
Mathematica Moravica
Vol. 17-2 (2013), 29–37

Characterization of Curves in E2n+1

with 1-type Darboux Vector

H. Kocayiğit, G. Öztürk, B. (Kılıç) Bayram, B. Bulca,
and K. Arslan

Abstract. In this study, we give some characterizations on the Dar-
boux instantaneous rotation vector field of the curves in Euclidean
(2n + 1)-space E2n+1 by using Laplacian operator. Further, we give
necessary and sufficient conditions for unit speed space curves to have
1-type Darboux vector.

1. Introduction

In the local differential geometry, the characterizations of the curves are
very important and fascinating problem. Especially, finding a relation to
characterize special curves has an important role in the curve theory. The
well-known of these special curves in E3 is constant slope curve or general
helix which is defined by the property that the tangent vector of the curve
makes a constant angle with a fixed straight line (the axis of the general
helix). A classical result stated by M. A. Lancret in 1802 and first proved by
B. de Saint Venant in 1845 (see [24] for details) is: A necessary and sufficient
condition that a curve be a general helix is that the ratio of curvature to
torsion be constant. Further, many mathematicians focused their study on
these special curves in different spaces such as Euclidean space ([9, 10, 12,
18, 20, 23]) and Minkowski space ([5, 11, 16, 21]). Moreover in [17] Mağden,
gave a similar characterization for the curves in Euclidean 4-space to be
constant slope curve.

The notion of a generalized helix in E3 can be generalized to higher di-
mensions in many ways. In [6] the same definition is proposed but in Em.
In [8] the definition is more restrictive: the fixed direction makes a constant
angle with all vectors of the Frenet frame. It is easy to check that this defi-
nition only works in the odd dimension, i.e. case m = 2n+ 1. Moreover, in
the same reference, it is proven that the definition is equivalent to the fact
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that the ratios κ1
κ2
, κ3
κ4
, . . . , κ2n−1

κ2n
, κi being curvatures, are constant. This

statement is related with the Lancret Theorem for generalized helices in E3.
Furthermore, Chen and Ishikawa classified biharmonic curves, the curves

for which ∆H = 0 in semi-Euclidean space where ∆ is the Laplacian oper-
ator and H is the mean curvature vector field of a Frenet curve [5]. After
them, Kocayiğit studied biharmonic curves and 1-type curves, i.e. the curves
for which ∆H = λH holds, where λ is constant, in Euclidean 3-space E3 and
Minkowski 3-space E3

1. In [3], Baros and Gray studied curves in Euclidean
space with 1-type mean curvature vector. Further in [13], the authors con-
sidered the curves in Euclidean space with 1-type mean curvature vector.
For more details see also [1]. Recently, in [14] the present authors classi-
fied the unit speed curves in E3 with harmonic and 1-type Darboux vector
respectively.

In this study, we give some characterizations on the Darboux instanta-
neous rotation vector field of the curves in Euclidean (2n + 1)-space E2n+1

by using Laplacian operator. Further, we give necessary and sufficient con-
ditions for unit speed space curves to have 1-type Darboux vector.

2. Basic Concepts

Let γ = γ(t) : I → Em be a regular curve in Em (i.e.‖γ′‖ is nowhere zero),
where I is an interval in R. The curve γ is called a Frenet curve of rank
d (or osculating order d) (d ∈ N0, d ≤ m) if γ′(t),γ′′(t), γ′′′(t), . . . , γ(d)(t)
are linearly independent and γ′(t),γ′′(t),γ′′′(t), . . . , γ(d+1)(t) are no longer
linearly independent for all t ∈ I. In this case, Im(γ) lies in a d-dimensional
Euclidean subspace of Em. For each Frenet curve of rank d, there occur an
associated orthonormal d-frame {V1, V2, . . . , Vd} along γ, the Frenet d-frame
and d − 1 functions κ1, κ2, . . . , κd−1 : I → R, and the Frenet curvatures,
such that

(1)


V ′1
V ′2
V ′3
...
V ′d

 = v


0 κ1 0 · · · 0
−κ1 0 κ2 · · · 0

0 −κ2 0 · · · 0
...

...
...

. . . κd−1

0 0 · · · −κd−1 0




V1

V2

V3
...
Vd


where v is the speed of the curve.

Infect, to obtain V1, V2, . . . , Vd it is sufficient to apply the Gram-Schmidt
orthonormalization process to γ′(t), γ′′(t), γ′′′(t), . . . , γ(d)(t). Moreover, the
functions κ1, κ2, . . . , κd−1 are easily obtained as by product during this cal-
culation. More precisely, V1, V2, . . . , Vd and κ1, κ2, . . . , κd−1 are determined
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by the following formulas [7]:

(2)

E1(t) = γ′(t); V1 =
E1

‖E1(t)‖

Er(t) = γ(r)(t)−
r−1∑
i=1

< γ(r)(t), Ei(t) >
Ei(t)
‖Ei(t)‖2

;

κr−1(t) =
‖Er(t)‖

‖Er−1(t)‖ ‖E1(t)‖
,

Vr =
Er(t)
‖Er(t)‖

,

where r ∈ {2, 3, . . . , d}.

3. Darboux Vector and Darboux Vertex of a Curve in E2n+1

Let γ : R → Em be a Frenet curve of osculating order d parametrized
by arc length. When the Frenet m-frame V1, V2, . . . , Vm of a curve γ in the
Euclidean space Em is translated to an arbitrary fixed point O and the arc
length s is considered as the time, the motion of the m-frame is a rotation
about the point O. If m is odd the rotation about the point O has an
instantaneous axis of rotation. If m is even there is no such axis of rotation.

Suppose thatm = 2n+1. Note byN0(s) = γ′(s), N1(s), N2(s), . . . , Nd−1(s)
the unit vectors of the (2n+1)-frame of γ at s.We define the Darboux vector
and Darboux vertices of curves in the Euclidean space E2n+1.

Definition 1. Let γ be a unit speed curve of osculating order d (3 ≤ d ≤
2n+ 1) in R2n+1, n ≥ 1. Let us denote

(3)

a0 = κ2κ4 · · ·κd−1

a1 =
κ1

κ2
a0

...

aj =
κ2j−1

κ2j
aj−1, 2 ≤ j ≤ d− 1

2
,

a d−1
2

=
κd−2

κd−1
a d−3

2
= κ1κ3 · · ·κd−2.

The Darboux vector in E2n+1 is defined by

(4) W (s) =

d−1
2∑
j=0

ajN2j = a0N0 + a1N2 + a2N4 + · · ·+ a d−1
2
Nd−1,

where {N0 = γ′(s), N1, N2, . . . , Nd−1} is the Frenet frame of γ [25].
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Corollary 1. Let γ be a Frenet curve of osculating order d (3 ≤ d ≤ 2n+1)
in E2n+1, n ≥ 1, then

(5)
aj
aj−1

=
κ2j−1

κ2j

where 1 ≤ j ≤ d−1
2 .

Lemma 1 ([25]). The derivative of the Darboux vector W(s) is

(6) W ′(s) =

d−1
2∑
j=0

a′jN2j = a′0N0 + a′1N2 + a′2N4 · · ·+ a′d−1
2

Nd−1.

Definition 2. The point γ(s0) is called Darboux vertex of γ if the first
derivative of the Darboux vector W (s) is vanishing at that point.

Theorem 1. Let γ be a Frenet curve of osculating order d (3 ≤ d ≤ 2n+ 1)
in E2n+1, n ≥ 1. Then the curve has a Darboux vertex at point γ(s0) if and
only if

(7)
(
κ1

κ2

)′
= 0,

(
κ3

κ4

)′
= 0, . . . ,

(
κd−2

κd−1

)′
= 0

at point s = s0.

Definition 3. The Laplacian operator of the Darboux vector W of γ is
defined by

(8) ∆W = −Oγ′(s)Oγ′(s)W = −O2
γ′(s)W,

where O is the Levi-Civita connection given by Oγ′(s) = d
ds .

Lemma 2. The Laplacian operator of the Darboux vector W of γ is

(9) −∆W = W ′′(s) =

d−1
2∑
j=0

a′′jN2j +

d−3
2∑
i=0

(a′iκ2i+1 − a′i+1κ2i+2)N2i+1.

Proof. Differentiating (6) with respect to s we get

(10) −∆W = W ′′(s) =

d−1
2∑
j=0

a′′jN2j +

d−1
2∑
j=0

a′jN
′
2j

where N ′2j = Oγ′(s)N2j . Further, by the use of the Frenet formulas (1) we
get the desired equation (9). �

Definition 4. A regular curve γ in E2n+1 is said to have harmonic Darboux
vector if

(11) ∆W = 0
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holds. Further, a regular curve γ in E2n+1 is said to have 1 -type Darboux
vector if the condition

(12) ∆W = λW, λ ∈ R

holds.

By the use of (9) we get the following result.

Theorem 2. Let γ be a Frenet curve of osculating order d (3 ≤ d ≤ 2n+ 1)
in E2n+1, n ≥ 1. Then γ has harmonic Darboux vector field if and only if

(13)

a′i+1

a′i
=
κ2i+1

κ2i+2
, 0 ≤ i ≤ d− 3

2
,

a′′j = 0, 0 ≤ j ≤ d− 1
2

holds.

Thus, we have the following corollary of the theorem.

Corollary 2. [14] Let γ = γ(s) : I → E3 be a unit speed curve in Euclidean
3-space E3. Then γ has harmonic Darboux vector field if and only if

(14) κ1 = cκ2, κ2 = c1s+ c2

hold, where c, c1, c2 ∈ R.

By the use of (12) we get the following result.

Theorem 3. Let γ be a Frenet curve of osculating order d (3 ≤ d ≤ 2n+ 1)
in E2n+1, n ≥ 1. Then γ has 1-type Darboux vector field if and only if

(15)

a′i+1

a′i
=
κ2i+1

κ2i+2
, 0 ≤ i ≤ d− 3

2
,

a′′j = λaj , 0 ≤ j ≤ d− 1
2

holds.

Thus, we have the following corollary of the theorem.

Corollary 3 ([14]). Let γ = γ(s) : I → E3 be a unit speed curve in Euclidean
3-space E3. Then γ is of harmonic 1-type Darboux vector field if and only if

(16)
κ1 = λκ2,

κ2 = c1 exp(
√
λs) + c2 exp(−

√
λs),

holds, where λ, c1, c2 ∈ R.
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4. General Helices

A general helix is a curve γ : R → Em such that its tangent vector
forms a constant angle with a given direction v at Em. It is not difficult
to see that this is equivalent to asking that the tangent indicatrix of γ,
γT : R→ Sm−1 ⊂ Em is contained in a (m−2)-sphere in Sm−1. In particular,
we have that this (m − 2)-sphere is of maximum radius (or an equator) if
and only if γT is a (m−1) flat curve, in the sense that it lies a hyperplane of
Em (orthogonal to the direction v). So (m− 1) flat curves can be regarded
as a particular case of generalized helix in Em [6].

Proposition 1 ([6]). A curve γ : R→ E2n+1 is a generalized helix of oscu-
lating order d (3 ≤ d ≤ 2n+ 1) in E2n+1(n ≥ 1) if and only if the function
det(γ′′(s), γ′′′(s), . . . , γ(d+1)(s)) is identically zero, where γ(i)(s) represents
the i− th derivative of γ with respect to its arc length.

Remark 1. In [8] the definition of general helix of order d in E2n+1 is more
restrictive. It is easy to check that this definition works in the odd dimen-
sional case. Moreover in the same reference it is proven that the definition
is equivalent to the fact that the ratios κ1

κ2
, κ3
κ4
, . . . ,

κd−2

κd−1
are constant, where

3 ≤ d ≤ 2n+ 1.

Definition 5. A Frenet curve of rank d for which κ1, κ2, . . . , κd− 1 are
constant is called generalized screw line or helix [4]. Since these curves are
trajectories of the 1-parameter group of the Euclidean transformations, in
[15], Klein and Lie called them W -curves.

A unit speed W -curve of osculating order d (3 ≤ d ≤ 2n + 1) in E2n+1

has the parametrization of the form

(17) γ(s) = a0 + b0s+

d−1
2∑
i=1

(ai cosµis+ bi sinµis)

where a0, b0, a1, . . . , a d−1
2
, b1, . . . , b d−1

2
are constant vectors in E2n+1 and µ1 <

µ2 < · · · < µ d−1
2

are positive real numbers. So, a W -curve of rank 3 is a
right circular helix.

Remark 2. Every W -curve in E2n+1 can be regarded as a general helix in
E2n+1. But the converse statement is not true.

Definition 6. Let γ : I ⊂ R → E2n+1 be a unit speed curve of osculating
order d (3 ≤ d ≤ 2n+ 1). The functions Hj : I → R defined by

(18)
H0 = 0, H1 =

κ1

κ2
,

Hj = {Oγ′(s)Hj−1 +Hj−2κj}
1

κj+1
,

2 ≤ j ≤ d− 2
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are called the harmonic curvatures of γ, where κ1, κ2, . . . , κd−1 are Frenet
curvatures of γ which are not necessarily constant and O is the Levi-Civita
connection [19]. For more details see also [2].

By the use of (18) with (13) we get the following result.

Proposition 2. Let γ : I ⊂ R→ E2n+1 be a unit speed curve of osculating
order d (3 ≤ d ≤ 2n+ 1). If γ has constant harmonic curvatures, then

(19)
H2r = 0, 1 ≤ r ≤ d− 1

2

H2r−1 =
κ1

κ2

κ3

κ4
· · · κ2r−1

κ2r
, 1 ≤ r ≤ d− 1

2
.

We obtain the following result.

Theorem 4. Let γ : I ⊂ R → E2n+1 be a unit speed curve of osculating
order d (3 ≤ d ≤ 2n+ 1). If the Darboux vector W (s) of γ is harmonic then
the harmonic curvatures are constant functions of the form

(20) H2r−1 =
ar
a0
, H2r = 0, 1 ≤ r ≤ d− 1

2
where

(21) ai = cis+ di, i = 0, . . . ,
d− 1

2
.

Proof. Using (5) with (19) we get the result. �
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