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Certain Topological Qualities of
Convex Sets in Euclidean Space

Nebojša Elez

Abstract. In this paper, we give four theorems relevant to certain
topological qualities of the convex sets in Euclidean space. All results
remain to hold in any locally convex space. They show that pair of
convex sets under definite conditions satisfies some supplement qualities.

1. Introduction

Let us denote by A, IntA and FrA the closure, interior and boundary of
set A in topological space. In a vector space xy represents a segment with
endpoints x and y, and ∆xyz represents a triangle with vertices x, y and z.

We cite two following lemmas first from [2] and second from [1], because
we will use them later.

Lemma 1. Let A be convex set in topological vector space. If x ∈ A and
y ∈ IntA, then the interior points of xy belong to IntA.

Lemma 2. For any two sets A and B in topological space, holds

FrA ∪ FrB = Fr (A ∪B) ∪ Fr (A ∩B) ∪ (FrA ∩ FrB).

2. Main results

Theorem 1. For any two convex neighborhoods A and B of 0, in Euclidean
space, following conditions hold:

1) A ∩B = A ∩B,
2) Int (A ∪B) = IntA ∪ IntB.

Proof. 1) Since A and B are neighborhoods of 0, then 0 ∈ IntA ∩
IntB = Int (A ∩ B). Let x ∈ A ∩ B. The interior points of the
segment 0x belong to A ∩ B, because of Lemma 1. The point x
belongs to closure of the open segment 0x, so x ∈ A ∩B. It means
that A ∩B ⊆ A ∩B. It is evident that A ∩B ⊆ A ∩B.
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2) Suppose that IntA ∪ IntB 6= Int (A ∪B). Then there exists a point
x such that x ∈ Int (A ∪ B) and x /∈ IntA ∪ IntB. Let L = {λx :
λ > 1} and y ∈ L. Then the point x belongs to the interior of
the segment 0y. Since x /∈ IntA ∪ IntB, because of Lemma 1, it
holds that y /∈ A ∪B. The point x belongs to the closure of the set
{λx : λ > 1} ⊆ X \ (A ∪B). Consequently,

L ⊆ X \ (A ∪B) ⊆ X \ (A ∪B).

But
x ∈ L ⊆ X \ (A ∪B) = X \ Int (A ∪B),

which is contradiction. �

Theorem 2. For any two convex neighborhoods A and B of 0, in Euclidean
space X, with nonempty intersection, following holds:

1) FrA ∩ FrB = Fr (A ∪B) ∩ Fr (A ∩B),
2) FrA ∪ FrB = Fr (A ∪B) ∪ Fr (A ∩B).

Proof. 1) Let x be a point such that x ∈ FrA∩FrB. Then x /∈ IntA∪
IntB. Let L = {λx : λ > 1}. In the same way as in the Theorem
1, we prove that x ∈ L ⊆ X \ (A ∪B). Since x ∈ A ∩B, because of
Lemma 1, the open segment 0x belongs to A∩B. Since the point x
belongs to the closure of the open segment 0x, we have x ∈ A ∩B.
It means that

x ∈ A ∩B ∩X \ (A ∪B)

= A ∩B ∩X \ (A ∩B) ∩A ∪B ∩X \ (A ∪B)

= Fr (A ∩B) ∩ Fr (A ∪B) =

= A ∩B ∩X \ (A ∪B) ⊆ A ∩B ∩X \A ∩X \B
= FrA ∩ FrB.

2) Proof follows from 1) and Lemma 2. �

Following example shows that condition of convexity of the sets in the
preceding theorems can’t be omitted.

Example 1. Let t be interior point of triangle with vertices x, y, z. Let A
be union of triangles ∆xty and ∆xzt, and let B be interior of the union of
triangles ∆ytz and ∆xzt. It’s easy to see that:

A ∩B 6= A ∩B,
Int (A ∪B) 6= IntA ∪ IntB,

FrA ∩ FrB 6= Fr (A ∪B) ∩ Fr (A ∩B), and
FrA ∪ FrB 6= Fr (A ∪B) ∪ Fr (A ∩B).



Nebojša Elez 61

Theorem 3. Let A and B be convex sets in Euclidean space X, such that
A ∩ B is bounded set, dimension of whom is greater then 1 and A ∩B ⊆
Int (A ∪B). Then A ⊆ B or B ⊆ A.

Proof. Let us suppose the contrary, that the sets A \ B and B \ A are
nonempty. Let a ∈ A \B, b ∈ B \A and c ∈ A∩B be three points which do
not belong to one line. These points exist because the set A ∩ B does not
belong to one line. Let us regard the sets A and B in a subspace of plane π
defined by the points a, b and c. In the plane π holds A ∩B ⊆ Int (A ∪B).
Since A ∩B is compact set, there exists a number r > 0, such that

K(A ∩B, r) = {x : d(x,A ∩B) < r} ⊆ Int (A ∪B).

Let be
C = K(A ∩B, r) \A ∩B.

Let us prove that A ∩ C 6= ∅ 6= B ∩ C.
If A ∩ C = ∅, then A ⊆ A ∩B, because A is the convex set and C is

connected set, homeomorphic to an open cyclic ring. Let x be any point of
the set A. Then the line, which passes through the points x and c intersects
the set C. Let y be any point of this intersection. It holds

C ⊆ Int (A ∪B) ⊆ A ∪B

and
y ∈ C ⊆ B.

The point x belongs to the interior of cy and x ∈ B because of Lemma 1. It
means A ⊆ B, which is contradiction. It holds A ∩ C 6= ∅ 6= B ∩ C.
C ⊆ A ∪B is connected set. Therefore, C = (A ∩ C) ∪ (B ∩ C).
The sets A ∩ C and B ∩ C are not clopen sets in C. Consequently,

∅ 6= A ∩ C ∩B ∩ C ∩ C ⊆ A ∩B ∩ C.

Let z ∈ A ∩ B ∩ C. Then, the open segment zc belongs to the set
A ∩ B because of Lemma 1, but it intersects also the set C, what is the
contradiction. �

We’ll show by example that dimension of intersection of sets in preceding
theorem must be grater then 1 in order for theorem to hold.

Example 2. Let A = (0, 2) and B = (1, 3). Then A ∩B ⊆ (A∪B)◦, A and
B are convex, but A \B 6= ∅ and B \A 6= ∅.

Theorem 4. If closed convex subsets A and B of Euclidean space X have
nonempty intersection, then A ∪B is convex if A \B ∩B \A = ∅.
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Proof. Let us suppose that the set A∪B is not convex. Then, points a, b ∈
A∪B and c /∈ A∪B exist such that c belongs to ab. The both points a and
b evidently are not from one of the sets A and B, and we can suppose that
a ∈ A \B and b ∈ B \A.

Let x be a point such that x ∈ A ∩ B. The point x does not belong to
the line defined by the points a and b, because in this case the point c would
belong to ax or bx, i.e. to set A or to set B. It means that the line ab does
not intersect the set A ∩B.

Let us regard the sets A and B in subspace of the triangle ∆abx. The
set A ∩ B in the triangle ∆abx is compact and then exists a point y from
A∩B∩∆abx, which is the closest point to ab. Interior points of the segment
ay must belong to A \B, otherwise there would exist point z ∈ ay◦ ∩A∩B
and it would be closer to segment ab than y.

Analogously, interior points of the segment by belong to B \A.
From here it follows that y ∈ A \B ∩B \A, a contradiction. �

Following example shows that condition A \B ∩B \A = ∅, in preceding
theorem, is not necessary.

Example 3. Let a, b, c and d be points on the line p, s.t. a− b− c− d, and
let x and y be points not belonging to line p, s.t. xy and bc are diagonals
of convex quadrilateral bxcy. Let A be convex quadrilateral axcy, and B
convex quadrilateral bxdy. Then, A ∪ B is convex quadrilateral axdy, but
A \B ∩B \A = {x, y} 6= ∅.

Remark 1. From the proofs of the theorems we can conclude that all the-
orems remain to hold in any locally convex space.
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