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Fixed Point Theorems in Probabilistic Metric
Spaces Using Property (E.A)

B.D. Pant, Brian Fisher and Sunny Chauhan

Abstract. In this paper, we prove a common fixed point theorem for
even number of self mappings in Menger space by using an implicit
relation with property (E.A). We also extend our main result to four
finite families of mappings employing the notion of pairwise commuting
due to Imdad et al. [Coincidence and common fixed point theorems for
nonlinear contractions in Menger PM spaces, Chaos, Solitons & Fractals
42(5) (2009), 3121–3129]. Our results generalize and extend several well
known comparable results existing in literature.

1. Introduction and preliminaries

Karl Menger [14] introduced the notion of a probabilistic metric space
(briefly, PM-space) in 1942. The idea of Menger was to utilize distribution
functions instead of non-negative real numbers as values of the metric. The
notion of PM-space corresponds to situations when we do not know exactly
the distance between two points, but we know probabilities of possible val-
ues of this distance. The study such spaces received an impetus with the
pioneering work of Schweizer and Sklar [21]. A probabilistic generalization
of metric spaces appears to be interest in the investigation of physical quan-
tities and physiological thresholds. It is also of fundamental importance in
probabilistic functional analysis especially due to its extensive applications
in random differential.

In 1986, Jungck [8] introduced the notion of compatible mappings for
a pair of self mappings in metric space. Mishra [16] extended this notion
of compatibility to PM-space and obtained some interesting common fixed
point results in this setting. It can be easily seen that most of the common
fixed point theorems for contraction mappings invariably require a compat-
ibility condition besides assuming continuity of at least one of the involved
mappings. However, the study of common fixed points of non-compatible
mappings is also of great interest due to Pant [17]. In 2002, Aamri and
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Moutawakil [1] defined the notion of property (E.A) for a pair of self map-
pings which contained the class of non-compatible mappings and proved
common fixed point theorems in metric spaces under strict contractive con-
dition. Since then, Kubiaczyk and Sharma [10] studied the common fixed
points of weakly compatible mappings satisfying the property (E.A) in PM-
spaces for the existence of common fixed point. Subsequently, there are a
number of results wherein the notion of property (E.A) is used; for instance
see [5], [7], [13]. Recently, Ali et al. [2] extended the notion of common
property (E.A) in Menger spaces and proved some common fixed point the-
orems which generalized several known results in Menger space as well as
metric spaces (also, see [3]).

In 2005, Miheţ [15] proved some fixed point theorems concerning proba-
bilistic contractions satisfying an implicit relation. Kumar and Pant [12, 13]
and Pant and Chauhan [18, 19] proved some fixed point theorems in PM-
spaces satisfying implicit relation.

Most recently, Kumar et al. [11] proved a common fixed point theorem
for two pairs of non-compatible mappings employing an implicit relation in
PM-space. The aim of this paper is to prove a common fixed point theorem
for even number of self mappings satisfying an implicit relation. Further, we
extend our main result to four finite families of mappings in PM-space.

For the sake of completeness, we recall some definitions and properties of
Menger spaces.

Definition 1.1. [21] A mapping F : R→ R+ is called a distribution function
if it is non-decreasing and left continuous with inf

t∈R
F (t) = 0 and sup

t∈R
F (t) = 1.

We shall denote by = the set of all distribution functions while H will
always denote the specific distribution function defined by

H(t) =

{
0, if t ≤ 0;

1, if t > 0.

Definition 1.2. [21] A PM-space is an ordered pair (X,F), where X is
a non-empty set of elements and F is a mapping from X × X to =, the
collection of all distribution functions. The value of F at (x, y) ∈ X ×X is
represented by Fx,y. The function Fx,y is assumed to satisfy the following
conditions for all x, y, z ∈ X and t, s > 0:

(1) Fx,y(t) = 1 for all t > 0 if and only if x = y;
(2) Fx,y(0) = 0;
(3) Fx,y(t) = Fy,x(t);
(4) If Fx,y(t) = 1 and Fy,z(s) = 1 then Fx,z(t+ s) = 1.

Definition 1.3. [21] A mapping 4 : [0, 1]× [0, 1]→ [0, 1] is called a t-norm
if the following conditions are satisfied for all a, b, c, d ∈ [0, 1]:

(1) 4(a, 1) = a for all a ∈ [0, 1];
(2) 4(a, b) = 4(b, a);
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(3) 4(a, b) ≤ 4(c, d) for a ≤ c, b ≤ d;
(4) 4(4(a, b), c) = 4(a,4(b, c));

Examples of continuous t-norms are 4(a, b) = min{a, b}, 4(a, b) = ab
and 4(a, b) = max{a+ b− 1, 0}.

Definition 1.4. [21] A Menger space is a triplet (X,F ,4) where (X,F) is
a PM-space and 4 is a t-norm such that the inequality

Fx,z(t+ s) ≥ 4 (Fx,y(t), Fy,z(s)) ,

holds for all x, y, z ∈ X and all t, s > 0.

Every metric space (X, d) can be realized as a PM-space by taking F :
X ×X → = defined by Fx,y(t) = H(t− d(x, y)) for all x, y ∈ X.

Definition 1.5. [21] Let (X,F ,4) be a Menger space with continuous t-
norm 4.

(1) A sequence {xn} in X is said to be converge to a point x in X if
and only if for every ε > 0 and λ > 0, there exists a positive integer
N(ε, λ) such that Fxn,x(ε) > 1− λ for all n ≥ N(ε, λ).

(2) A sequence {xn} in X is said to be Cauchy if for every ε > 0 and
λ > 0, there exists a positive integer N(ε, λ) such that Fxn,xm(ε) >
1− λ for all n,m ≥ N(ε, λ).

A Menger space in which every Cauchy sequence is convergent is said to
be complete.

Definition 1.6. [16] A pair (A,S) of self mappings of a Menger space
(X,F ,4) is said to be compatible if and only if FASxn,SAxn(t) → 1 for
all t > 0, whenever {xn} is a sequence in X such that Axn, Sxn → z for
some z ∈ X as n→∞.

Definition 1.7. [5] A pair (A,S) of self mappings of a Menger space (X,F ,4)
is said to be non-compatible if and only if there exists at least one sequence
{xn} in X such that lim

n→∞
Axn = lim

n→∞
Sxn = z for some z ∈ X, but for

some t > 0, lim
n→∞

FASxn,SAxn(t) is either less than 1 or non-existent.

Definition 1.8. [4, 9] A pair (A,S) of self mappings of a non-empty set
X is said to be weakly compatible (or coincidentally commuting) if they
commute at their coincidence points, i.e., if Az = Sz for some z ∈ X, then
ASz = SAz.

Remark 1.1. Two compatible self mappings are weakly compatible, but
the converse is not true in general (see [22, Example 1]). Hence the notion
of weak compatibility is more general than compatibility.

Definition 1.9. [10] A pair (A,S) of self mappings of a Menger space
(X,F ,4) is said to satisfy the property (E.A), if there exists a sequence
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{xn} such that
lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X.

Note that weakly compatible and property (E.A) are independent to each
other (see [20, Example 2.2]). Also a pair of non-compatible self mappings
of (X,F) satisfies the property (E.A) but the converse need not be true (see
[5, Example 1]).

2. Implicit Relation

Pant and Chauhan [18] proved a common fixed point theorem concerning
probabilistic contractions satisfying the following implicit relation:

Let Φ be the class of all real continuous functions ϕ : (R+)4 → R, non-
decreasing in the first argument and satisfying the following conditions:
(R-1) u, v ≥ 0, ϕ(u, v, u, v) ≥ 0 or ϕ(u, v, v, u) ≥ 0 implies that u ≥ v.
(R-2) ϕ(u, u, 1, 1) ≥ 0 for all u ≥ 1.

Example 2.1. [18] Define ϕ(t1, t2, t3, t4) = at1 + bt2 + ct3 + dt4, where
a, b, c, d ∈ R with a+ b+ c+d = 0, a > 0, a+ c > 0, a+ b > 0 and a+d > 0.
Then ϕ ∈ Φ.

Example 2.2. Define ϕ(t1, t2, t3, t4) = 14t1−12t2 + 6t3−8t4. Then ϕ ∈ Φ.

3. Results

Theorem 3.1. Let P1, P2, . . . , P2n, A and B be self mappings of a Menger
space (X,F ,4), where 4 is a continuous t-norm. Further, let the pairs
(A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) be weakly compatible satisfying:

(1) A(X) ⊂ P2P4 . . . P2n(X), B(X) ⊂ P1P3 . . . P2n−1(X);
(2) One of A(X), B(X), P1P3 . . . P2n−1(X) and P2P4 . . . P2n(X) is a

complete subspace of X;
(3) Suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,

P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,

...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,

A(P3 . . . P2n−1) = (P3 . . . P2n−1)A,

A(P5 . . . P2n−1) = (P5 . . . P2n−1)A,

...
AP2n−1 = P2n−1A,
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similarly,

P2(P4 . . . P2n) = (P4 . . . P2n)P2,

P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,

...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,

B(P4 . . . P2n) = (P4 . . . P2n)B,

B(P6 . . . P2n) = (P6 . . . P2n)B,

...
BP2n = P2nB;

(4) (A,P1P3 . . . P2n−1) or (B,P2P4 . . . P2n) satisfies the property (E.A);
(5) there exist k ∈ (0, 1) and ϕ ∈ Φ such that

(1) ϕ

(
FAx,By(kt), FP1P3...P2n−1x,P2P4...P2ny(t),
FAx,P1P3...P2n−1x(kt), FBy,P2P4...P2ny(t)

)
≥ 0

or,

(2) ϕ

(
FAx,By(kt), FP1P3...P2n−1x,P2P4...P2ny(t),
FAx,P1P3...P2n−1x(t), FBy,P2P4...P2ny(kt)

)
≥ 0,

for all x, y ∈ X, t > 0.
Then P1, P2, . . . , P2n, A and B have a unique common fixed point in X.

Proof. Suppose that the pair (A,P1P3 . . . P2n−1) enjoys the property (E.A),
then there exists a sequence {xn} inX such thatAxn → z and P1P3 . . . P2n−1xn →
z, for some z ∈ X as n → ∞. Since A(X) ⊂ P2P4 . . . P2n(X), hence for
each {xn} there exists a sequence {yn} inX such that Axn = P2P4 . . . P2nyn.
Therefore, P2P4 . . . P2nyn → z and Axn → z as n → ∞. Thus in all, we
have Axn → z, P1P3 . . . P2n−1xn → z and P2P4 . . . P2nyn → z as n → ∞.
Now we claim that Byn → z as n→∞. Suppose Byn → w( 6= z) ∈ X, then
applying inequality (1), we have

ϕ

(
FAxn,Byn(kt), FP1P3...P2n−1xn,P2P4...P2nyn(t),
FAxn,P1P3...P2n−1xn(kt), FByn,P2P4...P2nyn(t)

)
≥ 0.

Taking the limit as n→∞, we obtain

ϕ (Fz,w(kt), Fz,z(t), Fz,z(kt), Fw,z(t)) ≥ 0,

and so
ϕ (Fz,w(kt), 1, 1, Fw,z(t)) ≥ 0.

As ϕ is non-decreasing in the first argument

ϕ (Fz,w(t), 1, 1, Fw,z(t)) ≥ 0.

Using (R-1), we get Fz,w(t) ≥ 1 for all t > 0, i.e., Fz,w(t) = 1, which
implies w = z. Thus Byn → z as n→∞.
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Suppose that P1P3 . . . P2n−1(X) is a complete subspace of X. Then
z = (P1P3 . . . P2n−1)u for some u ∈ X. Subsequently, we have Axn →
(P1P3 . . . P2n−1)u, Byn → (P1P3 . . . P2n−1)u, P2P4 . . . P2nyn → (P1P3 . . . P2n−1)u
and P1P3 . . . P2n−1xn → (P1P3 . . . P2n−1)u as n→∞. Using inequality (1),
we have

ϕ

(
FAu,Byn(kt), F(P1P3...P2n−1)u,P2P4...P2nyn(t),
FAu,(P1P3...P2n−1)u(kt), FByn,P2P4...P2nyn(t)

)
≥ 0.

Taking the limit as n→∞, we get

ϕ (FAu,z(kt), Fz,z(t), FAu,z(kt), Fz,z(t)) ≥ 0,

and so
ϕ (FAu,z(kt), 1, FAu,z(kt), 1) ≥ 0.

Using (R-1), we have FAu,z(kt) ≥ 1 for all t > 0. Hence FAu,z(t) = 1,
i.e., Au = z. Therefore Au = (P1P3 . . . P2n−1)u = z which shows that u is a
coincidence point of the pair (A,P1P3 . . . P2n−1).

Since A(X) ⊂ P2P4 . . . P2n(X), there exists a point v in X such that
Au = (P2P4 . . . P2n)v. Now, we assert that (P2P4 . . . P2n)v = Bv. Using
inequality (1), we have

ϕ

(
FAu,Bv(kt), F(P1P3...P2n−1)u,P2P4...P2nv(t),
FAu,(P1P3...P2n−1)u(kt), FBv,P2P4...P2nv(t)

)
≥ 0,

and so
ϕ (Fz,Bv(kt), Fz,z(t), Fz,z(kt), FBv,z(t)) ≥ 0,

or, equivalently,
ϕ (Fz,Bv(kt), 1, 1, FBv,z(t)) ≥ 0.

As ϕ is non-decreasing in the first argument

ϕ (Fz,Bv(t), 1, 1, FBv,z(t)) ≥ 0.

Using (R-1), we have Fz,Bv(t) ≥ 1 for all t > 0. Hence Fz,Bv(t) = 1.
Thus z = Bv. Therefore Bv = (P2P4 . . . P2n)v = z which shows that v is a
coincidence point of the pair (B,P2P4 . . . P2n).

Since the pairs (A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) are weakly com-
patible, thereforeAz = A(P1P3 . . . P2n−1u) = (P1P3 . . . P2n−1)Au = (P1P3 . . . P2n−1)z
and Bz = B(P2P4 . . . P2nv) = (P2P4 . . . P2n)Bv = (P2P4 . . . P2n)z.

Now we prove thatAz = z = P1P3 . . . P2n−1z andBz = z = P2P4 . . . P2nz,
then using inequality (1), we obtain

ϕ

(
FAz,Bv(kt), F(P1P3...P2n−1)z,P2P4...P2nv(t),
FAz,(P1P3...P2n−1)z(kt), FBv,P2P4...P2nv(t)

)
≥ 0,

and so
ϕ (FAz,z(kt), FAz,z(t), FAz,Az(kt), Fz,z(t)) ≥ 0,

or, equivalently,
ϕ (FAz,z(kt), FAz,z(t), 1, 1) ≥ 0.
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As ϕ is non-decreasing in the first argument, hence

ϕ (FAz,z(t), FAz,z(t), 1, 1) ≥ 0.

Using (R-2), we have FAz,z(t) ≥ 1 for all t > 0, i.e., FAz,z(t) = 1 and so
Az = z. Therefore Az = (P1P3 . . . P2n−1)z = z.

Similarly, one can prove that Bz = z = P2P4 . . . P2nz. Therefore Az =
Bz = P1P3 . . . P2n−1z = P2P4 . . . P2nz = z. Now we show that z is the com-
mon fixed point of all the component mappings. Putting x = P3 . . . P2n−1z,
y = z, P ′1 = P1P3 . . . P2n−1 and P ′2 = P2P4 . . . P2n in inequality (1), we get

ϕ

(
FAP3...P2n−1z,Bz(kt), FP ′1P3...P2n−1z,P2P4...P2nz

(t),

F
AP3...P2n−1z,P

′
1P3...P2n−1z

(kt), FBz,P2P4...P2nz(t)

)
≥ 0,

and so

ϕ

(
FP3...P2n−1z,z(kt), FP3...P2n−1z,z(t),
FP3...P2n−1z,P3...P2n−1z(kt), Fz,z(t)

)
≥ 0

or, equivalently,

ϕ
(
FP3...P2n−1z,z(kt), FP3...P2n−1z,z(t), 1, 1

)
≥ 0.

As ϕ is non-decreasing in the first argument, we have

ϕ
(
FP3...P2n−1z,z(t), FP3...P2n−1z,z(t), 1, 1

)
≥ 0.

Using (R-2), we have FP3...P2n−1z,z(t) ≥ 1 for all t > 0.
Hence FP3...P2n−1z,z(t) = 1. Thus (P3 . . . P2n−1)z = z.
Thus P1z = P1(P3 . . . P2n−1z) = z.
Continuing this procedure, we get Az = P1z = P3z = . . . = P2n−1z = z. In
the same manner, taking x = z, y = P4 . . . P2nz, P

′
1 = P1P3 . . . P2n−1 and

P
′
2 = P2P4 . . . P2n in inequality (1), we get z = P4 . . . P2nz. Hence P2z = z.

Continuing this procedure, we get Bz = P2z = P4z = . . . = P2nz = z.
Therefore z is the common fixed point of P1, P2, . . . , P2n, A and B. The
uniqueness of common fixed point is an easy consequence of inequality (1).

The proof is similar when P2P4 . . . P2n(X) is assumed to be a complete
subspace of X. The cases wherein A(X) or B(X) is assumed to be a com-
plete subspace of X are similar to the cases in which P2P4 . . . P2n(X) or
P1P3 . . . P2n−1(X) respectively, is complete since A(X) ⊂ P2P4 . . . P2n(X),
B(X) ⊂ P1P3 . . . P2n−1(X). We can also find a unique common fixed point
of the involved self mappings by using inequality (2) in the same manner. �

Now we prove a common fixed point theorem, which is a slight general-
ization of Theorem 3.1.

Theorem 3.2. Let {Tα}α∈J and {Pi}2ni=1 be two families of self mappings
of a Menger space (X,F ,4), where 4 is a continuous t-norm. Suppose
that there exists a fixed β ∈ J such that the pairs (Tα, P1P3 . . . P2n−1) and
(Tβ, P2P4 . . . P2n) be weakly compatible satisfying:



18 Fixed Point Theorems in PM-spaces Using Property (E.A)

(1) Tα(X) ⊂ P2P4 . . . P2n(X) for each α ∈ J and Tβ(X) ⊂ P1P3 . . . P2n−1(X)
for some β ∈ J ;

(2) One of Tα(X), Tβ(X), P1P3 . . . P2n−1(X) and P2P4 . . . P2n(X) is a
complete subspace of X;

(3) Suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,

P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,

...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,

Tα(P3 . . . P2n−1) = (P3 . . . P2n−1)Tα,

Tα(P5 . . . P2n−1) = (P5 . . . P2n−1)Tα,

...
TαP2n−1 = P2n−1Tα,

similarly,

P2(P4 . . . P2n) = (P4 . . . P2n)P2,

P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,

...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,

Tβ(P4 . . . P2n) = (P4 . . . P2n)Tβ,

Tβ(P6 . . . P2n) = (P6 . . . P2n)Tβ,

...
TβP2n = P2nTβ.

(4) (Tα, P1P3 . . . P2n−1) or (Tβ, P2P4 . . . P2n) satisfies the property (E.A);
(5) there exist a constant k ∈ (0, 1) and ϕ ∈ Φ such that

(3) ϕ

(
FTαx,Tβy(kt), FP1P3...P2n−1x,P2P4...P2ny(t),
FTαx,P1P3...P2n−1x(kt), FTβy,P2P4...P2ny(t)

)
≥ 0

or,

(4) ϕ

(
FTαx,Tβy(kt), FP1P3...P2n−1x,P2P4...P2ny(t),
FTαx,P1P3...P2n−1x(t), FTβy,P2P4...P2ny(kt)

)
≥ 0

for all x, y ∈ X, t > 0.
Then all {Pi} and {Tα} have a unique common fixed point in X.

Proof. Let Tα0 be a fixed element in {Tα}α∈J . By Theorem 3.1 with A = Tα0

and B = Tβ it follows that there exists some z ∈ X such that

Tβz = Tα0z = P1P3 . . . P2n−1z = P2P4 . . . P2nz = z.
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Let α ∈ J be arbitrary. Then applying inequality (3), we obtain

ϕ

(
FTαz,Tβz(kt), FP1P3...P2n−1z,P2P4...P2nz(t),
FTαz,P1P3...P2n−1z(kt), FTβz,P2P4...P2nz(t)

)
≥ 0,

and so
ϕ (FTαz,z(kt), Fz,z(t), FTαz,z(kt), Fz,z(t)) ≥ 0,

or, equivalently,
ϕ (FTαz,z(kt), 1, FTαz,z(kt), 1) ≥ 0.

Using (R-1), we have FTαz,z(kt) ≥ 1 for all t > 0. Hence FTαz,z(t) = 1.
Thus Tαz = z for each α ∈ J .

Uniqueness of the common fixed point is an easy consequence of inequality
(3). �

Corollary 3.1. Let A,B, S and T be self mappings of a Menger space
(X,F ,4), where 4 is a continuous t-norm. Further, let the pairs (A,S)
and (B, T ) be weakly compatible satisfying:

(1) A(X) ⊂ T (X), B(X) ⊂ S(X);
(2) One of A(X), B(X), S(X) and T (X) is a complete subspace of X;
(3) (A,S) or (B, T ) satisfies the property (E.A);
(4) there exist a constant k ∈ (0, 1) and ϕ ∈ Φ such that

(5) ϕ (FAx,By(kt), FSx,Ty(t), FAx,Sx(kt), FBy,Ty(t)) ≥ 0

or,

(6) ϕ (FAx,By(kt), FSx,Ty(t), FAx,Sx(t), FBy,Ty(kt)) ≥ 0,

for all x, y ∈ X, t > 0.
Then A,B, S and T have a unique common fixed point in X.

Proof. If we set P1P3 . . . P2n−1 = S and P2P4 . . . P2n = T in Theorem 3.1,
then the result easily follows. �

Remark 3.1. As two non-compatible mappings of a Menger space (X,F ,4)
satisfy the property (E.A.), therefore the earlier proved results also valid for
non-compatible self mappings.

The following example illustrates Corollary 3.1 in view of Remark 3.1.

Example 3.1. Let X = [0, 1) and d be the usual metric on X and for each
t ∈ [0, 1], define

Fx,y(t) =

{
t

t+|x−y| , if t > 0;

0, if t = 0.

for all x, y ∈ X. Clearly, (X,F ,4) is a Menger space, where 4(a, b) =
min{a, b} for all a, b ∈ [0, 1]. Consider the function ϕ : (R+)4 → R as shown
in Example 2.2. Let A,B, S and T be self mappings of X defined by

A(X) =

{
0, if x = 0;

0.2, if 0 < x < 1.
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B(X) =

{
0, if x = 0;

0.3, if 0 < x < 1.

S(X) =


0, if x = 0;

0.25, if x ∈ (0, 12 ];

x− 0.3, if x ∈ (12 , 1).

T (X) =


0, if x = 0;

0.2, if x ∈ (0, 12 ];

x− 0.2, if x ∈ (12 , 1).

Then A,B, S and T satisfy all the conditions of Corollary 3.1 for some
fixed k ∈ (0, 1) and have a unique common fixed point at x = 0. It may
be noted that, the mappings A and S commute at the coincidence point
0 ∈ X and hence the mappings A and S are weakly compatible. Similarly
B and T are weakly compatible mappings. Now we show that the pairs
(A,S) and (B, T ) are non-compatible, let us consider a decreasing sequence
{xn} defined as xn → 0.5 as n → ∞. Then Axn → 0.2, Sxn → 0.2 (as
n→∞) but limn→∞ FASxn,SAxn(t) = t

t+|0.2−0.25| 6= 1 which shows that the
pair (A,S) is non-compatible. Also, Bxn → 0.3, Txn → 0.3 (as n→∞) but

lim
n→∞

FBTxn,TBxn(t) =
t

t+ | 0.3− 0.2 |
6= 1. Hence the pair (B, T ) is non-

compatible. All the mappings involved in this example are discontinuous at
the common fixed point x = 0.

Remark 3.2. Corollary 3.1 represents the result of Kumar et al. [11, The-
orem 12] in absence of inequality (6).

On taking A = B and S = T in Corollary 3.1 then we get the interesting
result.

Corollary 3.2. Let A and S be self mappings of a Menger space (X,F ,4),
where 4 is a continuous t-norm. Further, let the pair {A,S} is weakly
compatible satisfying:

(1) A(X) ⊂ S(X);
(2) One of A(X) and S(X) is a complete subspace of X;
(3) (A,S) satisfies the property (E.A);
(4) there exist a constant k ∈ (0, 1) and ϕ ∈ Φ such that

(7) ϕ (FAx,Ay(kt), FSx,Sy(t), FAx,Sx(kt), FAy,Sy(t)) ≥ 0

or,

(8) ϕ (FAx,Ay(kt), FSx,Sy(t), FAx,Sx(t), FAy,Sy(kt)) ≥ 0,

for all x, y ∈ X, t > 0.
Then A and S have a unique common fixed point in X.

The following definition firstly studied by Imdad et al. [6].
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Definition 3.1. [6] Two families of self mappings {Ai}mi=1 and {Bk}nk=1 are
said to be pairwise commuting if

(1) AiAj = AjAi for all i, j ∈ {1, 2, . . . ,m};
(2) BkBl = BlBk for all k, l ∈ {1, 2, . . . , n};
(3) AiBk = BkAi for all i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}.

Now, we utilize Definition 3.1 (which is a natural extension of commu-
tativity condition to two finite families) and prove a common fixed point
theorem for four finite families of self mappings in Menger space.

Theorem 3.3. Let {Ai}mi=1, {Br}nr=1, {Sk}
p
k=1 and {Th}qh=1 be four fi-

nite families of self mappings of a Menger space (X,F ,4), where 4 is
a continuous t-norm such that A = A1A2 . . . Am, B = B1B2 . . . Bn, S =
S1S2 . . . Sp and T = T1T2 . . . Tq. Also, the pairs of the families ({Ai}, {Sk})
and ({Br}, {Th}) are commuting pairwise satisfying:

(1) A(X) ⊂ T (X), B(X) ⊂ S(X);
(2) One of A(X), B(X), S(X) and T (X) is a complete subspace of X;
(3) (A,S) or (B, T ) satisfies the property (E.A);
(4) there exist a constant k ∈ (0, 1) and ϕ ∈ Φ such that

(9) ϕ (FAx,By(kt), FSx,Ty(t), FAx,Sx(kt), FBy,Ty(t)) ≥ 0

or,

(10) ϕ (FAx,By(kt), FSx,Ty(t), FAx,Sx(t), FBy,Ty(kt)) ≥ 0,

for all x, y ∈ X, t > 0.
Then {Ai}mi=1, {Br}nr=1, {Sk}

p
k=1 and {Th}qh=1 have a unique common

fixed point in X.

Proof. From the notion of pair-wise commuting, one can prove that AS =
SA as

AS = (A1A2 . . . Am)(S1S2 . . . Sp)

= (A1A2 . . . Am−1)(AmS1S2 . . . Sp)

= (A1A2 . . . Am−1)(S1S2 . . . SpAm)

= (A1A2 . . . Am−2)(Am−1S1S2 . . . SpAm)

= (A1A2 . . . Am−2)(S1S2 . . . SpAm−1Am)

...
= A1(S1S2 . . . SpA2 . . . Am−1Am)

= (S1S2 . . . Sp)(A1A2 . . . Am)

= SA.

One can also prove that BT = TB. Hence the pairs (A,S) and (B, T )
are weakly compatible. In view of Corollary 3.1, we conclude that A,B, S
and T have a unique common fixed point z in X.
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Now, we assert that w remains the fixed point of all the component map-
pings.

A(Aiw) = ((A1A2 . . . Am)Ai)w

= (A1A2 . . . Am−1)(AmAi)w

= (A1A2 . . . Am−1)(AiAm)w

= (A1A2 . . . Am−2)(Am−1AiAm)w

= (A1A2 . . . Am−2)(AiAm−1Am)w

...
= A1(AiA2 . . . Am)w

= (A1Ai)(A2 . . . Am)w

= (AiA1)(A2 . . . Am)w

= Ai(A1A2 . . . Am)w

= Aiw.

Similarly, we can prove that

A(Skw) = Sk(Aw) = Skw,

S(Skw) = Sk(Sw) = Skw,

S(Aiw) = Ai(Sw) = Aiw,

B(Brw) = Br(Bw) = Brw,

B(Thw) = Th(Bw) = Thw,

T (Thw) = Th(Tw) = Thw,

T (Brw) = Br(Tw) = Brw,

which shows that (for all i, r, k and h) Aiw and Skw are other fixed point
of the pair (A,S) whereas Brw and Thw are other fixed points of the pair
(B, T ).

Now appealing to the uniqueness of common fixed points of mappings
A,B, S and T , we get

w = Aiw = Skw = Brw = Thw,

for all i ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , p}, r ∈ {1, 2, . . . , n} and h ∈ {1, 2, . . . , q}
which shows that w is the unique common fixed point of {Ai}mi=1, {Br}nr=1,
{Sk}pk=1 and {Th}qt=1. �

By setting A1 = A2 = . . . = Am = A, B1 = B2 = . . . = Bn = B,
S1 = S2 = . . . = Sp = S and T1 = T2 = . . . = Th = T in Theorem 3.3, we
deduce the following:

Corollary 3.3. Let A,B, S and T be self mappings of a Menger space
(X,F ,4), where 4 is a continuous t-norm satisfying:
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(1) Am(X) ⊂ T q(X), Bn(X) ⊂ Sp(X);
(2) One of Am(X), Bn(X), Sp(X) and T q(X) is a complete subspace of

X;
(3) (Am, Sp) or (Bn, T q) satisfies the property (E.A);
(4) there exist a constant k ∈ (0, 1) and ϕ ∈ Φ such that

(11) ϕ (FAmx,Bny(kt), FSpx,T qy(t), FAmx,Spx(kt), FBny,T qy(t)) ≥ 0

or,

(12) ϕ (FAmx,Bny(kt), FSpx,T qy(t), FAmx,Sqx(t), FBny,T qy(kt)) ≥ 0,

for all x, y ∈ X, t > 0 and and m,n, p and q are fixed positive
integers.

Then A,B, S and T have a unique common fixed point in X provided that
AS = SA and BT = TB.

Remark 3.3. Corollary 3.3 is a slight but partial generalization of Corollary
3.1 as the commutativity requirements (i.e., AS = SA and BT = TB) in
this corollary are stronger as compared to weak compatibility in Corollary
3.1.

Acknowledgements
The authors are thankful to the Editor and anonymous referees for their

fruitful comments on this paper.

References

[1] M. Aamri and D.El Moutawakil, Some new common fixed point theorems under strict
contractive conditions, J. Math. Anal. Appl. 270 (2002), 181–188.

[2] J. Ali, M. Imdad and D. Bahuguna, Common fixed point theorems in Menger spaces
with common property (E.A), Comput. Math. Appl. 60(12) (2010), 3152–3159.

[3] J. Ali, M. Imdad, D. Miheţ and M. Tanveer, Common fixed points of strict contrac-
tions in Menger spaces, Acta Math. Hungar. 132(4) (2011), 367–386.

[4] B.C. Dhage, On common fixed points of coincidentally commuting mappings in D-
metric spaces, Indian J. Pure Appl. Math. 30(4) (1999), 395–406.

[5] J.X. Fang and Y. Gao, Common fixed point theorems under strict contractive condi-
tions in Menger spaces, Nonlinear Anal. 70(1) (2009), 184–193.

[6] M. Imdad, J. Ali and M. Tanveer, Coincidence and common fixed point theorems
for nonlinear contractions in Menger PM spaces, Chaos, Solitons & Fractals 42(5)
(2009), 3121–3129.

[7] M. Imdad, M. Tanveer and M. Hasan, Some common fixed point theorems in Menger
PM spaces, Fixed Point Theory Appl. vol. 2010, Article ID 819269, 14 pages.

[8] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci.
9 (1986), 771–779.

[9] G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity,
Indian J. Pure Appl. Math. 29(3) (1998), 227–238.

[10] I. Kubiaczyk and S. Sharma, Some common fixed point theorems in Menger space
under strict contractive conditions, Southeast Asian Bull. Math. 32 (2008), 117–124.



24 Fixed Point Theorems in PM-spaces Using Property (E.A)

[11] S. Kumar, S. Chauhan and B.D. Pant, Common fixed point theorem for noncompatible
maps in probabilistic metric space, Surv. Math. Appl. (2012/2013), accepted.

[12] S. Kumar and B.D. Pant, A common fixed point theorem in probabilistic metric space
using implicit relation, Filomat 22(2) (2008), 43–52.

[13] S. Kumar and B.D. Pant, Common fixed point theorems in probabilistic metric spaces
using implicit relation and property (E.A), Bull. Allahabad Math. Soc. 25(2) (2010),
223–235.

[14] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535–537.
[15] D. Miheţ, A generalization of a contraction principle in probabilistic metric spaces,

Part II, Int. J. Math. Math. Sci. 2005(5) (2005), 729–736.
[16] S.N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math.

Japon. 36 (1991), 283–289.
[17] R.P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl.

226 (1998), 251–258.
[18] B.D. Pant and S. Chauhan, Common fixed point theorems for semi compatible map-

pings using implicit relation, Int. J. Math. Anal. (Ruse) 5(28) (2009), 1389–1398.
[19] B.D. Pant and S. Chauhan, A common fixed point theorems in Menger space using

implicit relation, Surv. Math. Appl. (2012/2013), accepted.
[20] H.K. Pathak, R.R. López and R.K. Verma, A common fixed point theorem using

implicit relation and property (E.A) in metric spaces, Filomat 21(2) (2007), 211–234.
[21] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–

334.
[22] B. Singh and S. Jain, A fixed point theorem in Menger Space through weak compati-

bility, J. Math. Anal. Appl. 301 (2005), 439–448.

B.D. Pant
Government Degree College
Champawat-262523, Uttarakhand
India
E-mail address: badridatt.pant@gmail.com

Brian Fisher
Department of Mathematics
University of Leicester
Leicester, LE1 7RH
England
E-mail address: fbr@le.ac.uk

Sunny Chauhan
Near Nehru Training Centre
H. No. 274, Nai Basti B-14
Bijnor-246701, Uttar Pradesh
India
E-mail address: sun.gkv@gmail.com


