : $\cos(cx) = e^{-cy}$, where $c \neq 0$,
- (4) a curve with equation : $a\sin^2(\sqrt{cx}) + b\sinh^2(\sqrt{cx}) = c$, where a > b > 0, c = a b,
- (5) a curve with equation : $a\sin^2(\sqrt{cx}) b\cosh^2(\sqrt{cx}) = c$, where a > 0 > b, c = a b.

Proposition 5 ([7]). Let γ be a planar curve. γ is of restricted type if and only if the curvature κ of γ satisfies the following differential equation

(34)
$$\kappa \kappa''' - \kappa' \kappa'' + 4\kappa^3 \kappa' = 0$$

where the derivatives are taken with respect to the arc length parameter.

References

- B.Y. CHEN, Geometry of Submanifolds and Its Applications, Science University of Tokyo, Tokyo, 1981.
- [2] B.Y. CHEN, Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.
- [3] B.Y. CHEN, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337.
- [4] B.Y. CHEN, J. DEPREZ, F. DİLLEN, L. VERSTRAELEN AND L. VRANCKEN, *Curves of finite type*, Geometry and Topology of Submanifolds, II, World Scientific, Singapore, 1990, 76-110.
- [5] B.Y. CHEN, M. PETROVIC, On spectral decomposition of immersions of finite type, Bull. Austr. Math. Soc. 44 (1991), 117–129.
- [6] B.Y. CHEN, J. DEPREZ, P. VERHEYEN, *Immersions with geodesics of 2-type*, In: Geometry and Topology of Submanifolds IV, Belgium, 1992.
- [7] B.Y. CHEN, F. DİLLEN, L. VERSTRAELEN AND L. VRANCKEN, Submanifolds of restricted type, Journal of Geometry, 46 (1993), 20–32.
- [8] B.Y. CHEN, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337.
- [9] F. KLEİN, S. LİE, Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen Transformationen in sich übergehen, Math. Ann., 4 (1871), 50–84.
- [10] F. DILLEN, J. PAS, L. VERSTRAELEN, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21.
- G. ZAFİNDRATAFA, Hypersurfaces whose mean curvature function is of finite type, J. Geom., 55 (1996), 182–191.
- [12] H. GLUCK, Higher curvatures of curves in Euclidean space, Am. Math. Month., 73 (1966), 699–704.

- [13] O.J. GARAY, An extension of Takahashi's theorem, Geom. Dedicate, 34 (1990), 105–112.
- [14] T. HASANIS, T. VLACHOS, Hypersurfaces of \mathbb{E}^{n+1} satisfying $\Delta x = Ax + B$, Jour. Austr. Math. Soc. 53 (1992), 377–384.

Bengü (Kiliç) Bayram

DEPARTMENT OF MATHEMATICS BALIKESIR UNIVERSITY BALIKESIR TURKEY *E-mail address*: benguk@balikesir.edu.tr

NERGIZ ÖNEN

DEPARTMENT OF MATHEMATICS ÇUKUROVA UNIVERSITY ADANA TURKEY *E-mail address*: nonen@cu.edu.tr