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Rhoades Type Fixed Point Theorems
for a Family of Hybrid Pairs of

Mappings in Metrically Convex Spaces

Ladlay Khan and M. Imdad

Abstract. The present paper establishes some coincidence and fixed
point theorems for a sequence of hybrid type nonself mappings defined
on a closed subset of a metrically convex metric spaces, which generalize
some earlier results due to Rhoades [18], Ahmed and Rhoades [1] and
many others. Some related results are also derived.

1. Introduction

The existing literature of fixed point theory contains numerous results
for single as well as multi-valued self mappings, but in many applications
the mapping under consideration need not always be a self mapping. In an
attempt to prove results for nonself mappings in metrically convex complete
metric spaces, Rhoades [17] gave sufficient conditions for such mappings to
admit a fixed point by proving a fixed point theorem for certain generalized
type contractions under suitable boundary conditions on the mapping. The
recent literature witnessed various extentions and generalizations of this the-
orem of Rhoades [17], which includes Rhoades [18], Imdad and Kumar [10]
and some others. For the work of this kind one can be referred to Imdad
et al. [9], Ahmad and Imdad [2], Ahmad and Khan [3], Rhoades [18] and
several others. Recently Ahmed and Rhoades [1] proved a result on coinci-
dence points for two hybrid pairs of compatible continuous mappings which
is essentially patterned after Ahmad and Imdad [2]

On the other hand, Huang and Cho [8] and Dhage et al. [5] proved some
fixed point theorems for a sequence of set-valued mappings which generalize
several results due to Itoh [11], Khan [15], Ahmad and Khan [3] and others.
In this paper by combining these two ideas we prove some coincidence and
fixed point theorems for a sequence of hybrid type nonself mappings satis-
fying certain contraction type condition which is essentially patterned after
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Rhoades [18]. Our results either partially or completely generalize earlier
results due to Rhoades [18], Imdad and Kumar [10] and several others.

2. Preliminaries

Before proving our results, we collect the relevant definitions and results
for our future use.

Let (X, d) be a metric space. Then following Nadler [16], we recall

(i) CB(X) = {A : A is nonempty closed and bounded subset of X},
(ii) C(X) = {A : A is nonempty compact subset of X}.
(iii) For nonempty subsets A,B of X and x ∈ X, d(x,A) = inf{d(x, a) :

a ∈ A} and
H(A,B) = max[{sup d(a,B) : a ∈ A}, {supd(A, b) : b ∈ B}].

It is well known (cf. Kuratowski [14]) that CB(X) is a metric space with
the distance H which is known as Hausdorff-Pompeiu metric on X.

The following definitions and a lemma will be frequently used in the se-
quel.

Definition 1 ([6, 7]). Let K be a nonempty subset of a metric space (X, d),
T : K → X and F : K → CB(X). The pair (F, T ) is said to be weakly
commuting (cf.[7]) if for every x, y ∈ K with x ∈ Fy and Ty ∈ K, we have

d(Tx, FTy) ≤ d(Ty, Fy),
whereas the pair (F, T ) is said to be compatible (cf.[6]) if for every sequence
{xn} ⊂ K, from the relation

lim
n→∞

d(Fxn, Txn) = 0

and Txn ∈ K(for everyn ∈ N) it follows that lim
n→∞

d(Tyn, FTxn) = 0, for
every sequence {yn} ⊂ K such that yn ∈ Fxn, n ∈ N .

For hybrid pairs of self type mappings these definitions were introduced
by Kaneko and Sessa [13].

Definition 2 ([9]). Let K be a nonempty subset of a metric space (X, d),
T : K → X and F : K → CB(X). The pair (F, T ) is said to be quasi-
coincidentally commuting if for all coincidence points ‘x’ of (T, F ), TFx ⊂
FTx whenever Fx ⊂ K and Tx ∈ K for all x ∈ K.

Definition 3 ([9]). A mapping T : K → X is said to be coincidentally
idempotent w.r.t mapping F : K → CB(X), if T is idempotent at the
coincidence points of the pair (F, T ).

Definition 4 ([4]). A metric space (X, d) is said to be metrically convex if
for any x, y ∈ X with x 6= y there exists a point z ∈ X,x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).
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Lemma 1 ([4]). Let K be a nonempty closed subset of a metrically convex
metric space (X, d). If x ∈ K and y /∈ K then there exists a point z ∈ δK
(the boundary of K) such that d(x, z) + d(z, y) = d(x, y).

3. Results

Our main result runs as follows.

Theorem 1. Let (X, d) be a complete metrically convex metric space and
K a nonempty closed subset of X. Let {Fn}∞n=1 : K → CB(X) and S, T :
K → X satisfying:

(iv) δK ⊆ SK ∩ TK,Fi(K) ∩K ⊆ SK,Fj(K) ∩K ⊆ TK,
(v) Tx ∈ δK ⇒ Fi(x) ⊆ K,Sx ∈ δK ⇒ Fj(x) ⊆ K, and

(1)
H(Fi(x), Fj(y)) ≤ hmax

{1
a
d(Tx, Sy), d(Tx, Fi(x)), d(Sy, Fj(y)),

1

a+ h

(
d(Tx, Fj(y)) + d(Sy, Fi(x))

)}
,

where i = 2n−1, j = 2n, (n ∈ N), i 6= j for all x, y ∈ K with x 6= y,
where 0 < h < −1+

√
5

2 , a ≥ 1 + 2h2

1+h ,
(vi) (Fi, T ) and (Fj , S) are compatible pairs,
(vii) {Fn}, S and T are continuous on K.

Then {Fn}, S and T have a point of common coincidence.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the
following way. Assume α = h(1+h). Let x ∈ δK. Then (due to δK ⊆ TK)
there exists a point x0 ∈ K such that x = Tx0. From the implication
Tx ∈ δK, implies F1(x0) ⊆ F1(K) ∩ K ⊆ SK, let x1 ∈ K be such that
y1 = Sx1 ∈ F1(x0) ⊆ K. Since y1 ∈ F1(x0), there exists a point y2 ∈ F2(x1)
such that

d(y1, y2) ≤ H(F1(x0), F2(x1)) + α.

Suppose y2 ∈ K. Then y2 ∈ F2(K) ∩K ⊆ TK, implies that there exists
a point x2 ∈ K such that y2 = Tx2. Otherwise, if y2 /∈ K then there exists
a point p ∈ δK such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ δK ⊆ TK, there exists a point x2 ∈ K with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 ∈ F3(x2) be such that d(y2, y3) ≤ H(F2(x1), F3(x2)) + α2

Thus, repeating the foregoing arguments, we obtain two sequences {xn}
and {yn} such that
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(viii) y2n ∈ F2n(x2n−1) for all n ∈ N ,
y2n+1 ∈ F2n+1(x2n) for all n ∈ N0 = N ∪ {0},

(ix) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ δK and
d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n),

(x) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ δK and
d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1),

(xi) d(y2n−1, y2n) ≤ H(F2n−1(x2n−2), F2n(x2n−1)) + α2n−1

d(y2n, y2n+1) ≤ H(F2n(x2n−1), F2n+1(x2n)) + α2n.

We denote

P◦ = {Tx2i ∈ {Tx2n} : Tx2i = y2i}, P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},
Q◦ = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1} and
Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

One can note that (Tx2n, Sx2n+1) 6∈ P1×Q1 and (Sx2n−1, Tx2n) 6∈ Q1×P1.
Now, we distinguish the following three cases.

Case 1. If (Tx2n, Sx2n+1) ∈ P◦ ×Q◦, then

d(Tx2n, Sx2n+1) ≤ H(F2n+1(x2n), F2n(x2n−1)) + α2n

≤hmax
{1
a
d(Tx2n, Sx2n−1), d(Tx2n, F2n+1(x2n)), d(Sx2n−1, F2n(x2n−1)),

1

a+ h

(
d(Tx2n, F2n(x2n−1)) + d(Sx2n−1, F2n+1(x2n))

)}
+ α2n

=hmax
{1
a
d(Tx2n, Sx2n−1), d(Tx2n, Sx2n+1), d(Sx2n−1, Tx2n),

1

a+ h

(
d(Sx2n−1, Tx2n) + d(Tx2n, Sx2n+1)

)}
+ α2n

≤ max
{
hd(Tx2n, Sx2n−1) + α2n,

α2n

1− h
,

1

a
(hd(Sx2n−1, Tx2n) + α2n(a+ h))

}
≤hd(Tx2n, Sx2n−1) + max

{ 1

1− h
,
a+ h

a

}
α2n

≤hd(Tx2n, Sx2n−1) +
α2n

1− h
.

Similarly, if (Sx2n−1, Tx2n) ∈ Q◦ × P◦, then

d(Sx2n−1, Tx2n) ≤ hd(Tx2n−2, Sx2n−1) +
α2n−1

1− h
.

Case 2. If (Tx2n, Sx2n+1) ∈ P◦ ×Q1, then

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1),
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which in turn yields d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1), and
hence d(Tx2n, Sx2n+1) ≤ d(y2n, y2n+1) ≤ H(F2n+1(x2n), F2n(x2n−1)) + α2n.

Now, proceeding as in Case 1, we have

d(Tx2n, Sx2n+1) ≤ hd(Tx2n, Sx2n−1) +
α2n

1− h
.

In case (Sx2n−1, Tx2n) ∈ Q1 × P◦ then as earlier, one also obtains

d(Sx2n−1, Tx2n) ≤ hd(Sx2n−1, Tx2n−2) +
α2n−1

1− h
.

Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q◦ then Sx2n−1 = y2n−1. Proceeding as
in Case 1, one gets

d(Tx2n, Sx2n+1) = d(Tx2n, y2n+1)

≤ d(Tx2n, y2n) + d(y2n, y2n+1)

≤ d(Sx2n−1, y2n) +H(F2n+1(x2n), F2n(x2n−1)) + α2n

≤ d(Sx2n−1, y2n)

+ hmax
{1
a
d(Tx2n, Sx2n−1), d(Tx2n, Sx2n+1), d(Sx2n−1, Tx2n),

1

a+ h

(
d(Tx2n, F2n(x2n−1)) + d(Sx2n−1, F2n+1(x2n))

)}
+ α2n

≤ d(Sx2n−1, y2n)

+ hmax
{1
a
d(Tx2n, Sx2n−1), d(Tx2n, Sx2n+1), d(Sx2n−1, Tx2n),

1

a+ h

(
d(Tx2n, F2n(x2n−1)) + d(Sx2n−1, Sx2n+1)

)}
+ α2n

≤ d(Sx2n−1, y2n)

+ hmax
{1
a
d(y2n, Sx2n−1), d(Tx2n, Sx2n+1), d(Sx2n−1, y2n),

1

a+ h

(
d(Tx2n, y2n) + d(Sx2n−1, Sx2n+1)

)}
+ α2n

≤ max
{
(1 + h)d(y2n, Sx2n−1) + α2n, (1 + h)d(y2n, Sx2n−1) +

α2n

1− h
,

1

a
(hd(Sx2n−1, y2n) + (a+ h)α2n)

}
≤ (1 + h)d(y2n, Sx2n−1) +

α2n

1− h

≤h(1 + h)d(Tx2n−2, Sx2n−1) + h
α2n−1

1− h
+

α2n

1− h
.
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Thus if put z2n = Tx2n, z2n+1 = Sx2n+1, then one obtains

d(zn, zn+1) ≤

{
hd(zn−1, zn) +

αn

1−h , or
h(1 + h)d(zn−2, zn−1) +

hαn−1

1−h + αn

1−h .

Now on the lines of Itoh [11] it can be shown that {zn} is Cauchy and there
exists at least one subsequence {Tx2nk

} or {Sx2nk+1} which is contained
in P◦ or Q◦ respectively. Consequently the subsequence {Tx2nk

} which is
contained in P◦ for each k ∈ N , converges to z. Using compatibility of
(Fj , S), we have

lim
k→∞

d(Sx2nk−1, Fj(x2nk−1)) = 0 for any even integer j ∈ N,

which implies that lim
k→∞

d(STx2nk
, Fj(Sx2nk−1)) = 0.

Using the continuity of S and Fj , one obtains Sz ∈ Fj(z), for any even
integer j ∈ N . Similarly the continuity of T and Fi implies Tz ∈ Fi(z), for
any odd integer i ∈ N . Now

d(Tz, Sz) ≤ H(Fi(z), Fj(z))

≤ hmax
{1
a
d(Tz, Sz), d(Tz, Fi(z)), d(Sz, Fj(z)),

1

a+ h

(
d(Tz, Fj(z)) + d(Sz, Fi(z))

)}
≤ hmax

{1
a
d(Tz, Sz), 0, 0,

2

a+ h
d(Tz, Sz)

}
≤ max

{h
a
,

2h

a+ h

}
d(Tz, Sz),

yielding thereby Tz = Sz, which shows that z is a common coincidence
point of {Fn}, S and T . �

Remark 1. By setting Fi = F (for any odd integer i ∈ N) and Fj = G (for
any even integer j ∈ N) in Theorem 1, one deduces a result due to Ahmed
and Rhoades [1].

In the next theorem we utilize the closedness of TK and SK so as to relax
the continuity requirements besides limiting the commutativity to points of
coincidence.

Theorem 2. Let (X, d) be a complete metrically convex metric space and
K a nonempty closed subset of X. Let {Fn}∞n=1 : K → CB(X) and S, T :
K → X satisfying (1), (iv) and (v). Suppose that

(xii) TK and SK are closed subspaces of X. Then
(a) (Fi, T ) has a point of coincidence,
(b) (Fj , S) has a point of coincidence.
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Moreover, (Fi, T ) has a common fixed point if T is quasi-coincidentally
commuting and coincidentally idempotent w.r.t Fi, whereas (Fj , S) has a
common fixed point provided S is quasi-coincidentally commuting and coin-
cidentally idempotent w.r.t Fj.

Proof. On the lines of the proof of the Theorem 1, one assumes that there
exists a subsequence {Tx2nk

} which is contained in P◦ and TK as well as SK
are closed subspaces of X. Since {Tx2nk

} is Cauchy in TK, it converges to
a point u ∈ TK. Let v ∈ T−1u, then Tv = u. Since {Sx2nk+1} is a
subsequence of Cauchy sequence, {Sx2nk+1} converges to u as well. Using
(1), one can write

d(Fi(v), Tx2nk
) ≤ H(Fi(v), Fj(x2nk−1))

≤hmax
{1
a
d(Tv, Sx2nk−1), d(Sx2nk−1, Fj(x2nk−1)), d(Tv, Fi(v)),

1

a+ h

(
d(Tv, Fj(x2nk−1)) + d(Sx2nk−1, Fi(v))

)}
which on letting k →∞, reduces to

d(Fi(v), u) ≤ hmax
{
0, 0, d(u, Fi(v)),

1

a+ h
(0 + d(Fi(v), u))

}
≤ max

{
h,

h

a+ h

}
d(u, Fi(v))

yielding thereby u ∈ Fi(v), which implies that u = Tv ∈ Fi(v) as Fi(v) is
closed.

Since Cauchy sequence {Tx2n} converges to u ∈ K and u ∈ Fi(v), u ∈
Fi(K) ∩K ⊆ SK, there exists w ∈ K such that Sw = u. Again using (1),
one gets

d(Sw,Fj(w)) = d(Tv, Fj(w)) ≤ H(Fi(v), Fj(w))

≤ hmax
{1
a
d(Tv, Sw), d(Tv, Fi(v)), d(Sw,Fj(w)),

1

a+ h

(
d(Tv, Fj(w)) + d(Sw,Fi(v))

)}
≤ max

{
h,

h

a+ h

}
d(Sw,Fj(w))

implying thereby Sw ∈ Fj(w), that is w is a coincidence point of (S, Fj).
If one assumes that there exists a subsequence {Sx2nk+1} contained in

Q◦ with TK as well as SK are closed subspaces of X, then noting that
{Sx2nk+1} is Cauchy in SK, the foregoing arguments establish that Tv ∈
Fi(v) and Sw ∈ Fj(w).

Since v is a coincidence point of (Fi, T ) therefore using quasi-coincidentally
commuting as well as coincidentally idempotent property of T w.r.t Fi, one
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can have
Tv ∈ Fi(v)andu = Tv ⇒ Tu = TTv = Tv = u,

therefore u = Tu = TTv ∈ TFi(v) ⊂ Fi(Tv) = Fi(u), which shows that u is
the common fixed point of (Fi, T ). Similarly using the quasi-coincidentally
commuting as well as coincidentally idempotent property of S w.r.t Fj , one
can show that (Fj , S) has a common fixed point as well. �

Remark 2. By setting Fn = F (for n ∈ N) and S = T = IK in Theorem
2, one deduces a result due to Rhoades [18].

Remark 3. A fixed point theorem similar to Theorem 3.2 can also be out-
lined in respect of Theorem 2.

Finally, we prove a theorem when “closedness of K” is replaced by “com-
pactness of K”.

Theorem 3. Let (X, d) be a complete metrically convex metric space and
K a nonempty compact subset of X. Let {Fn}∞n=1 : K → CB(X) and
T : K → X satisfying:

(xiii) δK ⊆ TK, (Fi(K) ∪ Fj(K)) ∩K ⊆ TK,
(xiv) Tx ∈ δK ⇒ Fi(x) ∪ Fj(x) ⊆ K with

H(Fi(x), Fj(y)) < M(x, y) when M(x, y) > 0, for all x, y ∈ K where

(2)
M(x, y) = hmax

{1
a
d(Tx, Ty), d(Tx, Fi(x)), d(Ty, Fj(y)),

1

a+ h

(
d(Tx, Fj(y)) + d(Ty, Fi(x))

)}
where i = 2n−1, j = 2n, (n ∈ N), i 6= j for all x, y ∈ K with x 6= y,
where 0 ≤ h ≤ −1+

√
5

2 , a ≥ 1 + 2h2

1+h .

If T is compatible with {Fn} (n ∈ N) then {Fn} and T have a common
point of coincidence, provided all involves maps are continuous.

Proof. We assert that M(x, y) = 0 for some x, y ∈ K. Otherwise M(x, y) 6=
0, for any x, y ∈ K implies that

f(x, y) =
H(Fi(x), Fj(y))

M(x, y)

is continuous and satisfies f(x, y) < 1 for all (x, y) ∈ K ×K. Since K ×K
is compact, there exists (u, v) ∈ K ×K such that f(x, y) ≤ f(u, v) = c < 1
for x, y ∈ K, which in turn yields H(Fi(x), Fj(y)) ≤ cM(x, y) for x, y ∈ K
and 0 < c < 1. Therefore using (2), one obtains

max

{
1

1− ch
,

a+ h

a+ h(1− c)

}
< 1.
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Now, by Theorem 1 (with restriction S = T , we get Tz ∈ Fi(z) ∩ Fj(z)
for some z ∈ K and one concludes M(z, z) = 0 contradicting the facts
that M(x, y) > 0. Therefore M(x, y) = 0 for some x, y ∈ K which implies
Tx ∈ Fi(x) for any odd integeri ∈ N and Tx = Ty ∈ Fj(y) for any even
integer j ∈ N . If M(x, x) = 0 then Tx ∈ Fj(x) for any even integer j ∈ N
and if M(x, x) 6= 0 then using (2), one infers that d(Tx, Fj(x)) ≤ 0 yielding
thereby Tx ∈ Fj(x) for any even integer j ∈ N . Similarly in either of the
cases M(y, y) = 0 or M(y, y) > 0, one concludes that Ty ∈ Fi(y) for any
odd integer i ∈ N . Thus we have shown that {Fn} and T have a common
point of coincidence. This completes the proof. �

While proving Theorem 3 the following question remains unresolved: Does
Theorem 3.3 hold for {Fn}, S and T instead of {Fn} and T?
Acknowledgment. Both the authors are grateful to an anonymous referee
for their fruitful suggestions.

References

[1] M. A. Ahmed and B. E. Rhoades, Some common fixed point theorems for compatible
mappings, Indian J. Pure Appl. Math. 32(8)(2001), 1247-1254.

[2] A. Ahmad and M. Imdad, Some common fixed point theorems for mappings and
multi-valued mappings, J. Math. Anal. Appl. 218(1998), 546-560.

[3] A. Ahmad and A. R. Khan, Some common fixed point theorems for nonlinear hybrid
contractions, J. Math. Anal. Appl. 213(1997), 275-286.

[4] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of con-
tractive type, Pacific J. Math. 43(3)(1972), 553-562.

[5] B. C. Dhage, U. P. Dolhare and A. Petrusel, Some common fixed point theorems for
sequences of nonself multi-valued operators in metrically convex metric spaces, Fixed
Point Theory. 4(2)(2003), 143-158.

[6] O. Hadžic̀, On coincidence points in convex metric spaces, Univ. u Novom Sadu. Zb.
Rad. Prirod. Mat. Fak. Ser. Mat. 19(2)(1986), 233-240.

[7] O. Hadžic̀ and Lj. Gajic, Coincidence points for set-valued mappings in convex metric
spaces, Univ. u Novom Sadu. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 16(1) (1986),
13-25.

[8] N. J. Huang and Y. J. Cho, Common fixed point theorems for a sequence of set-valued
mappings, Korean J. Math. Sci. 4(1997), 1-10.

[9] M. Imdad, A. Ahmad and S. Kumar, On nonlinear nonself hybrid contractions,
Radovi Mat. 10(2001), 243-254.

[10] M. Imdad and S. Kumar, Rhoades type fixed point theorems for a pair of nonself
mappings, Comp. Math. Appl. 46(2003), 919-927.

[11] S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comment.
Math. Univ. Carolinae, 18(1977), 247-258.

[12] S. Itoh and W. Takahashi, Single valued mappings multi-valued mappings and fixed
point theorems, J. Math. Anal. Appl. 59(1977), 514-521.



10 Rhoades Type Fixed Point Theorems for a Family of Hybrid Pairs. . .

[13] H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and single
valued mappings, Internat. J. Math. Math. Sci. 12(2)(1989), 257-262.

[14] K. Kuratowski, Topology, Academic Press. Vol(I) 1966.

[15] M. S. Khan, Common fixed point theorems for multivalued mappings, Pacific J. Math.
95(2)(1981), 337-347.

[16] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30(2)(1969), 475-
488.

[17] B. E. Rhoades, A fixed point theorem for some nonself mappings, Math. Japon.
23(4)(1978), 457-459.

[18] B. E. Rhoades, A fixed point theorem for nonself set-valued mappings, Internat. J.
Math. Math. Sci. 20(1)(1997), 9-12.

Ladlay Khan
Department of Mathematics
Mewat Engineering college (Wakf)
Palla, Nuh, Mewat 122 107
India
E-mail address: k_ladlay@yahoo.com

M. Imdad
Department of Mathematics
Aligarh Muslim University
Aligarh 202 002
India
E-mail address: mhimdad@yahoo.co.in


