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Growth and Oscillation of Polynomial of
Linearly Independent Meromorphic
Solutions of Second Order Linear

Differential Equations in the Unit Disc

Benharrat Belaïdi and Zinelâabidine Latreuch

Abstract. In this paper, we deal with the growth and oscillation
of w = d1f1 + d2f2, where d1, d2 are meromorphic functions of fi-
nite iterated p−order that are not all vanishing identically and f1, f2
are two linearly independent meromorphic solutions in the unit disc
∆ = {z ∈ C : |z| < 1} satisfying δ (∞, fj) > 0, (j = 1, 2), of the linear
differential equation

f ′′ +A (z) f = 0,

whereA (z) is admissible meromorphic function of finite iterated p−order
in ∆.

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna’s value dis-
tribution theory on the complex plane and in the unit disc ∆ = {z : |z| < 1}
(see [12, 13, 15, 16, 18, 19]). We need to give some definitions. Firstly, let us
give the definition about the degree of small growth order of functions in ∆
as polynomials on the complex plane C. There are many types of definitions
of small growth order of functions in ∆ (see [10, 11]).

Definition 1. Let f be a meromorphic function in ∆, and

D(f) := lim sup
r→1−

T (r, f)

log 1
1−r

= b.

If b < ∞, we say that f is of finite b degree (or is non-admissible). If
b =∞, we say that f is of infinite degree (or is admissible), both defined by
characteristic function T (r, f).
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Now we give the definitions of iterated order and growth index to classify
generally the functions of fast growth in ∆ as those in C (see [3, 14, 15]). Let
us define inductively, for r ∈ [0, 1), exp1 r = er and expp+1 r = exp

(
expp r

)
,

p ∈ N. We also define for all r sufficiently large in (0, 1), log1 r = log r and
logp+1 r = log(logp r), p ∈ N. Moreover, we denote by exp0 r = r, log0 r = r,
exp−1 r = log1 r, log−1 r = exp1 r.

Definition 2 ([4]). The iterated p−order of a meromorphic function f in
∆ is defined as

ρp(f) = lim sup
r→1−

log+p T (r, f)

log 1
1−r

, (p ≥ 1),

where log+1 x = log+ x = max{log x, 0}, log+p+1 x = log+(log+p x).

Definition 3 ([4]). The growth index of the iterated order of a meromorphic
function f(z) in ∆ is defined as

i(f) =


0, if f is non-admissible,
min {p ∈ N : ρp(f) <∞} , if f is admissible,

and ρp(f) <∞ for some p ∈ N,
+∞, if ρp(f) =∞ for all p ∈ N.

Definition 4 ([8]). Let f be a meromorphic function in ∆. Then the iterated
exponent of convergence of the sequence of zeros of f(z) is defined as

λp(f) = lim sup
r→1−

log+p N
(
r, 1f

)
log 1

1−r
,

where N(r, 1f ) is the counting function of zeros of f(z) in {z ∈ C : |z| < r}.
Similarly, the iterated exponent of convergence of the sequence of distinct
zeros of f(z) is defined as

λp(f) = lim sup
r→1−

log+p N
(
r, 1f

)
log 1

1−r
,

where N(r, 1f ) is the counting function of distinct zeros of f(z) in {z ∈ C :

|z| < r}.

Definition 5 ([8]). The growth index of the convergence exponent of the
sequence of zeros of a meromorphic f(z) in ∆ is defined as

iλ(f) =


0, if N

(
r, 1f

)
= O

(
log 1

1−r

)
,

min {p ∈ N : λp (f) <∞} , if some p ∈ N with λp(f) <∞ exists,
+∞, if λp(f) =∞ for all p ∈ N.

Remark 1. Similarly, we can define the finiteness degree iλ(f) of λp(f).
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Definition 6 ([8]). For a ∈ C = C ∪ {∞}, the deficiency of a with respect
to a meromorphic function f in ∆ is defined as

δ(a, f) = lim inf
r→1−

m
(
r, 1
f−a

)
T (r, f)

= 1− lim sup
r→1−

N
(
r, 1
f−a

)
T (r, f)

provided that f has unbounded characteristic.

We consider the linear differential equation

(1.1) f ′′ +A(z)f = 0,

and the polynomial of solutions

(1.2) w = d1f1 + d2f2,

where A(z) and dj(z), (j = 1, 2), are finite iterated p−order meromor-
phic functions in ∆. The growth and oscillation theory of complex dif-
ferential equation (1.1) in the complex plane were firstly investigated by
Bank and Laine in 1982-1983 (see [1,2]). After their many authors (see
[5,7,8,9,14,15,17]) have investigated the complex differential equation (1.1)
in the unit disc ∆ and in the complex plane. Recently in [17], the authors
have investigated the relations between the polynomial of solutions of (1.1)
and small functions in the complex plane. They showed that w = d1f1+d2f2
keeps the same properties of the growth and oscillation of fj , (j = 1, 2),
where f1 and f2 are two linearly independent solutions of (1.1) and obtained
the following results.

Theorem A ([17]). Let A(z) be a transcendental entire function of finite
order. Let dj(z), (j = 1, 2), be finite order entire functions that are not all
vanishing identically such that max {ρ(d1), ρ(d2)} < ρ(A). If f1 and f2 are
two linearly independent solutions of (1.1), then the polynomial of solutions
(1.2) satisfies

ρ(w) = ρ(fj) =∞, (j = 1, 2)

and

ρ2(w) = ρ2(fj) = ρ(A), (j = 1, 2).

Theorem B ([17]). Under the hypotheses of Theorem A, let ϕ(z) 6≡ 0 be

an entire function with finite order such that ψ(z) =
2(d1d2d′2−d22d′1)

h ϕ(3) +
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φ2ϕ
′′ + φ1ϕ

′ + φ0ϕ 6≡ 0, where

φ2 =
3d22d

′′
1 − 3d1d2d

′′
2

h
,

φ1 =
2d1d2d

′
2A+ 6d2d

′
1d
′′
2 − 6d2d

′
2d
′′
1 − 2d22d

′
1A

h
,

φ0 =
2d2d

′
1d
′′′
2 − 2d1d

′
2d
′′′
2 − 3d1d2d

′′
2A− 3d2d

′′
1d
′′
2 + 2d1d2d

′
2A
′

h

− 4d2d
′
1d
′
2A− 6d′1d

′
2d
′′
2 + 3d1 (d′′2)2 + 4d1 (d′2)

2A+ 3d22d
′′
1A

h

+
6 (d′2)

2 d′′1 − 2d22d
′
1A
′

h
.

If f1 and f2 are two linearly independent solutions of (1.1), then the poly-
nomial of solutions (1.2) satisfies

λ(w − ϕ) = λ(w − ϕ) = ρ(fj) =∞, (j = 1, 2)

and

λ2(w − ϕ) = λ2(w − ϕ) = ρ2(fj) = ρ(A), (j = 1, 2).

The question which is arises: Can we obtain similar results of Theorems
A-B in the unit disc ∆? Thus it is interesting to consider the growth and
complex oscillation of the polynomial of solutions of equation (1.1) for the
case where A(z) is a meromorphic function in the unit disc ∆ in the terms
of the idea of iterated order. Before we state our results we define h and ψ
by

h =

∣∣∣∣∣∣∣∣
d1 0 d2 0
d′1 d1 d′2 d2

d′′1 − d1A 2d′1 d′′2 − d2A 2d′2
d′′′1 − 3d′1A− d1A′ d′′1 − d1A+ 2d′′1 d′′′2 − 3d′2A− d2A′ d′′2 − d2A+ 2d′′2

∣∣∣∣∣∣∣∣ ,

ψ(z) =
2
(
d1d2d

′
2 − d22d′1

)
h

ϕ(3) + φ2ϕ
′′ + φ1ϕ

′ + φ0ϕ,

where ϕ 6≡ 0 is a meromorphic of finite iterated p−order in the unit disc ∆
and

(1.3) φ2 =
3d22d

′′
1 − 3d1d2d

′′
2

h
,

(1.4) φ1 =
2d1d2d

′
2A+ 6d2d

′
1d
′′
2 − 6d2d

′
2d
′′
1 − 2d22d

′
1A

h
,
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(1.5)

φ0 =
2d2d

′
1d
′′′
2 − 2d1d

′
2d
′′′
2 − 3d1d2d

′′
2A− 3d2d

′′
1d
′′
2 + 2d1d2d

′
2A
′

h

− 4d2d
′
1d
′
2A− 6d′1d

′
2d
′′
2 + 3d1(d

′′
2)2 + 4d1(d

′
2)

2A+ 3d22d
′′
1A

h

+
6(d′2)

2d′′1 − 2d22d
′
1A
′

h
.

Theorem 1. Let A(z) be an admissible meromorphic function in ∆ such
that i(A) = p, (1 ≤ p < ∞), and δ (∞, A) = δ > 0. Let dj(z), (j =
1, 2), be finite iterated p−order meromorphic functions in ∆ that are not all
vanishing identically such that max{ρp(d1), ρp(d2)} < ρp(A). If f1 and f2 are
two nontrivial linearly independent meromorphic solutions of (1.1) such that
δ(∞, fj) > 0, (j = 1, 2), then the polynomial of solutions w = d1f1 + d2f2
satisfies i(w) = p+ 1,

ρp(w) = ρp(fj) =∞, (j = 1, 2)

and
ρp+1(w) = ρp+1(fj) = ρp(A), (j = 1, 2)

if p > 1, while

ρp(A) ≤ ρp+1(w) = ρp+1(fj) ≤ ρp(A) + 1, (j = 1, 2)

if p = 1.

From Theorem 1, we can obtain the following result.

Corollary 1. Let fj(z), (j = 1, 2), be two nontrivial linearly independent
meromorphic solutions of (1.1) such that δ(∞, fj) > 0, (j = 1, 2), where
A(z) is admissible meromorphic function in ∆ such that i(A) = p, (1 ≤
p < ∞), and δ(∞, A) = δ > 0, and let dj(z), (j = 1, 2, 3) be meromorphic
functions in ∆ satisfying

max {ρp(dj) : j = 1, 2, 3} < ρp(A)

and
d1(z)f1 + d2(z)f2 = d3(z).

Then dj(z) ≡ 0, (j = 1, 2, 3).

Proof. We suppose there exists j = 1, 2, 3 such that dj(z) 6≡ 0 and we obtain
a contradiction. If d1(z) 6≡ 0 or d2(z) 6≡ 0, then by Theorem 1 we have
ρp (d1f1 + d2f2) = ∞ = ρp(d3) < ρp(A) which is a contradiction. Now if
d1(z) ≡ 0, d2(z) ≡ 0 and d3(z) 6≡ 0 we obtain also a contradiction. Hence
dj(z) ≡ 0, (j = 1, 2, 3). �



44 Growth and Oscillation of Polynomial of Linearly Independent. . .

Theorem 2. Under the assumptions of Theorem 1, let ϕ(z) 6≡ 0 be a mero-
morphic function in ∆ with finite iterated p−order such that ψ(z) 6≡ 0. If
f1 and f2 are two nontrivial linearly independent meromorphic solutions of
(1.1) such that δ (∞, fj) > 0, (j = 1, 2), then the polynomial of solutions
w = d1f1 + d2f2 satisfies

(1.6) λp(w − ϕ) = λp(w − ϕ) = ρp(w) =∞

and
λp+1(w − ϕ) = λp+1(w − ϕ) = ρp+1(w) = ρp(A)

if p > 1, while

(1.7) ρp(A) ≤ λp+1(w − ϕ) = λp+1(w − ϕ) = ρp+1(w) ≤ ρp(A) + 1

if p = 1.

Theorem 3. Let A(z) be an admissible meromorphic function in ∆ such
that i(A) = p, (1 ≤ p < ∞), and δ(∞, A) = δ > 0. Let dj(z), bj(z),
(j = 1, 2), be finite iterated p−order meromorphic functions in ∆ such that
d1(z)b2(z) − d2(z)b1(z) 6≡ 0. If f1 and f2 are two nontrivial linearly inde-
pendent meromorphic solutions of (1.1) such that δ(∞, fj) > 0, (j = 1, 2),
then

i

(
d1f1 + d2f2
b1f1 + b2f2

)
= p+ 1,

ρp

(
d1f1 + d2f2
b1f1 + b2f2

)
=∞

and

ρp+1

(
d1f1 + d2f2
b1f1 + b2f2

)
= ρp(A)

if p > 1, while

ρp(A) ≤ ρp+1

(
d1f1 + d2f2
b1f1 + b2f2

)
≤ ρp(A) + 1

if p = 1.

2. Auxiliary lemmas

We need the following lemmas in the proofs of our theorems.

Lemma 1 ([4]). If f and g are meromorphic functions in ∆, p ≥ 1 is an
integer, then we have

(i) ρp(f) = ρp(1/f), ρp(a.f) = ρp(f), (a ∈ C− {0});
(ii) ρp(f) = ρp(f

′);
(iii) max{ρp(f + g), ρp(fg)} ≤ max{ρp(f), ρp(g)};
(iv) if ρp(f) < ρp(g), then ρp(f + g) = ρp(g), ρp(fg) = ρp(g).
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Lemma 2 ([8]). Let A(z) be an admissible meromorphic function in ∆ such
that i(A) = p, (1 ≤ p < ∞), and δ(∞, A) = δ > 0, and let f be a nonzero
meromorphic solution of (1.1). If δ(∞, f) > 0, then i(f) = p + 1 and
ρp+1(f) = ρp(A) if p > 1, while

ρp(A) ≤ ρp+1(f) ≤ ρp(A) + 1

if p = 1.

Lemma 3. Let A (z) be an admissible meromorphic function in ∆ such that
i (A) = p, (1 ≤ p <∞), and δ (∞, A) > 0. If f1 and f2 are two nontrivial
linearly independent meromorphic solutions of (1.1) such that δ (∞, fj) > 0,
(j = 1, 2), then f1

f2
satisfies i

(
f1
f2

)
= p+ 1 and ρp+1

(
f1
f2

)
= ρp(A) if p > 1,

while
ρp (A) ≤ ρp+1

(
f1
f2

)
≤ ρp (A) + 1

if p = 1.

Proof. Suppose that f1 and f2 are two nontrivial linearly independent mero-
morphic solutions of (1.1) such that δ (∞, fj) > 0, (j = 1, 2). Then by
Lemma 2, we have i (fj) = p+ 1, ρp (fj) =∞, (j = 1, 2), and

(2.1) ρp+1 (fj) = ρp (A) , (j = 1, 2)

if p > 1, while

(2.2) ρp (A) ≤ ρp+1 (fj) ≤ ρp (A) + 1, (j = 1, 2)

if p = 1. On the other hand, we have (see, [15])

(2.3)
(
f1
f2

)′
= −W (f1, f2)

f22
= − c

f22
,

where W (f1, f2) = f1f
′
2 − f2f ′1 = c 6= 0 is the Wronskian of f1 and f2. By

Lemma 1, (2.1), (2.2) and (2.3) we obtain that i
(
f1
f2

)
= p+ 1, ρp

(
f1
f2

)
=∞

and
ρp+1

(
f1
f2

)
= ρp (A)

if p > 1, while

ρp (A) ≤ ρp+1

(
f1
f2

)
≤ ρp (A) + 1

if p = 1. �

Lemma 4 ([6]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions in
∆, and let f be a meromorphic solution of the equation

f (k) +Ak−1 (z) f (k−1) + · · ·+A1 (z) f ′ +A0 (z) f = F (z)

such that

max {ρp (Aj) (j = 0, 1, . . . , k − 1) , ρp (F )} < ρp (f) ≤ +∞.
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Then
λp (f) = λp (f) = ρp (f)

and
λp+1 (f) = λp+1 (f) = ρp+1 (f) .

3. Proofs of the Theorems

Proof of Theorem 1. In the case when d1 (z) ≡ 0 or d2 (z) ≡ 0, then the
conclusions of Theorem 1 are trivial. Suppose that f1 and f2 are two
nontrivial linearly independent meromorphic solutions of (1.1) such that
δ (∞, fj) > 0, (j = 1, 2), and dj (z) 6≡ 0, (j = 1, 2). Then by Lemma 2, we
have i (fj) = p+ 1, ρp (fj) =∞, (j = 1, 2), and

ρp+1 (fj) = ρp (A) , (j = 1, 2)

if p > 1, while

ρp (A) ≤ ρp+1 (fj) ≤ ρp (A) + 1, (j = 1, 2)

if p = 1. Suppose that d1 = cd2, where c is a complex number. Then, by
(1.2) we obtain

w = cd2f1 + d2f2 = (cf1 + f2) d2.

Since f = cf1 + f2 is a solution of (1.1) and ρp (d2) < ρp (A), then we have

ρp (w) = ρp (cf1 + f2) =∞

and
ρp+1 (w) = ρp+1 (cf1 + f2) = ρp (A)

if p > 1, while

ρp (A) ≤ ρp+1 (w) = ρp+1 (cf1 + f2) ≤ ρp (A) + 1

if p = 1. Suppose now that d1 6≡ cd2 where c is a complex number. Differ-
entiating both sides of (1.2), we obtain

(3.1) w′ = d′1f1 + d1f
′
1 + d′2f2 + d2f

′
2.

Differentiating both sides of (3.1), we obtain

(3.2) w′′ = d′′1f1 + 2d′1f
′
1 + d1f

′′
1 + d′′2f2 + 2d′2f

′
2 + d2f

′′
2 .

Substituting f ′′j = −Afj , (j = 1, 2), into equation (3.2), we have

(3.3) w′′ =
(
d′′1 − d1A

)
f1 + 2d′1f

′
1 +

(
d′2 − d2A

)
f2 + 2d′2f

′
2.

Differentiating both sides of (3.3) and by substituting f ′′j = −Afj , (j = 1, 2),
we obtain

(3.4)
w′′′ =

(
d′′′1 − 3d′1A− d1A′

)
f1 +

(
d′′1 − d1A+ 2d′′1

)
f ′1

+
(
d′′′2 − 3d′2A− d2A′

)
f2 +

(
d′′2 − d2A+ 2d′′2

)
f ′2.
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By (1.2), (3.1), (3.3) and (3.4) we have

(3.5)

w = d1f1 + d2f2,

w′ = d′1f1 + d1f
′
1 + d′2f2 + d2f

′
2,

w′′ =
(
d′′1 − d1A

)
f1 + 2d′1f

′
1 +

(
d′′2 − d2A

)
f2 + 2d′2f

′
2,

w′′′ =
(
d′′′1 − 3d′1A− d1A′

)
f1 +

(
d′′1 − d1A+ 2d′′1

)
f ′1

+
(
d′′′2 − 3d′2A− d2A′

)
f2 +

(
d′′2 − d2A+ 2d′′2

)
f ′2.

To solve this system of equations, we need first to prove that h 6≡ 0. By
simple calculations we obtain
(3.6)

h =

∣∣∣∣∣∣∣∣
d1 0 d2 0
d′1 d1 d′2 d2

d′′1 − d1A 2d′1 d′′2 − d2A 2d′2
d′′′1 − 3d′1A− d1A′ d′′1 − d1A+ 2d′′1 d′′′2 − 3d′2A− d2A′ d′′2 − d2A+ 2d′′2

∣∣∣∣∣∣∣∣
=
(
4d21(d

′
2)

2 + 4d22(d
′
1)

2 − 8d1d2d
′
1d
′
2

)
A+ 2d1d2d

′
1d
′′′
2 + 2d1d2d

′
2d
′′′
1 − 6d1d2d

′′
1d
′′
2

− 6d1d
′
1d
′
2d
′′
2 − 6d2d

′
1d
′
2d
′′
1 + 6d1(d

′
2)

2d′′1 + 6d2(d
′
1)

2d′′2 − 2d22d
′
1d
′′′
1

− 2d21d
′
2d
′′′
2 + 3d21(d

′′
2)2 + 3d22(d

′′
1)2.

To show that 4d21(d
′
2)

2 + 4d22(d
′
1)

2 − 8d1d2d
′
1d
′
2 6≡ 0, we suppose that

(3.7) d21(d
′
2)

2 + d22(d
′
1)

2 − 2d1d2d
′
1d
′
2 = 0.

Dividing both sides of (3.7) by (d1d2)
2, we obtain

(3.8)
(
d′2
d2

)2

+

(
d′1
d1

)2

− 2
d′1
d1

d′2
d2

= 0

equivalent to

(3.9)
(
d′1
d1
− d′2
d2

)2

= 0,

which implies that d1 = cd2 where c is a complex number which is a con-
tradiction. Since max {ρp (d1) , ρp (d2)} < ρp (A) and 4d21(d

′
2)

2 + 4d22(d
′
1)

2 −
8d1d2d

′
1d
′
2 6≡ 0, then by Lemma 1 we can deduce from (3.6) that ρp (h) =

ρp (A) > 0. Hence h 6≡ 0. By Cramer’s method we have
(3.10)

f1 =

∣∣∣∣∣∣∣∣
w 0 d2 0
w′ d1 d′2 d2
w′′ 2d′1 d′2 − d2A 2d′2
w′′′ d′′1 − d1A+ 2d′′1 d′′′2 − 3d′2A− d2A′ d′′2 − d2A+ 2d′′2

∣∣∣∣∣∣∣∣
h

=
2
(
d1d2d

′
2 − d22d′1

)
h

w′′′ + φ2w
′′ + φ1w

′ + φ0w,
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where φj , (j = 0, 1, 2), are meromorphic functions in ∆ of finite iterated
p−order which are defined in (1.3)–(1.5). Suppose now ρp (w) <∞, then by
(3.10) we obtain ρp (f1) < ∞ which is a contradiction. Hence ρp (w) = ∞.
By (1.2) we have ρp+1 (w) ≤ ρp+1 (f1). Suppose that ρp+1 (w) < ρp+1 (f1),
then by (3.10) we obtain ρp+1 (f1) ≤ ρp+1 (w) which is a contradiction.
Hence ρp+1 (w) = ρp+1 (f1). �

Proof of Theorem 2. By Theorem 1 we have ρp (w) = ∞ and ρp+1 (w) =
ρp (A) if p > 1, while

ρp (A) ≤ ρp+1 (w) ≤ ρp (A) + 1

if p = 1. Set g (z) = d1f1+d2f2−ϕ. Since ρp (ϕ) <∞, then we have ρp (g) =

ρp (w) = ∞ and ρp+1 (g) = ρp+1 (w). In order to prove λp (w − ϕ) =

λp (w − ϕ) = ρp (w) =∞, λp+1 (w − ϕ) = λp+1 (w − ϕ) = ρp+1 (w) we need
to prove only λp (g) = λp (g) = ρp (w) =∞, λp+1 (g) = λp+1 (g) = ρp+1 (w).
By w = g + ϕ we get from (3.10)

(3.11) f1 =
2
(
d1d2d

′
2 − d22d′1

)
h

g(3) + φ2g
′′ + φ1g

′ + φ0g + ψ,

where ψ =
2(d1d2d′2−d22d′1)

h ϕ(3) + φ2ϕ
′′ + φ1ϕ

′ + φ0ϕ. Substituting (3.11) into
equation (1.1), we obtain

2
(
d1d2d

′
2 − d22d′1

)
h

g(5) +

4∑
j=0

βjg
(j) = −

(
ψ′′ +Aψ

)
= B,

where βj , (j = 0, . . . , 4) are meromorphic functions in ∆ of finite iterated
p−order. Since ψ 6≡ 0 and ρp (ψ) < ∞, it follows that ψ is not a solution
of (1.1), which implies that B 6≡ 0. Then, by applying Lemma 4 we obtain
(1.6) and (1.7). �

Proof of Theorem 3. Suppose that f1 and f2 are two nontrivial linearly inde-
pendent meromorphic solutions of (1.1) such that δ (∞, fj) > 0, (j = 1, 2).
Then by Lemma 3, we have i

(
f1
f2

)
= p+ 1, ρp

(
f1
f2

)
= ∞ and ρp+1

(
f1
f2

)
=

ρp (A) if p > 1, while

ρp (A) ≤ ρp+1

(
f1
f2

)
≤ ρp (A) + 1

if p = 1. Set g = f1
f2
. Then

(3.12) w (z) =
d1 (z) f1 (z) + d2 (z) f2 (z)

b1 (z) f1 (z) + b1 (z) f2 (z)
=
d1 (z) g (z) + d2 (z)

b1 (z) g (z) + b2 (z)
.

It follows that i (w) ≤ p+ 1 and
(3.13)

ρp+1 (w) ≤ max{ρp+1 (dj) , ρp+1 (bj) (j = 1, 2) , ρp+1 (g)} = ρp+1 (g) .



Benharrat Belaïdi and Zinelâabidine Latreuch 49

On the other hand, we have

g (z) = −b2 (z)w (z)− d2 (z)

b1 (z)w (z)− d1 (z)
,

which implies that i (w) ≥ p+ 1 and

(3.14)

ρp (w) ≥ ρp (g) =∞,

ρp+1 (g) ≤ max
{
ρp+1 (dj) , ρp+1 (bj) (j = 1, 2) , ρp+1 (w)

}
= ρp+1 (w) .

By using (3.13) and (3.14), we obtain i (w) = p+ 1 and

ρp (w) = ρp (g) =∞,
ρp+1 (w) = ρp+1 (g) = ρp (A)

if p > 1, while

ρp (A) ≤ ρp+1 (w) = ρp+1 (g) ≤ ρp (A) + 1

if p = 1. �
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