Rhoades Type Fixed Point Theorems for a Family of Hybrid Pairs of Mappings in Metrically Convex Spaces

LADLAY KHAN AND M. IMDAD

ABSTRACT. The present paper establishes some coincidence and fixed point theorems for a sequence of hybrid type nonself mappings defined on a closed subset of a metrically convex metric spaces, which generalize some earlier results due to Rhoades [18], Ahmed and Rhoades [1] and many others. Some related results are also derived.

1. INTRODUCTION

The existing literature of fixed point theory contains numerous results for single as well as multi-valued self mappings, but in many applications the mapping under consideration need not always be a self mapping. In an attempt to prove results for nonself mappings in metrically convex complete metric spaces, Rhoades [17] gave sufficient conditions for such mappings to admit a fixed point by proving a fixed point theorem for certain generalized type contractions under suitable boundary conditions on the mapping. The recent literature witnessed various extentions and generalizations of this theorem of Rhoades [17], which includes Rhoades [18], Imdad and Kumar [10] and some others. For the work of this kind one can be referred to Imdad et al. [9], Ahmad and Imdad [2], Ahmad and Khan [3], Rhoades [18] and several others. Recently Ahmed and Rhoades [1] proved a result on coincidence points for two hybrid pairs of compatible continuous mappings which is essentially patterned after Ahmad and Imdad [2]

On the other hand, Huang and Cho [8] and Dhage et al. [5] proved some fixed point theorems for a sequence of set-valued mappings which generalize several results due to Itoh [11], Khan [15], Ahmad and Khan [3] and others. In this paper by combining these two ideas we prove some coincidence and fixed point theorems for a sequence of hybrid type nonself mappings satisfying certain contraction type condition which is essentially patterned after

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H25; Secondary 47H10.

Key words and phrases. Metrically convex metric space; Quasi-coincidentally commuting mappings; Compatible mappings; Coincidentally idempotent.

Rhoades [18]. Our results either partially or completely generalize earlier results due to Rhoades [18], Imdad and Kumar [10] and several others.

2. Preliminaries

Before proving our results, we collect the relevant definitions and results for our future use.

Let (X, d) be a metric space. Then following Nadler [16], we recall

- (i) $CB(X) = \{A : A \text{ is nonempty closed and bounded subset of } X\},\$
- (ii) $C(X) = \{A : A \text{ is nonempty compact subset of } X\}.$
- (iii) For nonempty subsets A, B of X and $x \in X, d(x, A) = \inf\{d(x, a) : a \in A\}$ and

$$H(A, B) = \max[\{\sup d(a, B) : a \in A\}, \{\sup d(A, b) : b \in B\}].$$

It is well known (cf. Kuratowski [14]) that CB(X) is a metric space with the distance H which is known as Hausdorff-Pompeiu metric on X.

The following definitions and a lemma will be frequently used in the sequel.

Definition 1 ([6, 7]). Let K be a nonempty subset of a metric space (X, d), $T: K \to X$ and $F: K \to CB(X)$. The pair (F, T) is said to be weakly commuting (cf.[7]) if for every $x, y \in K$ with $x \in Fy$ and $Ty \in K$, we have

$$d(Tx, FTy) \le d(Ty, Fy),$$

whereas the pair (F, T) is said to be compatible (cf.[6]) if for every sequence $\{x_n\} \subset K$, from the relation

$$\lim_{n \to \infty} d(Fx_n, Tx_n) = 0$$

and $Tx_n \in K(\text{for every} n \in N)$ it follows that $\lim_{n \to \infty} d(Ty_n, FTx_n) = 0$, for every sequence $\{y_n\} \subset K$ such that $y_n \in Fx_n, n \in N$.

For hybrid pairs of self type mappings these definitions were introduced by Kaneko and Sessa [13].

Definition 2 ([9]). Let K be a nonempty subset of a metric space (X, d), $T: K \to X$ and $F: K \to CB(X)$. The pair (F,T) is said to be quasicoincidentally commuting if for all coincidence points 'x' of (T,F), $TFx \subset FTx$ whenever $Fx \subset K$ and $Tx \in K$ for all $x \in K$.

Definition 3 ([9]). A mapping $T : K \to X$ is said to be coincidentally idempotent w.r.t mapping $F : K \to CB(X)$, if T is idempotent at the coincidence points of the pair (F, T).

Definition 4 ([4]). A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$ there exists a point $z \in X, x \neq z \neq y$ such that

$$d(x, z) + d(z, y) = d(x, y).$$

Lemma 1 ([4]). Let K be a nonempty closed subset of a metrically convex metric space (X, d). If $x \in K$ and $y \notin K$ then there exists a point $z \in \delta K$ (the boundary of K) such that d(x, z) + d(z, y) = d(x, y).

3. Results

Our main result runs as follows.

Theorem 1. Let (X,d) be a complete metrically convex metric space and K a nonempty closed subset of X. Let $\{F_n\}_{n=1}^{\infty} : K \to CB(X)$ and $S,T : K \to X$ satisfying:

(iv)
$$\delta K \subseteq SK \cap TK, F_i(K) \cap K \subseteq SK, F_j(K) \cap K \subseteq TK, \\ (v) \ Tx \in \delta K \Rightarrow F_i(x) \subseteq K, Sx \in \delta K \Rightarrow F_j(x) \subseteq K, and \\ H(F_i(x), F_j(y)) \le h \max \Big\{ \frac{1}{a} d(Tx, Sy), d(Tx, F_i(x)), d(Sy, F_j(y)), \\ \frac{1}{a+h} \big(d(Tx, F_j(y)) + d(Sy, F_i(x)) \big) \Big\}, \\ where \ i = 2n-1, \ j = 2n, \ (n \in N), \ i \neq j \ for \ all \ x, y \in K \ with \ x \neq y, \\ where \ 0 < h < \frac{-1+\sqrt{5}}{2}, \ a \ge 1 + \frac{2h^2}{1+h}, \end{cases}$$

- (vi) (F_i, T) and (F_j, S) are compatible pairs,
- (vii) $\{F_n\}$, S and T are continuous on K.

Then $\{F_n\}$, S and T have a point of common coincidence.

Proof. Firstly, we proceed to construct two sequences $\{x_n\}$ and $\{y_n\}$ in the following way. Assume $\alpha = h(1+h)$. Let $x \in \delta K$. Then (due to $\delta K \subseteq TK$) there exists a point $x_0 \in K$ such that $x = Tx_0$. From the implication $Tx \in \delta K$, implies $F_1(x_0) \subseteq F_1(K) \cap K \subseteq SK$, let $x_1 \in K$ be such that $y_1 = Sx_1 \in F_1(x_0) \subseteq K$. Since $y_1 \in F_1(x_0)$, there exists a point $y_2 \in F_2(x_1)$ such that

$$d(y_1, y_2) \le H(F_1(x_0), F_2(x_1)) + \alpha$$

Suppose $y_2 \in K$. Then $y_2 \in F_2(K) \cap K \subseteq TK$, implies that there exists a point $x_2 \in K$ such that $y_2 = Tx_2$. Otherwise, if $y_2 \notin K$ then there exists a point $p \in \delta K$ such that

$$d(Sx_1, p) + d(p, y_2) = d(Sx_1, y_2).$$

Since $p \in \delta K \subseteq TK$, there exists a point $x_2 \in K$ with $p = Tx_2$ so that

$$d(Sx_1, Tx_2) + d(Tx_2, y_2) = d(Sx_1, y_2).$$

Let $y_3 \in F_3(x_2)$ be such that $d(y_2, y_3) \leq H(F_2(x_1), F_3(x_2)) + \alpha^2$

Thus, repeating the foregoing arguments, we obtain two sequences $\{x_n\}$ and $\{y_n\}$ such that

(viii)
$$y_{2n} \in F_{2n}(x_{2n-1})$$
 for all $n \in N$,
 $y_{2n+1} \in F_{2n+1}(x_{2n})$ for all $n \in N_0 = N \cup \{0\}$,

- (ix) $y_{2n} \in K \Rightarrow y_{2n} = Tx_{2n}$ or $y_{2n} \notin K \Rightarrow Tx_{2n} \in \delta K$ and $d(Sx_{2n-1}, Tx_{2n}) + d(Tx_{2n}, y_{2n}) = d(Sx_{2n-1}, y_{2n}),$
- (x) $y_{2n+1} \in K \Rightarrow y_{2n+1} = Sx_{2n+1}$ or $y_{2n+1} \notin K \Rightarrow Sx_{2n+1} \in \delta K$ and $d(Tx_{2n}, Sx_{2n+1}) + d(Sx_{2n+1}, y_{2n+1}) = d(Tx_{2n}, y_{2n+1}),$ (xi) $d(y_{2n-1}, y_{2n}) \le H(F_{2n-1}(x_{2n-2}), F_{2n}(x_{2n-1})) + \alpha^{2n-1}$
- $d(y_{2n}, y_{2n+1}) \le H(F_{2n}(x_{2n-1}), F_{2n+1}(x_{2n})) + \alpha^{2n}.$

We denote

$$P_{\circ} = \{Tx_{2i} \in \{Tx_{2n}\} : Tx_{2i} = y_{2i}\}, P_{1} = \{Tx_{2i} \in \{Tx_{2n}\} : Tx_{2i} \neq y_{2i}\}, Q_{\circ} = \{Sx_{2i+1} \in \{Sx_{2n+1}\} : Sx_{2i+1} = y_{2i+1}\} \text{ and } Q_{1} = \{Sx_{2i+1} \in \{Sx_{2n+1}\} : Sx_{2i+1} \neq y_{2i+1}\}.$$

One can note that $(Tx_{2n}, Sx_{2n+1}) \notin P_1 \times Q_1$ and $(Sx_{2n-1}, Tx_{2n}) \notin Q_1 \times P_1$. Now, we distinguish the following three cases.

Case 1. If $(Tx_{2n}, Sx_{2n+1}) \in P_{\circ} \times Q_{\circ}$, then

$$d(Tx_{2n}, Sx_{2n+1}) \leq H(F_{2n+1}(x_{2n}), F_{2n}(x_{2n-1})) + \alpha^{2n}$$

$$\leq h \max\left\{\frac{1}{a}d(Tx_{2n}, Sx_{2n-1}), d(Tx_{2n}, F_{2n+1}(x_{2n})), d(Sx_{2n-1}, F_{2n}(x_{2n-1})), \frac{1}{a+h}\left(d(Tx_{2n}, F_{2n}(x_{2n-1})) + d(Sx_{2n-1}, F_{2n+1}(x_{2n}))\right)\right\} + \alpha^{2n}$$

$$= h \max\left\{\frac{1}{a}d(Tx_{2n}, Sx_{2n-1}), d(Tx_{2n}, Sx_{2n+1}), d(Sx_{2n-1}, Tx_{2n}), \frac{1}{a+h}\left(d(Sx_{2n-1}, Tx_{2n}) + d(Tx_{2n}, Sx_{2n+1})\right)\right\} + \alpha^{2n}$$

$$\leq \max\left\{hd(Tx_{2n}, Sx_{2n-1}) + \alpha^{2n}, \frac{\alpha^{2n}}{1-h}, \frac{1}{a}(hd(Sx_{2n-1}, Tx_{2n}) + \alpha^{2n}(a+h))\right\}$$

$$\leq hd(Tx_{2n}, Sx_{2n-1}) + \max\left\{\frac{1}{1-h}, \frac{a+h}{a}\right\}\alpha^{2n}$$

$$\leq hd(Tx_{2n}, Sx_{2n-1}) + \frac{\alpha^{2n}}{1-h}.$$

Similarly, if $(Sx_{2n-1}, Tx_{2n}) \in Q_{\circ} \times P_{\circ}$, then

$$d(Sx_{2n-1}, Tx_{2n}) \le hd(Tx_{2n-2}, Sx_{2n-1}) + \frac{\alpha^{2n-1}}{1-h}$$

Case 2. If $(Tx_{2n}, Sx_{2n+1}) \in P_{\circ} \times Q_1$, then

$$d(Tx_{2n}, Sx_{2n+1}) + d(Sx_{2n+1}, y_{2n+1}) = d(Tx_{2n}, y_{2n+1}),$$

which in turn yields $d(Tx_{2n}, Sx_{2n+1}) \leq d(Tx_{2n}, y_{2n+1}) = d(y_{2n}, y_{2n+1})$, and hence $d(Tx_{2n}, Sx_{2n+1}) \leq d(y_{2n}, y_{2n+1}) \leq H(F_{2n+1}(x_{2n}), F_{2n}(x_{2n-1})) + \alpha^{2n}$.

Now, proceeding as in Case 1, we have

$$d(Tx_{2n}, Sx_{2n+1}) \le hd(Tx_{2n}, Sx_{2n-1}) + \frac{\alpha^{2n}}{1-h}.$$

In case $(Sx_{2n-1}, Tx_{2n}) \in Q_1 \times P_{\circ}$ then as earlier, one also obtains

$$d(Sx_{2n-1}, Tx_{2n}) \le hd(Sx_{2n-1}, Tx_{2n-2}) + \frac{\alpha^{2n-1}}{1-h}.$$

Case 3. If $(Tx_{2n}, Sx_{2n+1}) \in P_1 \times Q_\circ$ then $Sx_{2n-1} = y_{2n-1}$. Proceeding as in Case 1, one gets

$$\begin{split} &d(Tx_{2n}, Sx_{2n+1}) = d(Tx_{2n}, y_{2n+1}) \\ &\leq d(Tx_{2n}, y_{2n}) + d(y_{2n}, y_{2n+1}) \\ &\leq d(Sx_{2n-1}, y_{2n}) + H(F_{2n+1}(x_{2n}), F_{2n}(x_{2n-1})) + \alpha^{2n} \\ &\leq d(Sx_{2n-1}, y_{2n}) \\ &\quad + h \max\left\{\frac{1}{a}d(Tx_{2n}, Sx_{2n-1}), d(Tx_{2n}, Sx_{2n+1}), d(Sx_{2n-1}, Tx_{2n}), \\ &\quad \frac{1}{a+h}\left(d(Tx_{2n}, F_{2n}(x_{2n-1})) + d(Sx_{2n-1}, F_{2n+1}(x_{2n}))\right)\right\} + \alpha^{2n} \\ &\leq d(Sx_{2n-1}, y_{2n}) \\ &\quad + h \max\left\{\frac{1}{a}d(Tx_{2n}, Sx_{2n-1}), d(Tx_{2n}, Sx_{2n+1}), d(Sx_{2n-1}, Tx_{2n}), \\ &\quad \frac{1}{a+h}\left(d(Tx_{2n}, F_{2n}(x_{2n-1})) + d(Sx_{2n-1}, Sx_{2n+1})\right)\right\} + \alpha^{2n} \\ &\leq d(Sx_{2n-1}, y_{2n}) \\ &\quad + h \max\left\{\frac{1}{a}d(y_{2n}, Sx_{2n-1}), d(Tx_{2n}, Sx_{2n+1}), d(Sx_{2n-1}, Tx_{2n}), \\ &\quad \frac{1}{a+h}\left(d(Tx_{2n}, y_{2n}) + d(Sx_{2n-1}, Sx_{2n+1})\right)\right\} + \alpha^{2n} \\ &\leq d(Sx_{2n-1}, y_{2n}) \\ &\quad + h \max\left\{\frac{1}{a}d(y_{2n}, Sx_{2n-1}), d(Tx_{2n}, Sx_{2n+1}), d(Sx_{2n-1}, y_{2n}), \\ &\quad \frac{1}{a+h}\left(d(Tx_{2n}, y_{2n}) + d(Sx_{2n-1}, Sx_{2n+1})\right)\right\} + \alpha^{2n} \\ &\leq (1+h)d(y_{2n}, Sx_{2n-1}) + \alpha^{2n}, (1+h)d(y_{2n}, Sx_{2n-1}) + \frac{\alpha^{2n}}{1-h}, \\ &\quad \frac{1}{a}(hd(Sx_{2n-1}, y_{2n}) + (a+h)\alpha^{2n})\right\} \\ &\leq (1+h)d(y_{2n}, Sx_{2n-1}) + \frac{\alpha^{2n}}{1-h} \\ &\leq h(1+h)d(Tx_{2n-2}, Sx_{2n-1}) + h\frac{\alpha^{2n-1}}{1-h} + \frac{\alpha^{2n}}{1-h}. \end{split}$$

Thus if put $z_{2n} = Tx_{2n}, z_{2n+1} = Sx_{2n+1}$, then one obtains

$$d(z_n, z_{n+1}) \le \begin{cases} hd(z_{n-1}, z_n) + \frac{\alpha^n}{1-h}, & \text{or} \\ h(1+h)d(z_{n-2}, z_{n-1}) + \frac{h\alpha^{n-1}}{1-h} + \frac{\alpha^n}{1-h}. \end{cases}$$

Now on the lines of Itoh [11] it can be shown that $\{z_n\}$ is Cauchy and there exists at least one subsequence $\{Tx_{2n_k}\}$ or $\{Sx_{2n_k+1}\}$ which is contained in P_{\circ} or Q_{\circ} respectively. Consequently the subsequence $\{Tx_{2n_k}\}$ which is contained in P_{\circ} for each $k \in N$, converges to z. Using compatibility of (F_j, S) , we have

$$\lim_{k \to \infty} d(Sx_{2n_k-1}, F_j(x_{2n_k-1})) = 0 \quad \text{for any even integer } j \in N,$$

which implies that $\lim_{k \to \infty} d(STx_{2n_k}, F_j(Sx_{2n_k-1})) = 0.$

Using the continuity of S and F_j , one obtains $Sz \in F_j(z)$, for any even integer $j \in N$. Similarly the continuity of T and F_i implies $Tz \in F_i(z)$, for any odd integer $i \in N$. Now

$$\begin{split} d(Tz,Sz) &\leq H(F_i(z),F_j(z)) \\ &\leq h \max\Big\{\frac{1}{a}d(Tz,Sz),d(Tz,F_i(z)),d(Sz,F_j(z)), \\ &\quad \frac{1}{a+h}\big(d(Tz,F_j(z))+d(Sz,F_i(z))\big)\Big\} \\ &\leq h \max\Big\{\frac{1}{a}d(Tz,Sz),0,0,\frac{2}{a+h}d(Tz,Sz)\Big\} \\ &\leq \max\Big\{\frac{h}{a},\frac{2h}{a+h}\Big\}d(Tz,Sz), \end{split}$$

yielding thereby Tz = Sz, which shows that z is a common coincidence point of $\{F_n\}, S$ and T.

Remark 1. By setting $F_i = F$ (for any odd integer $i \in N$) and $F_j = G$ (for any even integer $j \in N$) in Theorem 1, one deduces a result due to Ahmed and Rhoades [1].

In the next theorem we utilize the closedness of TK and SK so as to relax the continuity requirements besides limiting the commutativity to points of coincidence.

Theorem 2. Let (X, d) be a complete metrically convex metric space and K a nonempty closed subset of X. Let $\{F_n\}_{n=1}^{\infty} : K \to CB(X)$ and $S, T : K \to X$ satisfying (1), (iv) and (v). Suppose that

- (xii) TK and SK are closed subspaces of X. Then
 - (a) (F_i, T) has a point of coincidence,
 - (b) (F_j, S) has a point of coincidence.

Moreover, (F_i, T) has a common fixed point if T is quasi-coincidentally commuting and coincidentally idempotent w.r.t F_i , whereas (F_j, S) has a common fixed point provided S is quasi-coincidentally commuting and coincidentally idempotent w.r.t F_j .

Proof. On the lines of the proof of the Theorem 1, one assumes that there exists a subsequence $\{Tx_{2n_k}\}$ which is contained in P_{\circ} and TK as well as SK are closed subspaces of X. Since $\{Tx_{2n_k}\}$ is Cauchy in TK, it converges to a point $u \in TK$. Let $v \in T^{-1}u$, then Tv = u. Since $\{Sx_{2n_k+1}\}$ is a subsequence of Cauchy sequence, $\{Sx_{2n_k+1}\}$ converges to u as well. Using (1), one can write

$$d(F_{i}(v), Tx_{2n_{k}}) \leq H(F_{i}(v), F_{j}(x_{2n_{k}-1}))$$

$$\leq h \max\left\{\frac{1}{a}d(Tv, Sx_{2n_{k}-1}), d(Sx_{2n_{k}-1}, F_{j}(x_{2n_{k}-1})), d(Tv, F_{i}(v)), \frac{1}{a+h}\left(d(Tv, F_{j}(x_{2n_{k}-1})) + d(Sx_{2n_{k}-1}, F_{i}(v))\right)\right\}$$

which on letting $k \to \infty$, reduces to

$$d(F_{i}(v), u) \leq h \max\left\{0, 0, d(u, F_{i}(v)), \frac{1}{a+h}(0 + d(F_{i}(v), u))\right\}$$
$$\leq \max\left\{h, \frac{h}{a+h}\right\}d(u, F_{i}(v))$$

yielding thereby $u \in F_i(v)$, which implies that $u = Tv \in F_i(v)$ as $F_i(v)$ is closed.

Since Cauchy sequence $\{Tx_{2n}\}$ converges to $u \in K$ and $u \in F_i(v), u \in F_i(K) \cap K \subseteq SK$, there exists $w \in K$ such that Sw = u. Again using (1), one gets

$$\begin{aligned} d(Sw, F_j(w)) &= d(Tv, F_j(w)) \leq H(F_i(v), F_j(w)) \\ &\leq h \max\left\{\frac{1}{a}d(Tv, Sw), d(Tv, F_i(v)), d(Sw, F_j(w)), \\ &\frac{1}{a+h}\left(d(Tv, F_j(w)) + d(Sw, F_i(v))\right)\right\} \\ &\leq \max\left\{h, \frac{h}{a+h}\right\} d(Sw, F_j(w)) \end{aligned}$$

implying thereby $Sw \in F_j(w)$, that is w is a coincidence point of (S, F_j) .

If one assumes that there exists a subsequence $\{Sx_{2n_k+1}\}$ contained in Q_{\circ} with TK as well as SK are closed subspaces of X, then noting that $\{Sx_{2n_k+1}\}$ is Cauchy in SK, the foregoing arguments establish that $Tv \in F_i(v)$ and $Sw \in F_j(w)$.

Since v is a coincidence point of (F_i, T) therefore using quasi-coincidentally commuting as well as coincidentally idempotent property of T w.r.t F_i , one

can have

$$Tv \in F_i(v)$$
 and $u = Tv \Rightarrow Tu = TTv = Tv = u$,

therefore $u = Tu = TTv \in TF_i(v) \subset F_i(Tv) = F_i(u)$, which shows that u is the common fixed point of (F_i, T) . Similarly using the quasi-coincidentally commuting as well as coincidentally idempotent property of S w.r.t F_j , one can show that (F_i, S) has a common fixed point as well.

Remark 2. By setting $F_n = F$ (for $n \in N$) and $S = T = I_K$ in Theorem 2, one deduces a result due to Rhoades [18].

Remark 3. A fixed point theorem similar to Theorem 3.2 can also be outlined in respect of Theorem 2.

Finally, we prove a theorem when "closedness of K" is replaced by "compactness of K".

Theorem 3. Let (X, d) be a complete metrically convex metric space and K a nonempty compact subset of X. Let $\{F_n\}_{n=1}^{\infty} : K \to CB(X)$ and $T: K \to X$ satisfying:

(xiii)
$$\delta K \subseteq TK, (F_i(K) \cup F_j(K)) \cap K \subseteq TK,$$

(xiv) $Tx \in \delta K \Rightarrow F_i(x) \cup F_j(x) \subseteq K$ with
 $H(F_i(x), F_j(y)) < M(x, y)$ when $M(x, y) > 0$, for all $x, y \in K$ where
 $M(x, y) = h \max\left\{\frac{1}{a}d(Tx, Ty), d(Tx, F_i(x)), d(Ty, F_j(y)),$
(2) $\frac{1}{a+h}(d(Tx, F_j(y)) + d(Ty, F_i(x)))\right\}$
where $i = 2n-1, i = 2n$, $(n \in N), i \neq i$ for all $x, y \in K$ with $x \neq y$.

where i = 2n - 1, j = 2n, $(n \in N)$, $i \neq j$ for all $x, y \in K$ with $x \neq y$, where $0 \le h \le \frac{-1 + \sqrt{5}}{2}$, $a \ge 1 + \frac{2h^2}{1+h}$.

If T is compatible with $\{F_n\}$ $(n \in N)$ then $\{F_n\}$ and T have a common point of coincidence, provided all involves maps are continuous.

Proof. We assert that M(x, y) = 0 for some $x, y \in K$. Otherwise $M(x, y) \neq 0$, for any $x, y \in K$ implies that

$$f(x,y) = \frac{H(F_i(x), F_j(y))}{M(x,y)}$$

is continuous and satisfies f(x, y) < 1 for all $(x, y) \in K \times K$. Since $K \times K$ is compact, there exists $(u, v) \in K \times K$ such that $f(x, y) \leq f(u, v) = c < 1$ for $x, y \in K$, which in turn yields $H(F_i(x), F_j(y)) \leq cM(x, y)$ for $x, y \in K$ and 0 < c < 1. Therefore using (2), one obtains

$$\max\left\{\frac{1}{1-ch}, \frac{a+h}{a+h(1-c)}\right\} < 1.$$

Now, by Theorem 1 (with restriction S = T, we get $Tz \in F_i(z) \cap F_j(z)$ for some $z \in K$ and one concludes M(z, z) = 0 contradicting the facts that M(x, y) > 0. Therefore M(x, y) = 0 for some $x, y \in K$ which implies $Tx \in F_i(x)$ for any odd integer $i \in N$ and $Tx = Ty \in F_j(y)$ for any even integer $j \in N$. If M(x, x) = 0 then $Tx \in F_j(x)$ for any even integer $j \in N$ and if $M(x, x) \neq 0$ then using (2), one infers that $d(Tx, F_j(x)) \leq 0$ yielding thereby $Tx \in F_j(x)$ for any even integer $j \in N$. Similarly in either of the cases M(y, y) = 0 or M(y, y) > 0, one concludes that $Ty \in F_i(y)$ for any odd integer $i \in N$. Thus we have shown that $\{F_n\}$ and T have a common point of coincidence. This completes the proof. \Box

While proving Theorem 3 the following question remains unresolved: Does Theorem 3.3 hold for $\{F_n\}$, S and T instead of $\{F_n\}$ and T?

Acknowledgment. Both the authors are grateful to an anonymous referee for their fruitful suggestions.

References

- M. A. Ahmed and B. E. Rhoades, Some common fixed point theorems for compatible mappings, Indian J. Pure Appl. Math. **32(8)**(2001), 1247-1254.
- [2] A. Ahmad and M. Imdad, Some common fixed point theorems for mappings and multi-valued mappings, J. Math. Anal. Appl. 218(1998), 546-560.
- [3] A. Ahmad and A. R. Khan, Some common fixed point theorems for nonlinear hybrid contractions, J. Math. Anal. Appl. 213(1997), 275-286.
- [4] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43(3)(1972), 553-562.
- [5] B. C. Dhage, U. P. Dolhare and A. Petrusel, Some common fixed point theorems for sequences of nonself multi-valued operators in metrically convex metric spaces, Fixed Point Theory. 4(2)(2003), 143-158.
- [6] O. Hadžič, On coincidence points in convex metric spaces, Univ. u Novom Sadu. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 19(2)(1986), 233-240.
- [7] O. Hadžič and Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces, Univ. u Novom Sadu. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 16(1) (1986), 13-25.
- [8] N. J. Huang and Y. J. Cho, Common fixed point theorems for a sequence of set-valued mappings, Korean J. Math. Sci. 4(1997), 1-10.
- [9] M. Imdad, A. Ahmad and S. Kumar, On nonlinear nonself hybrid contractions, Radovi Mat. 10(2001), 243-254.
- [10] M. Imdad and S. Kumar, Rhoades type fixed point theorems for a pair of nonself mappings, Comp. Math. Appl. 46(2003), 919-927.
- [11] S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae, 18(1977), 247-258.
- [12] S. Itoh and W. Takahashi, Single valued mappings multi-valued mappings and fixed point theorems, J. Math. Anal. Appl. 59(1977), 514-521.

- [13] H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and single valued mappings, Internat. J. Math. Math. Sci. 12(2)(1989), 257-262.
- [14] K. Kuratowski, Topology, Academic Press. Vol(I) 1966.
- [15] M. S. Khan, Common fixed point theorems for multivalued mappings, Pacific J. Math. 95(2)(1981), 337-347.
- [16] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30(2)(1969), 475-488.
- [17] B. E. Rhoades, A fixed point theorem for some nonself mappings, Math. Japon. 23(4)(1978), 457-459.
- [18] B. E. Rhoades, A fixed point theorem for nonself set-valued mappings, Internat. J. Math. Math. Sci. 20(1)(1997), 9-12.

LADLAY KHAN

Department of Mathematics Mewat Engineering college (Wakf) Palla, Nuh, Mewat 122 107 India *E-mail address*: k_ladlay@yahoo.com

M. IMDAD

DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH 202 002 INDIA *E-mail address*: mhimdad@yahoo.co.in