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Some Fixed Point Theorems for Certain
Contractive Mappings in G-Metric Spaces

Amit Singh, B. Fisher, and R.C. Dimri

Abstract. In this paper, we prove some fixed point theorems in com-
plete G-metric spaces for self mappings satisfying different contractive
conditions depended an another function. We also discuss that these
mappings are G-continuous on such a fixed point.

1. Introduction and preliminaries

In 1992, Dhage [1] introduced the concept of a D-metric space. The
situation for a D-metric space is quite different from 2-metric spaces. Ge-
ometrically, a D-metric D(x, y, z) represents the parameter of the triangle
with vertices x, y, z in R2. Recently, Mustafa and Sims [3] showed that most
of the results concerning Dhage’s D-metric spaces are invalid. Therefore
they introduced the improved version of the generalized metric space struc-
ture and called it a G-metric space. For more details of G-metric spaces,
one can refer to the papers [2]-[11].

Now we give preliminaries and basic definitions which are helpful for prov-
ing our main results.

In 2004, Mustafa and Sims [4] introduced the concept of G-metric spaces
as follows.

Definition 1. [4] Let X be a nonempty set and let G : X ×X ×X → R+

be a function satisfying the following axioms:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three

variables),
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(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle
inequality),

then the function G is called a generalized metric, or, more specifically, a
G-metric on X and the pair (X,G) is called a G-metric space.

Definition 2. [4] Let (X,G) be a G-metric space and let {xn} be a sequence
of points in X. Then a point x in X is said to be a limit of the sequence
{xn} if limm,n→∞G(x, xn, xm) = 0 and then the sequence {xn} is said to
be G-convergent to x. Thus, if xn → x as n → ∞, in a G-metric space
(X,G), then for each ε > 0, there exists a positive integer N such that
G(x, xn, xm) < ε for all m,n,∈ N .

Proposition 1. [4] Let (X,G) be a G-metric space. Then the following are
equivalent

(i) {xn} is G-convergent to x,
(ii) G(xn, xn, x)→ 0 as n→∞,
(iii) G(xn, x, x)→ 0 as n→∞,
(iv) G(xm, xn, x)→ 0 as m,n→∞.

Definition 3. [4] Let (X,G) be a G-metric space. A sequence {xn} is
called G-Cauchy if, for each ε > 0, there exists a positive integer N such that
G(xn, xm, x`) < ε for all n,m, ` ∈ N , i.e., G(xn, xm, x`)→ 0 as n,m, `→∞.

Definition 4. [4, 5] Let (X,G) and (X ′, G′) be two G-metric spaces and let
f : (X,G)→ (X ′, G′) be a function, then f is said to be G-continuous at a
point x0 ∈ X if given ε > 0, there exists δ > 0 such that for x, y ∈ X and
G(x0, x, y) < δ implies G′(f(x0), f(x), f(y)) < ε. A function f is said to be
G-continuous on X if and only if it is G-continuous at all points x0 ∈ X. A
function f is said to be G-sequentially continuous at x0, if whenever {xn}
is G-convergent to x0, then {f(xn)} is G-convergent to f(x0).

Proposition 2. [4] Let (X,G) be a G-metric space. Then the function
G(x, y, z) is jointly continuous in all three of its variables.

Definition 5. [4] A G-metric space (X,G) is called a symmetric G-metric
space if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Proposition 3. [4] Every G-metric space (X,G) defines a metric space
(X, dG) by putting

(i) dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.

If (X,G) is a symmetric G-metric space, then

(ii) dG(x, y) = 2G(x, y, y) for all x, y ∈ X.

However, if (X,G) is not symmetric, then it follows from the G-metric prop-
erties that

(iii) 3
2G(x, y, y) ≤ dG(x, y) ≤ G(x, y, y) for all x, y ∈ X.
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Definition 6. [4] A G-metric space (X,G) is said to be G-complete if every
G-Cauchy sequence in (X,G) is G-convergent in X.

Proposition 4. [4] A G-metric space (X,G) is said to be G-complete if and
only if (X, dG) is a complete metric space.

Proposition 5. [4] Let (X,G) be a G-metric space. Then, for any x, y, z, a ∈
X, it follows that:

(i) if G(x, y, z) = 0 then x = y = z,
(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z)
(iii) G(x, y, y) ≤ 2G(y, y, x),
(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),
(v) G(x, y, z) ≤ 2

3(G(x, y, a) +G(x, a, z) +G(a, y, z)),
(vi) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

Lemma 1. [11] Let (X,G) be a G-metric space and T be a self map on X
satisfying

(1) G(Tx, Ty, Tz) ≤ qG(x, y, z)

for all x, y, z ∈ X, where 0 ≤ q < 1 and xn = Txn−1 = T (Txn−2) = · · · =
Tn(x0) for some x0 ∈ X, then {xn} is a G-Cauchy sequence in X.

2. Main results

Theorem 1. Let (X,G) be a complete G-metric space and let S, T : X → X
such that T is one-to-one and satisfy

(2)

G(TSx, TSy, TSz) ≤

kmax
{
G(Tx, TSx, TSx), G(Ty, TSy, TSy),

G(Ty, TSz, TSz), G(Tz, TSz, TSz), G(Tz, TSy, TSy),

G(Tx, TSy, TSy) +G(Ty, TSx, TSx)
2

,

G(Tx, TSz, TSz) +G(Tz, TSx, TSx)
2

}
for all x, y, z ∈ X and 0 ≤ k < 1. Then S has a unique common fixed point
and S is G-continuous at the fixed point.

Proof. Let x0 be an arbitrary point in X. We define the iterative sequence
{xn} by xn+1 = Sxn = Sn+1x0 for n = 0, 1, 2, . . ..

Putting x = xn, y = xn+1 and z = xn+1 in (3), we have
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(3)

G(Txn, Txn+1, Txn+1) = G(TSxn−1, TSxn, TSxn)

≤ kmax
{
G(Txn−1, TSxn−1, TSxn−1), G(Txn, TSxn, TSxn),

G(Txn, TSxn, TSxn), G(Txn, TSxn, TSxn),

G(Txn, TSxn, TSxn),

G(Txn−1, TSxn, TSxn) +G(Txn, TSxn−1, TSxn−1)
2

,

G(Txn−1, TSxn, TSxn) +G(Txn, TSxn−1, TSxn−1)
2

}
≤ kmax

{
G(Txn−1, Txn, Txn), G(Txn, Txn+1, Txn+1),

G(Txn, Txn+1, Txn+1), G(Txn, Txn+1, Txn+1),

G(Txn, Tn+1, Txn+1),

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn, Txn)
2

,

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn, Txn)
2

}
= kmax{G(Txn−1, Txn, Txn), G(Txn, Txn+1, Txn+1)},

since

G(Txn−1, Txn+1, Txn+1) ≤ G(Txn−1, Txn, Txn) +G(Txn, Txn+1, Txn+1)

≤ 2G(Txn−1, Txn, Txn).

It follows from (3) that

G(Txn, Txn+1, Txn+1) ≤ k G(Txn−1, Txn, Txn).

and by Lemma 1, we have {Txn} is a G-Cauchy sequence in X. Since (X,G)
is a complete G-metric space, there exists u ∈ X such that Txn → u.

Suppose that TS(u) 6= Tu. Then by using (2), we have

G(Txn, TSu, TSu) = G(TSxn−1, TSu, TSu)

≤ kmax
{
G(Txn−1, TSxn−1, TSxn−1), G(Tu, TSu, TSu),

G(Tu, TSu, TSu), G(Tu, TSu, TSu), G(Tu, TSu, TSu),

G(Txn−1, TSu, TSu) +G(Tu, TSxn−1, TSxn−1)
2

,

G(Txn−1, TSu, TSu) +G(Tu, TSxn−1, TSxn−1)
2

}
=
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= kmax
{
G(Txn−1, Txn, Txn), G(Tu, TSu, TSu),

G(Tu, TSu, TSu), G(Tu, TSu, TSu),

G(Tu, TSu, TSu),

G(Txn−1, TSu, TSu) +G(Tu, Txn, Txn)
2

,

G(Txn−1, TSu, TSu) +G(Tu, Txn, Txn)
2

}
= kmax

{
G(Txn−1, Txn, Txn), G(Txn−1, TSu, TSu),

G(Tu, Txn, Txn), G(Tu, TSu, TSu)
}
.

Taking the limit as n→∞ and using the fact that G is a continuous function
in its variables, we obtain

G(Tu, TSu, TSu) ≤ kG(Tu, TSu, TSu),

a contradiction as 0 ≤ k < 1. Hence TSu = Tu. Since T is one-to-one, we
have Su = u and so u is a fixed point of S.

To prove its uniqueness, suppose that v is a second distinct fixed point of
S. Then from the injectivity of T we get Su = Sv, a contradiction. Hence
the fixed point is unique.

Now let {yn} be any sequence in X such that lim
n→∞

Tyn = Tu. Then by
using (2), we have

G(TSyn, TSu, TSyn) ≤

≤ kmax
{
G(Tyn, TSyn, TSyn), G(Tu, TSu, TSu),

G(Tu, TSyn, TSyn), G(Tyn, TSyn, TSyn),

G(Tyn, TSu, TSu),

G(Tyn, TSu, TSu) +G(Tu, TSyn, TSyn)
2

,

G(Tx, TSyn, TSyn) +G(Tyn, TSyn, TSyn)
2

}
= kmax

{
G(Tyn, TSyn, TSyn), G(Tyn, TSu, TSu),

G(Tu, TSu, TSu), G(Tu, TSyn, TSyn)
}
.
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This reduces to

(4)

G(TSyn, Tu, TSyn) ≤ kmax
{
G(Tyn, TSyn, TSyn),

G(Tyn, Tu, Tu), G(Tu, TSyn, TSyn)
}

= kmax
{
G(Tyn, TSyn, TSyn), G(Tyn, Tu, Tu)

}
.

Taking the limit as n → ∞, we have G(Tu, TSyn, TSyn) → 0 and by defi-
nition of G-continuity of a G-metric space (X,G), we have TSyn → Tu =
TSu, since T is one-to-one. Therefore Syn → u = Su which implies that S
is G-continuous at u. �

Corollary 1. Let (X,G) be a complete G-metric space and let S, T : X → X
such that T is one-to-one and satisfies

(5)

G(TmSmx, TmSmy, TmSmz) ≤

≤ kmax
{
G(Tmx, TmSmx, TmSmx), G(Tmy, TmSmy, TmSmy),

G(Tmy, TmSmz, TmSmz), G(Tmz, TmSmz, TmSmz),

G(Tmz, TmSmy, TmSmy),

G(Tmx, TmSmy, TmSmy) +G(Tmy, TmSmx, TmSmx)
2

,

G(Tmx, TmSmz, TmSmz) +G(Tmz, TmSmx, TmSmx)
2

}
for all x, y, z ∈ X, m ∈ N and 0 ≤ k < 1. Then S has a unique common
fixed point and Sm is G-continuous at the fixed point.

Proof. On the lines of Theorem 1, one can easily see that Sm has a unique
fixed point, say u, and that Sm is G-continuous at u. But Su = S(Smu) =
Sm+1u = Sm(Su), and so Su is another fixed point of Sm. Thus, by the
uniqueness we have Su = u and so u is the unique fixed point of S. �

Theorem 2. Let (X,G) be a complete G-metric space and let S, T : X → X
such that T is one-to-one and satisfies
(6)
G(TSx, TSy, TSz) ≤

≤ kmax
{
G(Tx, TSx, TSx) +G(Ty, TSy, TSy) +G(Tz, TSz, TSz),

G(Tx, TSy, TSy) +G(Ty, TSx, TSx) +G(Tz, TSy, TSy),

G(Tx, TSz, TSz) +G(Ty, TSz, TSz) +G(Tz, TSx, TSx)
}

for all x, y, z ∈ X and 0 ≤ k < 1
4 . Then S has a unique common fixed point

and S is G-continuous at the fixed point.
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Proof. Let x0 be an arbitrary point in X. We define the iterative sequence
{xn} by xn+1 = Sxn = Sn+1x0, n = 0, 1, 2, . . ..

We now prove that {xn} is a G-Cauchy sequence in X. Let x = xn,
y = xn+1 and z = xn+1 in (6). We then have

(7)

G(Txn, Txn+1, Txn+1) = G(TSxn−1, TSxn, TSxn)

≤ kmax
{
G(Txn−1, TSxn−1, TSxn−1) +G(Txn, TSxn, TSxn)+

G(Txn, TSxn, TSxn), G(Txn−1, TSxn, TSxn)+

G(Txn, TSxn−1, TSxn−1) +G(Txn, TSxn, TSxn),

G(Txn−1, TSxn, TSxn) +G(Txn, TSxn, TSxn)+

G(Txn, TSxn−1, TSxn−1)
}

= kmax
{
G(Txn−1, Txn, Txn) +G(Txn, Txn+1, Txn+1)+

G(Txn, Txn+1, Txn+1), G(Txn−1, Txn+1, Txn+1)+

G(Txn, Txn, Txn) +G(Txn, Txn+1, Txn+1),

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1)+

G(Txn, Txn, Txn)
}

= kmax
{
G(Txn−1, Txn, Txn) + 2G(Txn, Txn+1, Txn+1),

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1),

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1)
}

= kmax
{
G(Txn−1, Txn, Txn) + 2G(Txn, Txn+1, Txn+1),

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1)
}
.

Case 1. Suppose that

max
{
G(Txn−1, Txn, Txn) + 2G(Txn, Txn+1, Txn+1),

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1)
}

=

= G(Txn−1, Txn, Txn) + 2G(Txn, Txn+1, Txn+1).

Then, using (7), we get

G(Txn, Txn+1, Txn+1) ≤ k{G(Txn−1, Txn, Txn)+2G(Txn, Txn+1, Txn+1)}

and so
G(Txn, Txn+1, Txn+1) ≤ q{G(Txn−1, Txn, Txn)},

where q = k
1−2k and q < 1, as 0 ≤ k ≤ 1

4 . Thus by Lemma 12, we have
{Txn} is a G-Cauchy sequence in X.
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Case 2. Suppose that

max
{
G(Txn−1, Txn, Txn) + 2G(Txn, Txn+1, Txn+1),

G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1)
}

=

= G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1).

Then (7) reduces to

(8)
G(Txn, Txn+1, Txn+1) ≤

≤ k
{
G(Txn−1, Txn+1, Txn+1) +G(Txn, Txn+1, Txn+1)

}
.

Now using G5 of Definition 1, we have

(9)
G(Txn−1, Txn+1, Txn+1) ≤
G(Txn−1, Txn, Txn) +G(Txn, Txn+1, Txn+1).

Now (8) becomes

G(Txn, Txn+1, Txn+1) ≤ q{G(Txn−1, Txn, Txn)},

where again q = k
1−2k and q < 1. Thus, by Lemma 12, we have {Txn} is a

G-Cauchy sequence in X.
Hence in all cases, the sequence {Txn} is a G-Cauchy sequence in X and

since (X,G) is a complete G-metric space, there exists u ∈ X such that
Txn → u.

Suppose, if possible, that TS(u) 6= Tu. Then by using (6), we have

G(Txn, TSu, TSu) = G(TSxn−1, TSu, TSu)

≤ kmax
{
G(Txn−1, TSxn−1, TSxn−1) +G(Tu, TSu, TSu)+

G(Tu, TSu, TSu), G(Txn−1, TSu, TSu)+

G(Tu, TSxn−1, TSxn−1) +G(Tu, TSu, TSu)

G(Txn−1, TSu, TSu) +G(Tu, TSu, TSu),

G(Tu, TSxn−1, TSxn−1)
}

=
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= kmax
{
G(Txn−1, Txn, Txn) +G(Tu, TSu, TSu)+

G(Tu, TSu, TSu), G(Txn−1, TSu, TSu)+

G(Tu, Txn, Txn) +G(Tu, TSu, TSu)

G(Txn−1, TSu, TSu) +G(Tu, TSu, TSu),

G(Tu, Txn, Txn)
}

= kmax
{
G(Txn−1, Txn, Txn) + 2G(Tu, TSu, TSu)

G(Txn−1, TSu, TSu) +G(Tu, Txn, Txn)+

G(Tu, TSu, TSu)
}
.

Taking the limit as n → ∞ and using the fact that G is a continuous
function in its variables, we obtain

G(Tu, TSu, TSu) ≤ kmax
{

2G(Tu, TSu, TSu), 2G(Tu, TSu, TSu)
}

≤ 2kG(Tu, TSu, TSu),

a contradiction since 0 ≤ k ≤ 1
4 . Hence TSu = Tu and since T is one-to-one,

we have Su = u. Hence u is a fixed point of S.
To prove its uniqueness, suppose that v is a second fixed point of S. Then

by (6), we have

G(Tu, Tv, Tv) = G(TSu, TSv, TSv)

≤ kmax
{
G(Tu, Tu, Tu) +G(Tv, Tv, Tv) +G(Tv, Tv, Tv)

G(Tu, Tv, Tv) +G(Tv, Tu, Tu) +G(Tv, Tv, Tv)

G(Tu, Tv, Tv) +G(Tv, Tv, Tv) +G(Tv, Tu, Tu)
}

= kmax{G(Tu, Tv, Tv) +G(Tv, Tu, Tu)}

and so
G(Tu, Tv, Tv) ≤ qG(Tv, Tu, Tu).

Now, by the same argument, we obtain

G(Tv, Tu, Tu) ≤ qG(Tu, Tv, Tv)

and so
G(Tu, Tv, Tv) ≤ q2G(Tv, Tu, Tu),

a contradiction, since q < 1. Therefore u = v, proving the uniqueness.
Now let {yn} be any sequence in X such that lim

n→∞
Tyn = Tu, then by

using (6), we have
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(10)

G(TSyn, TSu, TSu)

≤ kmax
{
G(Tyn, TSyn, TSyn) +G(Tu, TSu, TSu)+

G(Tu, TSu, TSu)

G(Tyn, TSu, TSu) +G(Tu, TSyn, TSyn)+

G(Tu, TSu, TSu)

G(Tyn, TSu, TSu) +G(Tu, TSu, TSu)+

G(Tu, TSyn, TSyn)
}

= kmax
{
G(Tyn, TSyn, TSyn) + 2G(Tu, TSu, TSu)

G(Tyn, TSu, TSu) +G(Tu, TSu, TSu)+

G(Tu, TSyn, TSyn)
}
.

Case 1: if

max
{
G(Tyn, TSyn, TSyn) + 2G(Tu, TSu, TSu)+

G(Tyn, TSu, TSu) +G(Tu, TSu, TSu) +G(Tu, TSyn, TSyn)
}

= {G(Tyn, TSyn, TSyn) + 2G(Tu, TSu, TSu)}.

Then (10) reduces to

G(TSyn, TSu, TSu) ≤

kmax
{
G(Tyn, TSyn, TSyn) + 2G(Tu, TSu, TSu)

}
.

Letting limit n→∞ and using TSu = Tu and Tyn → Tu, we have

(11)
G(TSyn, Tu, Tu) ≤ kmax

{
G(Tu, TSyn, TSyn) + 2G(Tu, Tu, Tu)

}
= kG(Tu, TSyn, TSyn).

By (iii) of Proposition 5, G(Tu, TSyn, TSyn) ≤ 2G(Tyn, Tu, Tu). This
implies that (11) reduces to G(TSyn, Tu, Tu) ≤ 0. But G(TSyn, Tu, Tu) ≥
0. Hence G(TSyn, Tu, Tu) = 0. So TSyn → Tu = TSu. Since T is one-to-
one, therefore Syn → u = Su.

This implies that S is G-continuous at u.
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Case 2: If

max
{
G(Tyn, TSyn, TSyn) + 2G(Tu, TSu, TSu)

G(Tyn, TSu, TSu) +G(Tu, TSu, TSu) +G(Tu, TSyn, TSyn)
}

=
{
G(Tyn, TSu, TSu) +G(Tu, TSu, TSu) +G(Tu, TSyn, TSyn)

}
.

Then (2.9) reduces to

G(TSyn, TSu, TSu) ≤ kmax
{
G(Tyn, TSu, TSu) +G(Tu, TSu, TSu)

+G(Tu, TSyn, TSyn)
}
.

Letting limit n→∞ and using TSu = Tu and Tyn → Tu, we have

(12)

G(TSyn, Tu, Tu) ≤ kmax
{
G(Tu, Tu, Tu) +G(Tu, Tu, Tu)

+G(Tu, TSyn, TSyn)
}

= KG(Tu, TSyn, TSyn).

By (iii) of Proposition 5, G(Tu, TSyn, TSyn) ≤ 2G(Tyn, Tu, Tu). This
implies that (12) reduces to G(TSyn, Tu, Tu) ≤ 0. But G(TSyn, Tu, Tu) ≥
0.

Hence G(TSyn, Tu, Tu) = 0, so TSyn → Tu = TSu. Since T is one-to-
one. Therefore Syn → u = Su.

This implies that S is G-continuous at u.
Therefore in both cases S is G-continuous at point u. Hence completes

the theorem. �

Corollary 2. Let (X,G) be a complete G-metric space and let S, T : X → X
such that T is one-to-one and satisfying

(13)

G(TmSmx, TmSmy, TmSmz) ≤

≤ kmax
{
G(Tmx, TmSmx, TmSmx) +G(Tmy, TmSmy, TmSmy)

+G(Tmz, TmSmz, TmSmz), G(Tmx, TmSmy, TmSmy)+

G(Tmy, TmSmx, TmSmx) +G(Tmz, TmSmy, TmSmy),

G(Tmx, TmSmz, TmSmz) +G(Tmy, TmSmz, TmSmz)+

G(Tmz, TmSmx, TmSmx)
}
.

for all x, y, z ∈ X, m ∈ N and 0 ≤ k < 1
4 . Then S has a unique common

fixed point and Sm is G-continuous at the fixed point.

Proof. On the lines of Theorem 2, one can easily obtain, Sm has a unique
fixed point say u, i.e., Smu = u and Sm is G-continuous at u.
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But Su = S(Smu) = Sm+1u = Sm(Su), so Su is another fixed point of
Sm. By uniqueness Su = u, i.e., u is a unique fixed point of S. �
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