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Global Behavior of a Rational
Difference Equation with Quadratic Term

R. ABO-ZEID

ABSTRACT. In this paper, we determine the forbidden set, introduce
an explicit formula for the solutions and discuss the global behavior of
all solutions of the difference equation

ATnTn—1

Tntl = n=0,1,...

by, — CTn—s’
where a, b, c are positive real numbers and the initial conditions x_2, x_1, xo
are real numbers.

1. INTRODUCTION

Li and Zhu [10] discussed the global asymptotic stability of the difference
equation
gy = Tndnsika
Tn + Tp-1
where a € [0,00) and x_1, x¢ are positive real numbers.
In [6] H. Sedaghat determined the global behavior of all solutions of the
rational difference equations

Tp—1 ATpTn—1

S E— Tptl = ——F— n=20,1,...
xnwn—l"i_b’ n+ xn+b$n—2’ o

Tn+l =

where a,b > 0.

In this paper, we derive the forbidden set, introduce an explicit formula for

the solutions and discuss the global behavior of all solutions of the difference
equation

ATpTn—1

(1.1) Tnt1 = 4 n=20,1,...

Ty — CTp—2

where a, b, c are positive real numbers and the initial conditions x_s,x_1, xq
are real numbers.
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2. FORBIDDEN SET AND SOLUTIONS OF (QQUATION (1.1)

In this section we derive the forbidden set and introduce an explicit for-
mula for the solutions of the difference equation (1.1).
Suppose that xgx_1; = 0. Then we have the following:

If xo =0 and z_1 # 0, then z3 is undefined.
If x_1 =0 and x¢ # 0, then x5 is undefined.
If x_o =0 and xox_1 # 0, then 21 = %x_l #0.

Therefore, we can start with the nonzero initial conditions x_1, xg, 1, which
we shall discuss.

Now suppose that z_; # 0 for all ¢ = 0,1,2. Using the substitution
2, equation (1.1) becomes

(21) Tn+1 =

Ty =

arn—1
_ n=20,1,...
brprpn—1 —c

Now using the substitution I,, = we can obtain the linear nonhomo-

T™nTn—1"
geneous difference equation
c b 1 1
(22) lpt1 = ——lp + —, lp = = —, n=20,1,...
a a ror—1 «

The solution of equation (2.2) is

n—1 .
= () e e ()

(2.3) i=0
= (_g)na—i_baZ?:O (_5)17 n:O, 17~..
ao
But {,, = WLI = x;—;z Therefore,
(2.4) Tn ae . n=0,1,...

T (—S)ratbayig(-2)
When n = ng for some ng € N, if we set o = Wc(_a)l in equation (2.4),
I=0\" ¢
we obtain
Tp c

Tp—o b
Therefore, yp,+1 is undefined.
On the other hand, from equation (1.1) we have that

LTn—1 Cmn/xn72

Ln—3 bxn/xn—Q —a

For a fixed ng € N, suppose that we have y,,4+1 is undefined. This implies
that

brp, — cxp,—2 = 0.
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That is

Tpy, _C

Tpo—2 b

Hence using equation (2.4), we have the following:

Tpo—1 _ c? _ c
Tng—3  ble—a) b1 (—2)i
02
Tno—2 Cblc—a) . c

2 - 2 s
Tng—4 bb(ccfa) —a b Zi:o(_%)z
Now suppose that

Tng—(k—1) c

— - -, 0<k < nyg.
Lno—(k+1) bZ§:&(_i)l
Then
Lno—(k) — W = ¢ ¢
Tno-(er2) gy 0 be—a XL (-0

3 k—1 ; k i
b1 +Z¢:o (_%)H_l bzi:o(—%)’
Therefore, for k = ng we have

T c
=«

v D (=)
These observations lead us to conclude the following result.
Proposition 2.1. The forbidden set F' of equation (1.1) is
> c

F= U {(uo,u,l,u,g) S U = U_o (7)}U

n=0 bZ'LT'Lz()(_Ta)’L

{(UO,U,_l,U_Q) TUug = 0} U {(uo,u_l,u_g) U1 = 0}.
Using equation (2.4), we obtain the following result.

Theorem 2.2. Let x_o,x_1 and zg be real numbers such that (o, x_1,x_2) ¢
F. If a # ¢, then the solution {xn}‘x’ of equation (1.1) is

n=—2
) 1HJ =0 f(ate )(a+c)2”1+b n=13.5,...
(2.5) T, =
xOHJ =0 Ylate)( +C)23+2+b7 n=24,6,...
where = ate=b

a(atc) -
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3. GLOBAL BEHAVIOR OF EQUATION (1.1)

In this section, we investigate the global behavior of equation (1.1) with
a # ¢, using the explicit formula of its solution.
We can write the solution of equation (1.1) in the form:

m
Tomii =2 o | [ Bi(§), i=1,2andm=0,1,...
j=0

where
a-+c

O(a+c)(—<)2+i + b’

Theorem 3.1. Let {x,}5° o be a solution of equation (1.1) such that
(xo,x_1,2_2) ¢ F. Then the following statements are true.

Bi(d) =

i=1,2.

(1) Ifa < c, then {xzn}22 _, converges to zero.
(2) If a > ¢, then we have the following:
(a) If &< < 1, then {x,}52_, converges to zero.
(b) If %€ > 1, then both {w9,}52 1 and {@won41}22_1 are un-
bounded.

Proof.

(1) If a < ¢, then §;(j) converges to 0 as j — oo, ¢ = 1,2. It follows
that, there exists jo € N such that, |5;(j)] < p, with some 0 < p < 1
for all j > jg. Therefore,

m
| Zom+i| = [2—24i] H/Bi(j)‘
=0

= |z -2+l jﬁlﬁi ‘ ’H Bi(j ‘
J=0 J=jo
Jo—1

<lz_ayil [J] ﬂi(j)‘ pmIot
=0

As m tends to infinity, the solution {z,}2° _, converges to zero.
(2) Suppose that a > ¢. Then we have the following:

(a) If %€ < 1, then 3;(j) converges to %€ <1 as j — o0, i =1,2.
Therefore, there exists 71 € N such that 0< Bi(9) < pa, Wlth
some 0 < p; < 1 for all 7 > j; and the solution {x;,}5°
converges to zero as in (1).

(b) If ¢ > 1, then §;(j) converges to € > 1 as j — oo, i = 1,2.
Then there exists jo € N such that, ﬁz( ) > v, for some v > 1
for all j > jo.

n=-—2
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Hence

m
[wami] = o H@-(j)\

Jjo—1
= ’x—2+z‘| H /82 ‘ H ﬂz
Jj=Jjo
Jo—1

> |$72+i| H ﬁ ‘ m—jo+1

Therefore, both of the subsequences {2,302 1 and {xon41 102 4
are unbounded. U

4. CASEa+c=1b

In order to discuss the case when a + ¢ = b with a > ¢, we need to
remember the behavior of equation (2.1) with a + ¢ = b with a > c.

Many authors [1-9] discussed the behavior of the solutions of some special
cases of the equation

Axp_q
B+ Cxpxn_’
where A, B, C' are real numbers, but with reducing the numbers of parame-
ters to one or two.

We shall derive only some results concern the behavior of the solutions of

equation (2.1), that we shall use.
The following theorem gives the solution of equation (2.1).

LT+l = n:(),l,...

Theorem 4.1. Letr_q1,ry be real numbers such thatr_i1rg = a # W
for any n € N. Then the solution of equation (2.1) is

“1 Bla+c)(—<)¥ +b

_ =1
(41) _ 1HJ°0<a+c>< ooy T b0
' e [z flata eyt 4 p o
= gty T O
__ atc—ba
where 6 = a(ate) -

The solution of equation (2.1) can be written as:

m
7”2m+i:7"—2+i1_‘['7i(j)7 i:1,2 andm:O,l,...
j=0
where
0(a+c)(—<)2+H1+p

7i(7) = O(a+c)(— a)2ﬂ+l+b

i=1,2.
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Now assume that a + ¢ = b and « # 0. Then we have
. g(—< 27+i—1 +1 )
71(.7) = é az 2j+i 1’ 1= 172-
()7 +
Theorem 4.2. Assume thata > ¢ and let {r,}°>_, be a solution of equation
(2.1) such that o # 1 and r_1rog = o # W for anymn € N. Then
=0 c

{rom+1}oo__1 and {rom }5°__; converge to finite limits.

Proof. Let {rp}>2 _; is a solution of equation (2.1) such that r_irp = a #

mforanynel\f

The condition o # 1 (where “£¢ = 1) ensures that the solution {r,}32_,
is not a period-2 solution.

We claim that, there exists jo € N such that ~;(j) > 0 for all j > jo.

For, let a;(j) = 0(— <)%~ + 1 and b;(j) = (—<)¥** + 1. Then we can
write

NG R SR 10).
W= T T bG)
We have the following situations:
e If § < 0, then, we have the following:

— If i =1, then b1(j) > 0 for all j € N. But as a1(j) converges to
1, there exists j; € N such that a1(j) > 0 for all j > j;.
Therefore, 71 (j) = $4 > 0 for all j > ji.

— If ¢ = 2, then ag(j) > 0 for all j € N. But as by(j) converges to
1, there exists jo € N such that by(j) > 0 for all j > js.

Therefore, v2(j) = Zj((j)) > 0 for all j > jo.

i=1,2.

In all cases, there exists a natural number jo = max{ji,jo} such

that 7(j) = 242 > 0, i = 1,2 for all j > jo.

e If 0 > 0, the situation is similar and will be omitted.

Claim is complete.
Now for each i € {1,2}, we have for large m

0( )2]+1 1+1

2m+i = T'— 2+2H 9 )2]+z_|_1
7=0

=T 24 H 7i ()
=0
Jo—1

=7r_o4; H Yi(4) H 7i(7)
§=0

J=Jjo

Jo—1

=7 4 H vilj exp(zln% )

Jj=Jo
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We shall test the convergence of the series > 2% . ' |In;(j)|.

Since lim;_. %735)1) = %, using L’Hospital’s rule we obtain
Inv;(j+1
lim H%Ofwz(52<1
i—oe | In(j) a

Then from d’Alembert’s test that the series > 22 |In;(j)| is convergent,
it follows that there exist 2 real numbers p; € R such that

lim ropm+s = piy 1€ {0, 1}. O
m—0o0
Now we are ready to introduce the main results in this section.

Theorem 4.3. Assume that {x,}52 5 is a solution of equation (1.1) such
that (zo,z_1,x_2) ¢ F and let a+c =0b. If a = 1, then {zp,}2° 4 is
eventually periodic solution with period 2.

Proof. Assume that a +c¢=0b. If @« = 1, then 8 = 0. Therefore,

. . ﬁ a—+c
2m4i = T —244 EAVIEY;
0@+ (=% +b

=z_24, t=1,2andm=0,1,... (|

Theorem 4.4. Assume that {z,}32 _5 is a solution of equation (1.1) such
that (zo,x_1,2-2) ¢ F and let a +c = b. If a # 1, then we have the
following:
(1) If a < ¢, then {z,}32 _5 converges to zero.
(2) If a > ¢, then {x,}>2_5 converges to a period-2 solution {po, f11}
such that py = pop1, where py is as in Theorem (4.2).

Proof.

(1) The proof is similar to that in theorem (3.1).
(2) Suppose that a+c=band a > ¢, then 3;(j) = 9(73)% converges
tol,i=1,2. ‘

By an argument similar to that in theorem (4.2), there exists
Jo € N such that, §;(j) > 0, for all j > jo.

Hence
m Jjo—1 m
Tomti = Topi | [ Bi(§) = m—24i [ 8:G) [] B:(4)
J=0 Jj=0 J=Jo
Jo—1 m
=T _24i H Bi(j) exp (Z lnﬁi(j))
Jj=0 J=Jo

We shall test the convergence of the series > 222 . |In 5; ().
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(1

2]

3l

(4]

8]

[6]

7l

(8]

9

[10]

Since lim;_, using L’Hospital’s rule we obtain

1nﬁi(j+1)‘ _0

11’161(]) - 67
In 3:(i 2
lim n%fl)‘ - (&) <.
j—oo In ﬁl( ) a
It follows from D’ Alemberts’ test that the series 3 72 [In 3;(7)| is

convergent.
This ensures that there are two real numbers pg, 1 such that
lim xomys =i, ©€ {O, 1}.

m—00

Moreover, as Xom+1 = TamT2m+1, then pg = pop1 where

3 )7 41 q 1
r1H9 2g+1_|_1 and - fto = ‘/EOHQ 9% 41
1=
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